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ABSTRACT 

 

 

 

 

Austenitic stainless steel AISI 316L is mostly used as an implant material and 

is customarily applied as impermanent devices in orthopedic surgery because of its 

low cost, adequate mechanical properties, and acceptable biocompatibility. AISI 

316L is an extra-low carbon type 316 (austenitic chromium nickel stainless steel 

containing molybdenum) that minimizes harmful carbide precipitation at elevated 

temperature. Machining is part and parcel during the fabrication of implants and 

medical devices made from stainless steels and thus it is of interest to evaluate the 

machinability of AISI 316L. In this study, austenitic stainless steel AISI 316L was 

turned using two commercially available cutting tool inserts at various cutting speeds 

(90, 150, and 210  m/min) and feeds (0.10, 0.16, and 0.22 mm/rev) and at a constant 

depth of cut of 0.4 mm. The turning of AISI 316L was implemented in dry cutting. 

The cutting tools used were an uncoated tungsten carbide-cobalt insert (WC-Co) and 

a multi coated nano-textured TiCN, nano-textured Al2O3 thin layer, and a TiN outer 

layer insert. The cutting forces, total power consumption, surface roughness, and tool 

life were measured/obtained and analyzed. The total power consumption of the 

turning process was obtained from direct measurements as well as using a 

combination of theoretical formulas and experimental cutting force data. The 

machining experiments and their responses were designed and evaluated using the 

three-level full factorial design and the analysis of variance (ANOVA). It was found 

that the cutting speed and feed significantly affect the various machining responses 

observed. The cutting force and total power consumption increased with increasing 

cutting speed, but the surface roughness and tool life decreased. With increasing 

feed, surface roughness and tool life decreased but the cutting force and total power 

consumption increased. The empirical mathematical models of the machining 

responses as functions of cutting speed and feed developed were statistically valid. 

Confirmation runs helped to prove the validity of the models within the limits of the 

factors investigated. 
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ABSTRAK 

 

 

 

 

Keluli tahan karat austenit AISI 316L digunakan secara meluas sebagai bahan 

implan dan sering digunakan untuk peranti sementara dalam pembedahan ortopedik 

kerana kos yang rendah, sifat mekanikal yang memadai, dan biokeserasian yang 

boleh diterima. AISI 316L adalah versi karbon terendah-sangat bagi keluli jenis 316 

(keluli austenit kromium nikel tahan karat yang mengandungi molibdenum) yang 

mengurangkan pemendakan karbida yang merbahaya pada suhu tinggi. Proses 

pemesinan digunakan dalam pembuatan implan dan peranti perubatan yang diperbuat 

daripada keluli tahan karat dan oleh itu adalah penting untuk menilai kebolehmesinan 

AISI 316L. Dalam kajian ini, keluli tahan karat austenit AISI 316L dilarik 

menggunakan dua mata alat sisipan komersial pada pelbagai kelajuan pemotongan 

(90, 150, dan 210 m/min) dan uluran (0.10, 0.16, dan 0.22 mm/putaran) dan pada 

kedalaman potongan tetap 0.4 mm. Larikan AISI 316L dijalankan dalam keadaan 

pemotongan kering. Mata alat sisipan yang digunakan adalah karbida tungsten-kobalt 

(tungsten carbide-cobalt, WC-Co) tak bersalut dan mata sisipan yang disalut berlapis 

dengan lapisan nano-bertekstur TiCN, lapisan nipis nano-bertekstur Al2O3 dan 

lapisan luar TiN. Daya pemotongan, jumlah penggunaan kuasa, kualiti permukaan, 

dan hayat mata alat diukur/diambil dan dianalisa. Jumlah penggunaan kuasa bagi 

proses larikan diperoleh secara pengukuran langsung dan juga gabungan formula 

teori dan data ujikaji daya pemotongan. Ujikaji pemesinan dan responnya telah 

direkabentuk dan dinilai menggunakan reka bentuk faktorial tahap tiga dan analisa 

varians (analysis of variance, ANOVA). Kelajuan pemotongan dan suapan didapati 

memberi kesan kepada pelbagai respon pemesinan yang diperhatikan. Daya 

pemotongan dan jumlah penggunaan kuasa meningkat dengan peningkatan kelajuan 

pemotongan, tetapi kekasaran permukaan dan hayat mata alat menurun. Dengan 

peningkatan uluran, kualiti permukaan dan hayat mata alat berkurangan tetapi daya 

pemotongan dan jumlah penggunaan kuasa meningkat. Model matematik empirikal 

bagi respon pemesinan sebagai fungsi kelajuan pemotongan dan uluran yang 

dibangunkan adalah sah secara statistik. Ujian pengesahan telah membantu dalam 

membuktikan kesahihan model dalam had bagi faktor-faktor yang dikaji.  
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CHAPTER 1 

 

 

  

 

INTRODUCTION 

 

 

 

 

The first chapter begins with the background of the problem, which covers 

the problem statement. Following the problem statement are the objectives, scope 

and significance of the study, and the organization of the thesis. 

 

 

 

 

1.1 Background 

 

 

Machining processes are complex and dependant on many factors such as the 

process under consideration and its operating conditions, the workpiece material, and 

the cutting tool material. A particular combination of these factors will have an effect 

on machinability. In the case of the turning process, attempts have been made to 

measure or quantify machinability and it was done mostly in terms of:  

1. Tool life which substantially influences productivity and the economics in 

machining. Investigations on the tool life as the response when cutting tool and 

cutting parameters are varied have been studied in several investigations, such as 

by Kurniawan et al.  (2010), Rao et al. (2014), and Hu and Huang (2014). 

2. Magnitude of cutting forces which affects dimensional accuracy. Cutting forces 

have been measured in several studies, such as by Kamely and Noordin (2011), 

Kadirgama et al. (2010), and Xie et al. (2013).  

3. Surface finish which plays an important role on performance and service life of 

the product. Surface roughness at various machining conditions have been 
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investigated by several researchers, such as Devillez et al.  (2011), Asiltürk and 

Akkuş (2011), Krishna et al. (2010), and Hwang and Lee  (2010). 

 

Nowadays sustainable development has been emphasized. In order to attain 

sustainable development, industries have resorted to sustainable manufacturing 

where the three pillars, namely; economic, social, and environmental were 

considered (Pusavec et al., 2010; Westkämper et al., 2000). Application of 

sustainability practices have been carried out in the various engineering fields, 

including manufacturing and design. It is known that industries gained financial and 

environmental advantages, produce products of best quality, became more 

competitive, have a larger market share and achieved increased profitability when 

these industries applied sustainable practices (Nambiar, 2010; Rusinko, 2007). 

 

In manufacturing, sustainable practices include conserving energy and natural 

resources, implementing economically sound processes, and keeping negative 

environmental impacts to the minimum level, and simultaneously enhancing the 

safety of employee, community, and the products. Such practices can also be applied 

to machining processes which is part of the manufacturing system. Machining as an 

industry, is acknowledged as a production system, which is associated with the 

creation of economic wealth as well as the impact on the natural environment (Sarkis 

et al., 2010; Warren et al., 2001). Specifically for the turning process, sustainable 

machining can be implemented by taking into account the cutting conditions used 

during turning; such as the cutting parameters and cutting fluids, the cutting tool 

performance, the quality of machined surface, and the power consumed for cutting. 

 

Use of cutting fluids is a common practice in machining, for increasing 

overall machinability, by reducing friction or temperature at the cutting region. 

However, their use has been recommended to be minimized whenever possible. Dry 

machining, without the use of any cutting fluid, has been investigated as a means 

towards sustainable manufacturing. Previous research was on dry turning was 

performed by Davoodi et al. (2012), Devillez et al.  (2011), Kadirgama et al.  (2010), 

Noordin et al.  (2007), to name a few, with success to some extent. The use of proper 

cutting tools at suitable cutting parameters is determinant for optimal tool life, which 
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in turn influences the sustainability of the turning process. The quality of machined 

surface, or sometime termed as surface integrity, reflects the performance of the 

machining process. This includes the surface roughness of the machined surface. The 

power consumption during the cutting process needs serious attention since it is 

related to various aspects of sustainable manufacturing. Some works have been done 

on some machining processes, such as Aggarwal et al. (2008), Bhattacharya et al. 

(2009), Hanafi et al. (2012), and Bhushan (2013), but works involving the turning 

process are still lacking. Combination of the first three considerations with power 

consumption in turning is a good way forward towards sustainable machining. 

 

 

 

1.2 Problem Statement 

 

 

The machining industry is an important and strategic industry for the 

manufacturing sector (Wang et al., 2013). Based on the above, investigations have 

been carried out on machining processes by varying the cutting conditions and 

measuring the various machinability responses. Additionally, investigations 

involving newly developed cutting tools as well as newly developed workpiece 

materials were also undertaken. As mentioned previously; tool life, cutting forces 

and surface roughness are the responses normally investigated in machinability 

studies. The power consumption during machining is often neglected, and this holds 

true in the case of turning process. There was very limited research performed in 

investigating the power consumption machinability response. In line with making the 

turning process sustainable, there is a need to conduct a study on the turning process 

machinability, which also considers power consumption. 

 

Stainless steel AISI 316L is the workpiece material of interest. Being highly 

corrosion resistant, this type of stainless steel is often used in medical devices, 

especially those in direct contact with the human body. Machining process is widely 

used in the manufacture of medical devices. However machinability data for this 

material is very limited. Therefore there is a need to evaluate the machinability 

during turning of stainless steel AISI 316L towards sustainable machining. The 

availability of machinability data obtained from the implementation of sustainable 
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machining of turning process will benefit the manufacturer of these high value added 

products as guidelines to calculate and measure the total power consumption is 

available in addition to information on common machinability aspects of cutting 

forces, surface roughness, and tool life. 

 

 

 

1.3 Objectives 

 

 

The objectives of the research are as follows: 

1. To examine the influence of cutting conditions on various machinability 

parameters during the turning of stainless steel AISI 316L using uncoated and 

coated carbide tools. 

2. To develop the mathematical models for the various machinability parameters 

thus enabling the determination of the optimized as well as the feasible region of 

cutting conditions for a given set of machinability parameters’ requirement. 

 

 

 

 

1.4 Scope of Study 

 

 

Considering the wide area of possible methods to achieve the objectives, 

some boundaries must be set and this research focuses within the following scope: 

1. The cutting parameters were varied at 90, 150, and 210 m/min for cutting speed 

and 0.10, 0.16, and 0.22 mm/rev for feed, while the depth of cut was set constant 

at 0.4 mm. The turning process was performed dry (without cutting fluid). 

2. Austenitic stainless steel AISI 316L was the workpiece material turned. 

3. MC7025 coated carbide tool and UTi20T uncoated tool was the cutting tool 

materials used. 

4. The machinability parameters investigated were the cutting forces, the total 

power consumption, the surface roughness and the tool life. 

5. ALPHA 1350S 2-Axis CNC lathe was used to perform the cutting tests. 

6. A three-component dynamometer, multi channel amplifier and the data 

acquisition system were utilized to obtain the cutting force data. 
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7. Mitutoyo Surftest SJ-301 was used to measure the surface roughness of the 

turned specimen. 

8. Carl Zeiss Stemi 2000-C optical microscope was used to capture the wear of the 

cutting tool. 

9. Portable power monitor ZN-CTX21 and its components were used to measure 

the power consumed on the main cable, spindle cable, and carriage cable which 

were installed in the box panel of the CNC lathe machine. 

10. Wave Inspire ES software was used to display the total power consumed during 

turning. 

11. The 3
2
 or 3-level, 2-factor, full factorial design with 2 center points was used to 

develop the experimental plan. 

 

 

 

 

1.5 Significance of Study 

 

 

It was expected outcomes of this study would provide the followings: 

1. By incorporating power consumption consideration together with the other 

machinability data, a reduction in energy consumption is expected thus making 

the machining process more sustainable. 

2. Enhance our knowledge thereby providing a better understanding of the 

characteristics and application of the different cutting tools with the different 

cutting parameters when turning AISI 316L austenitic stainless steel. 

3. The mathematical models developed will facilitate the optimization process.  

 
 
 
 

1.6 Organization of Thesis 

 

 

This thesis consists of six chapters, which begin with Chapter 1 as an 

introduction that contains the background, problem statement, objectives, scope and 

significance of study, and finally organization of thesis. 
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Chapter 2 provides the literature review for some topics, such as the 

definition of sustainability, sustainable production, power consumption, metal cutting 

and turning process, surface integrity, cutting insert, tool life and tool failure, and 

austenitic stainless steel. Chapter 3 describes the equipment and methodologies that 

were used and adopted.  

 

 

The experimental results were presented in Chapter 4 and this includes the 

machining response data, such as cutting forces, total power consumption, surface 

roughness, and tool life. It also presents the data analysis and the development of the 

various mathematical models using the Design of Experiments (DOE) technique for 

predicting and optimizing the machinability parameters. Lastly, Chapter 5 provides 

the conclusion and recommendation for future work. 
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