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ABSTRACT 

Advanced materials such as aero-engine alloys, structural ceramics and 

hardened steels pose serious challenges for cutting tools material during machining. 

Nickel-base super alloys are generally known to be one of the most difficult 

materials to machine. Machining productivity can be significantly improved by 

employing the right combination of cutting tools, cutting conditions and machine 

tool without compromising the integrity and tolerance of the machined components. 

The objectives of this study are to evaluate the machining characteristics of new drill 

geometry and to established mathematical model of the responses when drilling 

Inconel 718 using various cutting conditions. Commercially available Inconel 718 

was drilled using carbide cutting tool with various point angles at various cutting 

speed between 4.59 to 21.41 m/min and feed between 0.03 to 0.12 mm/rev in the wet 

condition and a constant depth of cut. The drills employed in this study were 

uncoated carbide, TiAlN coated carbide and AlTiN coated carbide with designated 

ISO grade K20/K30. The performance of the cutting tools in terms of tool life (T), 

surface roughness (Ra),   cutting forces (Fz) and diameter error (DE) was described 

using factorial design and response surface methodology (RSM). Mathematical 

models of the drilling responses were developed using the proposed method. Results 

showed that the developed models were statistically valid and sound based on the 

experimental results within the acceptable range. The optimum cutting conditions 

were developed for all the responses with acceptable desirability. Dimensional 

accuracy and surface layer alteration of the drilled hole when using all type of 

cutting tools were compared traditionally between three different types of tool. 

Results showed that the accuracy varied for all chosen machining conditions and tool 

types but still within acceptable tolerance. Top surface layer and subsurface are 

significantly affected with ununiform layer and the presence of white layer. Highest 

microhardness at subsurface layer occured when using AlTiN coated carbide tool. 
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ABSTRAK 

Bahan termaju seperti aloi angkasa, seramik struktur dan keluli yang 

dikeraskan memberi cabaran yang serius pada bahan matalat  semasa proses 

pemotongan. Aloi berasas nikel merupakan salah satu bahan yang sangat sukar untuk 

dimesin. Produktiviti pemesinan dapat ditingkatkan dengan menggunakan kombinasi 

sesuai pada matalat, keadaan pemotongan dan mesin yang digunakan dengan 

memperhatikan integriti dan had terima produk yang dimesin. Tujuan penyelidikan 

ini adalah untuk menilai sifat dari pemesinan matalat yang berbeza geometri dan 

pembangunan model matematik terhadap respon semasa menggerudi Inconel 718 

dengan pelbagai keadaan pemotongan. Penggerudian menggunakan matalat karbida 

pelbagai sudut geometri pada pelbagai halaju pemotongan di antara 4.59 hingga 

21.41 m/min, kadar suapan di antara 0.03 hingga 0.12 mm/pusingan dalam keadaan 

basah dengan kedalaman pemotongan tetap. Matalat gerudi yang digunakan adalah 

karbida tak bersalut, karbida bersalut TiAlN dan AlTiN bergred ISO K20/K30. 

Prestasi matalat seperti hayat matalat (T), kekasaran permukaaan (Ra), daya 

pemotongan (Fz), dan ketepatan diameter (DE) dinyatakan menggunakan  kaedah 

reka bentuk pemfaktoran dan permukaan respon (RSM). Model matematik bagi 

respon proses penggerudian dibangun menggunakan kaedah di atas. Keputusan 

menunjukkan bahwa model yang dibangun adalah sah dan kukuh berdasar hasil 

keputusan yang diperolehi di dalam lingkungan yang dikaji. Keadaan pemesinan 

yang optimum juga dibangunkan untuk semua respon pemesinan dengan keperluan 

yang dapat diterima. Ketepatan dimensi dan lapisan permukaan lubang yang digerudi 

ketika menggunakan berbagai matalat dibandingkan di antara ketiga-tiga matalat. 

Keputusan menunjukkan adanya variasi ketepatan pada semua keadaan pemotongan 

dan matalat, namun ianya masih dalam ketepatan had terima. Lapisan permukaan 

dan bahagiannya dipengaruhi lapisan tak seragam di lapisan putih. Kekerasan yang 

tinggi pada lapisan permukaan berlaku ketika menggunakan karbida bersalut AlTiN.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Advanced materials such as superalloys aero-engine alloys, structural 

ceramic and hardened steels posses serious challenges to cutting tools material 

during machining. Superalloys are heat resistant alloys of nickel, nickel-iron, or 

cobalt that exhibit a combination of mechanical strength and resistance to surface 

degradation generally not similar to the other metallic compounds. The primary uses 

of these alloys are in; (a) gas turbines for aircraft, such as discs, combustion 

chambers, bolts, castings, system in shaft exhaust, blades , vanes; (b) steam turbines 

in power plants, likes bolts, blades, heaters in stack gas; (c) reciprocated engines, 

likes in turbocharger, valves at the exhaust, hot plugs, etc.; (d) metal processing, 

likes for hot work tool and dies, dies for casting; (e) medical equipments, such as 

parts in dentistry, prosthetic devices; (f) space shuttles; (g) heat treatment equipment; 

(h) nuclear power plant; (i) petrochemical and chemical industries; (j) equipment for 

pollution control; and (k) coal gasification and liquefaction system (Choudury and El 

Baradie, 1998). Content of nickel is about 50% in nickel base alloys, where else in 

nickel-iron base alloy, nickel is found to be the main solute component. 

 

 Among the nickel base superalloys, Inconel is generally known to be one of 

the most difficult materials to be machined because of its high hardness, high 

strength at high temperature, affinity to react with tool materials, and low thermal 

diffusivity. Nickel base superalloys have some characteristics that are responsible for 

its poor machinability. They have an austenitic matrix, and like stainless steels, they 
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work hardened rapidly during machining. These alloys also have the tendency to 

weld with the tool material due to the high temperature generated during machining. 

The tendency to form BUE (built up edge) during machining and the presence of 

hard abrasive carbides in their microstructure also deters machinability. 

Machinability is the term used to describe how easily a material can be cut to a 

desired shape with respect to the tooling and machining processes involved. 

Machining productivity can be significantly improved by employing the right 

combination of cutting tools, cutting conditions and machine tool without 

compromising the integrity and tolerance of the machined components. This is 

particularly essential for the economic machining of difficult to machine materials 

such as Inconel 718. 

1.2  Background of Research 

Most of research findings on the machinability of Inconel have dealt with the 

turning operation and, to a certain extent, milling operation. The machinability of 

Inconel in drilling operation has not been widely reported. This may come as 

surprise as hole drilling is among the most common and demanding process in 

machining. New machining conditions on drilling of Inconel could be further 

exploited. Further research on drilling mechanism and its effect on this kind of 

material will ensure better machining efficiency. 

 

 This study is undertaken to investigate the performance of new drill geometry 

of coated and uncoated carbide when drilling Inconel 718 under various cutting 

conditions. Design of experiment (DOE) approach is used to develop mathematical 

models for the selected machining responses when drilling of Inconel 718.  

  

The continuing demand for improved productivity through the use of 

properly selected drilling tool and drilling conditions for a given application has 

generated interest in understanding the drilling performance on the selected material. 

It is expected that the findings from this research would enhance new knowledge and 

provide a better understanding of the machining characteristics when drilling of 
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Inconel 718. In addition, it would provide significant benefits to the machining 

industries in particular aerospace and petrochemical industries. 

1.3 Problem Statement 

Does the performance of different drill geometry and coating of carbide tool 

when drilling Inconel 718 deliver better results in term of surface integrity, cutting 

forces, tool life and dimensional accuracy. 

 

1.4 Objectives 

The objectives of the study comprising the following: 

 

i. To determine the optimum machining conditions when drilling Inconel 

718 using uncoated and coated carbide tools of different tool geometry 

ii. To develop mathematical models for tool life, surface roughness and 

cutting force of uncoated and coated carbide tools when drilling Inconel 

718   

iii. To evaluate the effect of the cutting conditions on tool life, tool wear,  

cutting force when drilling Inconel 718  

iv. To study the surface integrity and microhardness of the drilled hole by 

mean of quality from different type of tools and geometry 

v. To investigate the dimensional accuracy in terms of diameter and 

roundness of the drilled hole when drilling Inconel 718 by using 

different type of tools and geometry 
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1.5 Scope of Study 

The scope of this research is focused on drilling Inconel 718 using three 

types of cutting tools, which include uncoated and two coated carbide tools (TiAlN 

and AlTiN). Experimental studies were conducted under various independent 

variables which include cutting speed, feed rate, geometry and coatings material. In 

this study, the cutting speed applied in the range of 4.59 to 21.41 m/min and feed 

rate between 0.03 to 0.012 mm/rev. The geometry of the tool was specially 

manufactured with different point angle in the range 116.5 to 133.4 degree. The 

workpiece was mounted above dynometer to record the produced force when drilling 

with wet condition.  At the end of the study the performance of each cutting tools 

was evaluated by means of factorial design and response surface methodology 

(RSM), then mathematical models (empirical equations) for tool life, surface 

roughness, cutting force and diameter error were developed. Subsequently, the 

optimum cutting conditions for carbide tools in drilling Inconel 718 were 

established. The surface characteristics and dimensional accuracy were investigated 

based on the quality criteria.  

1.6 Significance of Study 

The enormous cost involved in the machining of nickel alloys and other 

aerospace materials has prompted continuous research and development of suitable 

cutting tool materials and geometries, as well as cutting techniques that ensure 

greater material removal rate with minimum surface and subsurface damages to the 

machined component. Although research on drilling had been conducted 

expensively, investigations on the drilling of nickel base superalloys are still limited 

especially in relation to optimization of cutting conditions on the machining 

responses. In this study the machining parameters such as cutting speed, feed rate 

was selected within wide range of value to identify several behavior of independent 

variables. The geometry of the tools was set especially the point angle which cover 

the geometry that commercially available. The mathematical models that are 

developed can assist the aerospace industries to determine suitable conditions in 
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drilling Inconel 718 within the range of this study for a specific target. Eventually, 

this will help to reduce the cost and time to the aerospace machining industries in the 

future. Dimensional accuracy in term of hole diameter and roundness that produced 

by drilling process were investigate especially in relation to the tool types and 

geometry. Surface and subsurface of the drilled holes are thoroughly investigated in 

terms of surface layer, microcracks and hardness.  
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