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ABSTRACT 

The aim of this work is to develop novel, efficient and environmental friendly 
water treatment technology with low cost and low energy consumption for  
adsorptive removal of selected heavy metals such as arsenic (As) and lead (Pb) from 
aqueous system as well as membrane fouling mitigation. In order to overcome the 
shortages of adsorption and membrane technology, porous asymmetric 
nanocomposite flat sheet ultrafiltration (UF) mixed matrix membranes (MMMs) 
incorporated with hydrophilic metal oxide nanoparticle adsorbents were prepared 
through the phase inversion process. Prior to the fabrication and characterization of 
MMMs, metal oxide nanoparticles, i.e. Fe-Mn binary oxide (FMBO) with high As 
adsorption capacity and hydrous manganese dioxide (HMO) with high Pb adsorption 
capacity were synthesized and used as inorganic fillers and adsorbents in flat sheet 
polyethersulfone (PES)-based MMMs. The effects of impregnating inorganic metal 
oxide nanoparticles on the PES-based MMMs morphology, pure water flux, 
adsorption capacity, surface pattern formation and membrane fouling mitigation 
were studied by varying the loading of the metal oxide nanoparticles. Both flat sheet 
PES/HMO and PES/FMBO MMMs were characterized using scanning electron 
microscope (SEM), contact angle goniometer, atomic force microscope (AFM) and 
Fourier transforms infrared (FTIR) spectrometer. The best performing membranes 
prepared from the FMBO/PES ratio of 1.5: 1 demonstrated the pure water flux as 
high as 94.6 L/m2.h.bar and maximum As(III) uptake capacity of around 73.5 mg/g. 
On the other hand the experimental results showed that with increasing HMO:PES 
weight ratio from zero to 2.0 times, the membrane water flux was increased from 
39.4 to 573.2 L/m2.hr.bar (more than 14 times) and the optimized membranes 
fabricated from the HMO/PES ratio of 2.0 : 1 showed the highest Pb(II) adsorption 
capacity i.e. 204.1 mg/g. The continuous UF experiments showed that the optimized 
MMMs could achieve promising results by removing selected heavy metals from 
water samples by producing permeate of high quality to meet the maximum 
contaminant As level set by World Health Organization (WHO), i.e.<10 μg/L As and 
<15 μg/L Pb. Furthermore, the adsorptive performance of MMMs could be easily 
regenerated using alkaline and acidic solution. This work also contributed to the 
novel membrane design with present simple method to control nano-sized pattern 
formation (alignment of macromolecular nodules) on the polymeric membrane 
surface. Unlike the lithographical method, the proposed method allows the control of 
smaller nano-sized patterns of a large membrane area at a lower cost and further 
shows promising results in reducing membrane fouling due to the protein adsorption. 
Antifouling property of PES membrane was improved with increasing HMO:PES 
weight ratio from zero to 1.5 and most importantly, the initial pure water flux of the 
membranes could be nearly completely recovered by a simple deionized water 
washing. 
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ABSTRAK 

Matlamat penyelidikan ini dijalankan adalah untuk membangunkan teknologi 
rawatan air yang terkini, cekap dan juga mesra alam disamping dapat mengurangkan 
kos dan penggunaan tenaga untuk menyingkirkan logam berat seperti arsenik (As) 
dan plumbum (Pb) daripada sistem akueus dan dalam masa yang sama dapat  
mengurangkan kotoran membran. Bagi mencapai matlamat ini, membran kepingan 
rata ultraturasan (UF) komposit nano berliang tak simetri yang digabungkan dengan 
partikel nano oksida logam telah dihasilkan melalui proses fasa-balikan. Sebelum 
proses pembuatan membran campuran (MMMs) dijalankan, oksida dedua Fe-Mn 
(FMBO) yang berkapasiti jerapan tinggi untuk As dan mangan hidrus dioksida 
(HMO) yang berkapasiti jerapan tinggi untuk Pb telah disintesis terlebih dahulu dan 
digunakan sebagai bahan pengisi bukan organik dan bahan penjerap dalam membran 
kepingan rata berasaskan polietersulfona (PES). Kesan penggabungan oksida logam 
bukan organik terhadap morfologi membran berasaskan PES, fluks air tulen, kapasiti 
jerapan, pembentukan corak permukaan dan pengurangan kotoran dikaji dengan 
mengubah suai kandungan oksida logam tersebut. Kedua-dua membran kepingan 
rata PES/HMO dan PES/FMBO telah dicirikan dengan menggunakan mikroskopi 
imbasan elektron (SEM), goniometer sudut sentuh, mikroskop daya atom (AFM) dan 
spektroskopi inframerah jelmaan Fourier (FTIR). Prestasi membran yang terbaik 
telah dicapai menggunakan membran yang mempunyai kadar nisbah FMBO/PES 
sebanyak 1.5:1 dengan kadar fluks air tulen setinggi 94.6 L/m2.jam.bar dan kapasiti 
pengambilan As(III) yang maksimum sebanyak 73.5 mg/g. Selain itu, keputusan 
eksperimen menunjukkan bahawa dengan peningkatan nisbah berat HMO: PES 
daripada sifar kepada dua kali ganda, fluks air tulen meningkat daripada 39.4 kepada 
573.2 L/m2.jam.bar (lebih 14 kali ganda) manakala membran optimum dengan kadar 
nisbah HMO/PES sebanyak 2.0:1 menunjukkan kapasiti penjerapan Pb(II) tertinggi 
iaitu 204.1 mg/g. Ujikaji UF secara berterusan menunjukkan MMMs yang optimum 
boleh mencapai keputusan yang memberangsangkan melalui penghasilan resapan 
yang berkualiti tinggi sehingga mencapai tahap aras pencemaran maksimum yang 
ditetapkan oleh Pertubuhan Kesihatan Sedunia (WHO) iaitu <10 μg/L bagi As dan 
<15 μg/L bagi Pb dalam menyingkirkan logam berat tersebut. Selain itu, prestasi 
penjerapan MMMs boleh dijana semula dengan menggunakan larutan beralkali dan 
berasid. Hasil kerja ini juga menyumbang kepada reka bentuk baru dalam mengawal 
pembentukan corak bersaiz nano pada permukaan membran polimer melalui kaedah 
penjajaran nodul makromolekul. Tidak seperti kaedah litografik, kaedah yang 
dicadangkan ini dapat mengawal corak bersaiz nano yang lebih kecil pada kawasan 
membran yang besar dengan kos yang lebih rendah dan seterusnya menunjukkan 
keputusan yang lebih baik dalam mengurangkan kotoran pada membran yang 
disebabkan oleh penjerapan protein. Sifat anti kotoran yang ditunjukkan oleh 
membran berasaskan PES dapat ditingkatkan dengan meningkatkan kadar nisbah 
berat HMO: PES daripada sifar kepada 1.5 dan yang paling penting, fluks air tulen 
awal yang dicapai oleh membran boleh diperolehi semula sepenuhnya secara mudah 
dengan membasuh membran menggunakan air ternyahion. 
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CHAPTER 1 

  INTRODUCTION 

1.1 Heavy Metals and their Removal Technologies 

Heavy metals are classified as metallic elements with atomic number between 

63.5 and 200.6, and a density more than 5.0 g/cm3 that are found in the earth’s crust 

(Srivastava and Majumder, 2008). Heavy metals can enter the water sources through 

the natural erosion of soil and rocks. However, the majority of heavy metals 

contamination also comes from rapid development of anthropogenic activities, 

especially in developing countries (Fu and Wang, 2011). These hazardous materials, 

contrary to some organic pollutants, metabolically are not degradable and have 

tendencies to accumulate in bodies of living beings. Many of them are well-known to 

be toxic or carcinogenic and their accumulation at higher levels even causes death to 

human. The most common hazardous heavy metals found in the surface and ground 

water sources are arsenic and lead. The following is a brief description on these two 

heavy metals. 

Arsenic, is a silver-grey semi-metallic chemical element with earthly 

abundance of around 2.5 mg/kg. It is ubiquitous and ranks twentyish element in the 

earth’s crust and 14th in seawater. Arsenic has relative molar mass of 74.92 g/mol; 

density of 5.73 g/cm3 at 25˚C and melting point of 817˚C (Mandal and Suzuki, 

2002). Arsenic normally occurs in two oxidation states: arsenate and arsenite. In 

surface waters it exists in the form of arsenate, As(V). In ground waters it mostly 

exists in the form of arsenite, As(III). As(V) is easily removed when compared to 

As(III). On the other hand, As(III)  is considerably more toxic, soluble and mobile 
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than As(V) where As(III) is sixty times more toxic than As(V) (Singh and Pant, 

2004; Hossain, 2006).  

Arsenic contaminated drinking water is a worldwide problem. The existence 

of arsenic in drinking water has been reported in more than 70 countries like USA, 

China, Bangladesh and Cambodia (Jain and Ali, 2000; Smedley and Kinniburgh, 

2002). Figure 1.1 shows a map of the regions affected by high arsenic concentrations 

and arsenic poisoning.  

 

Figure 1.1 Map of the regions affected by high arsenic concentrations and 

arsenic poisoning (WHO, 2004). 

Generally, human exposure to arsenic compounds comes from polluted water, 

food, and air contaminated by industrial and agricultural activities (DeSesso et al., 

1998; Santra et al., 2013). This is of special concern for the reason that in liquid form 

arsenic is odorless and colorless, making it impossible to recognize by sight only. 

Arsenic is extremely toxic to human being; some studies show that long term 
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drinking of arsenic contaminated groundwater can lead to cancer of the bladder, 

lungs, skin, kidney and liver (Santra et al., 2013). The World Health Organization 

(WHO) has been well known to establish standards for arsenic in drinking water 

since 1958. Nowadays, guideline for acceptable arsenic concentration in drinking 

water is 10 ppb (WHO, 1996). 

On the other hand, lead a chemical element with symbol Pb, is a member of 

group 14 of the periodic table and can be found in the environment in oxidation 

states: 0, +2, and +4, whereas it infrequently occur in elemental state, Pb(0) (Weast, 

1974), While in aqueous solution lead generally can form two classes of compounds: 

namely plumbous, Pb(II) and plumbic, Pb(IV). Sources of lead which can be released 

in the environment can be divided in two main categories: natural and anthropogenic 

sources (Wilkin, 2007; USEPA, 2010). The majority of lead polluted drinking water 

sources are related to industrial and wastewater effluents, pesticides and waste 

leachate from lead-acid batteries, paints and pigments to surface and ground water 

sources (USEPA, 2010). 

Lead is very harmful material and has been recorded as the second most toxic 

and hazardous material after arsenic by the 2007 cerclapriority list of hazardous 

materials (ATSDR, 2007). Lead has the ability to accumulate in the body by lodging 

in the folds of the intestine or by being absorbed by the body in dissolved form and 

depositing in the bones. It is reported that the human exposure to lead has harmful 

effects on kidney, central nervous and reproductive systems and is more hazardous to 

children. At the present time, lead toxicity is well-known and many famous 

organizations around the world have set the maximum contaminant level (MCL) of 

lead in drinking water at the accessible lowest levels. The United States 

Environmental Protection Agency (USEPA) guidelines have regulated the maximum 

permissible concentration of lead in drinking water at 15 ppb (Momčilović et al., 

2011).  

Traditionally, techniques such as chemical precipitation, coagulation and 

flocculation and ion exchange resins have been used for removing heavy metals 

(González-Muñoz et al., 2006; Smara et al., 2007; Pang et al., 2011). The market for 
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nanotechnology used in water and wastewater worldwide reached USD 1.6 billion in 

2007 and is expected to reach USD 6.6 billion in 2015 (Kaiser, 2006). Recently, 

applicability of nanosized metal oxide adsorbents,extensively have been studied for 

effective removal of some toxic heavy metals from aqueous effluents. Hua et al. 

(2012) have reviewed the use of nanosized metal oxides for decontaminating 

hazardous heavy metals from water/wastewater. Zhang et al. (2007c),  investigated 

using of Fe-Mn binary oxide (FMBO) particles for arsenic decontamination, while 

Su et al. (2010) used hydrous manganese dioxide (HMO) adsorbent for removing 

some toxic heavy metals like Pb (II), Zn (II) and Cd (II). However, the above 

mentioned technologies are incapable of decreasing concentration of heavy metals in 

real water treatment to the level required by law or are prohibitively expensive or 

require  post treatment steps. The use of membrane separation process in the 

treatment of polluted water containing toxic heavy metals is an attractive and 

appropriate method and are being applied more and more frequently (Danış, 2005). 

1.2 Heavy Metals Removal based on Membrane Technology 

Membrane technology offers a flexible method for meeting multiple water 

quality objectives and is applied in a wide range of uses. The first recorded study of 

the membrane process and innovation of osmosis dates back to middle of 18th 

century when Nollet showed that a pig’s bladder was able to pass preferentially water 

and ethanol (Glater, 1998). This technology in addition of having ability for 

removing many contaminants such as bacteria and salts is attractive for heavy metals 

decontamination for small water systems. The membrane technology can address 

number of water quality problems whereas being comparatively easy to control. The 

main property which makes it being utilized in separation process is the capability of 

a membrane to control the permeability of chemical species through the membrane. 

Membrane separation processes are classified according to the driving force and pore 

size that cause the flow of permeate through the membrane.   

They include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) 

and reverse osmosis (RO). Intensive investigations have been done for heavy metals 
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decontamination by RO and NF (Fu and Wang, 2011). UF and MF technologies are 

becoming widely applied for water and wastewater treatment However, generally the 

pore sizes of these membranes are bigger than the size of dissolved heavy metal ions, 

heavy metals passing simply through these membranes. While only UF process 

especially in the form of micellar and polymer enhanced, is capable for effective 

removal some of heavy metal ions such as As(V) and Pb(II) (Ferella et al., 2007).  

1.3 Membrane Fouling and its Mitigations 

Another, important issue in the application of membrane technology in water 

and waste water treatment is fouling. Membrane fouling can be defined as the 

increasing accumulation of contaminants on the membrane that causes a growth in 

the trans membrane pressure (TMP) requirement for the constant permeates flux or a 

decrease in the water flux through the membrane in constant-pressure operation. It 

can happen at the surface which is called macro-fouling or inside the pore or pore 

fouling or micro-fouling. 

Membrane fouling can be mitigated by increasing membranes hydophilicity 

properties and membrane surface modification; this is generally valuable if proteins 

are the foulant, because proteins have a tendency to adsorb more intensely on 

hydrophobic membrane surfaces (Wilf and Alt, 2000). Membrane surface 

modification intensively has also been studied to change its properties to decrease 

fouling (Rana and Matsuura, 2010). This can be done by several methods like 

physical and chemical modifications such as ultraviolet irradiation (Nyström and 

Järvinen, 1987; Zhang et al., 2002; Taniguchi et al., 2003; Wei et al., 2006), graft 

polymerization (Ulbricht and Belfort, 1996; Wavhal and Fisher, 2002; Liu et al., 

2008), micro-patterning (Lee et al., 2013) and/o nanoimprint lithography (NIL) on 

the membrane surface (Maruf et al., 2013). Recently surface hydrophilization of the 

polymeric membranes for the decreasing fouling property has also been widely 

investigated by dispersing metal oxide nanoparticles into dope solutions by many 

metal nanoparticles such as titanium dioxide, aluminum oxide, silicon dioxide and 

zirconium oxide (Ng et al., 2013). 
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1.4 Problem Statements 

Nowadays, the toxicity of hazardous heavy metals has been well known and 

many organizations around the world adjusted the maximum acceptable 

concentration of heavy metals in contaminated-water at very low concentration. 

Stringent drinking water regulations are made in order to lower the MCL of heavy 

metal concentration. For instance, since 2006, USEPA and WHO have decided to 

reduce the maximum arsenic  concentration in drinking water from 50 part per billion 

(ppb) to 10 ppb (Mohan and Pittman Jr, 2007). The stiffening of regulations 

generates strong demands to improve methods for removing pollutants from the 

water and controlling water-treatment residuals. 

Conventionally, many treatment methods such as chemical precipitation  

(Harper and Kingham, 1992), coagulation and flocculation (Bilici Baskan and Pala, 

2010) and ion exchange (Kartinen Jr and Martin, 1995) could be employed for heavy 

metals decontamination, but they are found to have inconsistent and/or incomplete 

elimination of heavy metals. In order to meet the MCL required by law, additional 

post-treatment process always is required to complete the treatment process, which 

indirectly would increase the overall cost of treatment. Although membrane 

technology is reported to be used for heavy metals removal when it is operated in NF 

or RO mode (Oh et al., 2004; Chan and Dudeney, 2008), the relatively high energy 

consumption resulted from high operating pressure remains as a concern to many. 

Low pressure driven membranes like MF and UF on the other hand are not effective 

in removing heavy metals, mainly due to their porous structure which offers 

minimal/none resistance against arsenic (Brandhuber and Amy, 1998). 

Adsorption is now recognized as an effective and economic method for heavy 

metal wastewater treatment. The adsorption process offers flexibility in design and 

operation and in many cases will produce high-quality treated effluent. In addition, 

because adsorption is sometimes reversible, adsorbents can be regenerated by 

suitable desorption process (Harper and Kingham, 1992; Fu and Wang, 2011). 

Recent investigations show many of metal oxide nanoparticles have high adsorption 

capacity and selectivity for removing some of hazardous heavy metals from 
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contaminated water (Deliyanni et al., 2007; Hua et al., 2012). This partially can be 

attributed to their high surface areas and activities because of their size-qualification 

effect (Henglein, 1989). However, as the size of metal oxides reduces from 

micrometer to nanometer levels, the increased surface energy inevitably leads to their 

poor stability. Consequently, nano sized metal oxides are prone to agglomeration due 

to Van der Waals forces or other interactions (Pradeep and Anshup, 2009; Hua et al., 

2012). Their high adsorption capacity and selectivity would be significantly reduced 

or even lost. Furthermore, metal oxide nanoparticles are not capable for using in 

fixed beds or any other flow-through system due to excessive pressure drops or 

difficult separation from aqueous solutions and poor mechanical strength, on the  

other hand, unfortunately, it may be extremely difficult to remove 100 % of these 

metal oxides from aqueous solution, even if they have unique properties (Li et al., 

2012) 

Another problem for using of metal oxide nanoparticles in real application for 

water treatment is their nontoxicity effect, while, they can enter through the skin and 

can be translocated to lymph nodes, and if they enter blood circulation, they can be 

distributed throughout the body and taken up into the liver, spleen, bone marrow, 

heart and other organs (Mishra et al., 1996). So, not only can nanoparticles have 

adverse effects on their own, if they are associated with or comprised of toxic metal 

ions they may release them into the body once they are exposed to the various and 

complicated chemistries.  

To overcome these problems and promote the applicability of metal oxide 

adsorbent nanoparticles in real water and wastewater treatment and heavy metal 

decontamination, researchers in recent years have focused on impregnating 

nanoparticles into porous host media such as Bentonite (Ranđelović et al., 2012), 

alginate (Guo and Chen, 2005), zeolite (Li et al., 2011b), diatomite (Jang et al., 

2006; Jang et al., 2007), cellulose (Guo et al., 2007) and porous polymer (Pan et al., 

2009; Su et al., 2009). But compared to other host materials, porous polymeric hosts 

are a particularly attractive option partly because of their controllable pore size and 

surface chemistry as well as their excellent mechanical strength for long-term use 

(Hua et al., 2012). 
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In the development and practical use of UF membranes, one of the main 

problems that should be addressed is fouling, while, fabricating of low fouling 

membrane is significant and attractive subjects. Therefore, in this study to be 

practically useful, current proposed investigation is to fabricate low fouling 

membrane via impregnating hydrophilic metal oxide particles in the polymeric 

structure of the membranes and also surface modification must further be improved 

with respect to fouling resistance, stability and the membrane performance.  

1.5 Objectives of the Study 

Based on the problem statement identified, the major objective of this 

research was to fabricate and characterize novel nanocomposite UF MMMs, to 

remove selected heavy metals from aqueous system. Therefore the objectives of this 

research are: 

1) To fabricate and characterize polyethersulfone (PES)/FMBO mixed matrix 

membranes (MMMs) for removing arsenite from contaminated water 

samples.  

2) To prepare and characterize PES/HMO MMMs for removing lead from 

polluted waters. 

3) To study the effect of impregnating inorganic metal oxide particles in the 

PES matrix in terms of surface pattern formation and BSA fouling mitigation. 
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1.6 Scopes of the Study 

In order to achieve the above mentioned objectives, the following scopes of 

works have been identified: 

1) Synthesizing FMBO through chemical precipitation process using low cost 

chemical such as potassium permanganate, ferrous sulphate and sodium 

hydroxide as precipitant factor. 

2) Preparing HMO nanoparticles by chemical precipitation process using very 

cheap materials, i.e. potassium permanganate,manganese sulphate and 

sodium hydroxide. 

3) Characterizing the FMBO and HMO particles using, Fourier Transform 

Infrared spectroscope (FTIR), X-ray diffractometer (XRD) and Transmission 

Electron Microscope (TEM). 

4) Fabricating and characterizing the MMMs in the form of flat sheet by 

dispersion metal oxide particles into PES dope solution. The MMMs 

formation process was carried out based on dry-wet phase inversion process.  

5) Investigating the performance of MMM embedded with different loadings 

of inorganic metal oxides nanoparticles for heavy metals removal under 

different process conditions.  

6) Evaluating sustainability of membranes in terms of BSA fouling mitigation 

and adsorbents regeneration. 
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1.7 The Significance of Research 

The significance of this current research is the development of novel, 

efficient and environmental friendly water treatment technology with low cost and 

low energy consumption for hazardous heavy metal decontamination. The 

hydrophilic nanosized metal oxide adsorbents with high adsorption capacity for 

As(III) and Pb(II) removal has been synthesized and was used as inorganic filler for 

mixed matrix membranes preparation. Besides showing promising results in 

eliminating selected heavy metal ions from contaminated drinking water, the 

resultant mixed matrix membranes also exhibited excellent antifouling properties 

against proton desorption, mainly due to the nano-sized pattern formed  on 

membrane surface coupled with improved surface hydrophilicity. As high as 97.5% 

of the original adsorption capacity of PES/HMO-2.0 MMM for Pb(II) adsorption, 

and 87.5% of the original adsorption capacity of PES/FMBO-1.5 MMM for As(III) 

adsorption, could be easily recoverd after subjecting the membranes to a simple 

desorption process using acidic and alkaline solution.  
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