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ABSTRACT 

 

 

 

 

Metallocene polyethylene (mPE) is known for its commendable physical and 

mechanical properties, but the problem of hemocompatibility hampers its clinical 

application. Therefore, an Aloe vera (AV) extract was coated on mPE assisted by 

microwave to rectify this problem.  Initially, the duration of microwave treatment was 

optimized to 60 s by considering the weight degradation of the samples.  Similarly, the 

coating time of fibrous AV extract was optimized to 12 h (A-12 h-mPE) and 24 h (A-

24 h-mPE) based on wettability increment.  Fourier transform infrared (FTIR) spectra 

showed the addition of OH- groups and the vibration characteristic of several active 

constituents available in the AV coating.  The decrease in mean contact angle of 

pristine mPE (P-mPE) from 88.43° to 32.93° in the A-24 h-mPE sample, depicts an 

increase in the wettability.  Meanwhile, scanning electron microscopy (SEM) images 

displayed the presence of AV extract.  The influence of microwave in enhancing the 

coating characteristics was investigated through Hirox 3D images, peel test, and 

degradation studies.  In addition, an improvement in average surface roughness (Ra) 

of P-mPE from 2.069 nm to 7.796 nm for the A-24 h-mPE was interpreted through 

atomic force microscopy (AFM) analysis.  Finally, the in vitro coagulation studies 

indicated a reasonable delay in blood clotting time on the AV coated mPE samples, 

which was presented by activated partial thromboplastin time (170 s) and prothrombin 

time (39 s) assay.  The coated mPE samples also reduced hemolysis and platelet 

adhesion insinuating the potential usage of AV coated mPE in permanent and 

temporary blood contacting devices. 
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ABSTRAK 

 

 

 

 

Metallocene polietilena (mPE) dikenali dengan sifat-sifat fizikal dan 

mekanikal yang mengagumkan, namun masalah keserasian dengan darah menghadkan 

aplikasi klinikal bahan ini. Oleh itu, ekstrak lidah buaya (AV). Disalut ke atas mPE 

dengan bantuan gelombang mikro untuk mengatasi maseilah ini. Pada permulaanya, 

tempoh rawatan gelombang mikro telah dioptimumkan kepada 60 saat dengan merujuk 

kepada kadar degradasi berat sampel. Begitu juga dengan masa penyalutan ekstrak 

gentian AV telah dioptimumkan kepada 12 jam (A-12 h-mPE) dan 24 jam (A-24 h-

mPE) berdasarkan peningkatan ciri kebolehbasahan. Spektrum daripada Fourier 

inframerah (FTIR) menunjukkan pertambahan kumpulan OH- dan ciri getaran bagi 

beberapa komponen aktif yang terdapat di dalam salutan AV. Purata sudut bersentuhan 

MPE tulen (P-mPE) menurun secara daripada 88.43° kepada 32.93° untuk sampel A-

24 h-mPE  menggambarkan peningkatan kebolehbasahan. Sementara itu, imej 

mikroskop elektron pengimbas (SEM) menunjukkan kehadiran ekstrak AV. Pengaruh 

gelombang mikro dalam peningkatan ciri-ciri penyalutan disiasat melalui imej-imej 

3D Hirox, ujian pengupasan, dan kajian degradasi. Tambahan, peningkatan purata 

kekasaran permukaan (Ra) P-mPE daripada 2.069 nm kepada 7.796 nm untuk A-24 h-

mPE telah ditafsirkan melalui analisis mikroskop tenaga atom (AFM). Akhir sekali, 

kajian koagulasi darah secara in vitro menunjukkan kelengahan masa yang wajar bagi 

pembekuan darah pada sampel mPE yang disaluti AV, yang ditunjukkan oleh masa 

pengaktifan esei tromboplastin separa (170 s) dan protrombin (39 s). Sampel mPE 

yang bersalut juga mengurangkan hemolisis dan lekatan platelet menggambarkan 

potensi penggunaan mPE yang disaluti AV dalam peranti perhubungan darah yang 

kekal dan sementara. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Overview 

 

 

Biomaterials are promising materials for an extensive range of utilizations in 

both diagnostic and therapeutic industries.  Scientists have defined it in different 

perspective based on its rapidly changing outlook [1-3].  Typically, biomaterials can 

be defined as materials which can provide an environment to assist the rehabilitation 

of biological systems or replace the entire system itself.  Biomaterials have a well-

established reputation in the field of tissue engineering, clinical devices, drug delivery, 

medical implants, biosensors, cosmetics and food industries [4, 5].  Hence, the total 

market value of biomaterial-based industries is anticipated to exceed $88.4 billion by 

2017 from the current value of $58.1 billion.  Every year, USA alone spend 7-8% of 

its total global healthcare outgoings exclusively for biomaterial-related usages [6].  

Meanwhile, in coming years the demand for promising biomaterials is anticipated to 

surge radically due to an increasing number of diseased population.  It insinuates the 

need for more research toward improving the properties of existing materials using 

simple and feasible modification techniques.  So, biomaterials have a significant future 

in both research and commercial fields.  

 

 

In general, biomaterials can be classified into three groups based on their origin 

and applications as (1) synthetic materials, (2) naturally derived, and (3) semisynthetic 

or hybrid materials.  Among the above, synthetic materials like metals, ceramics, 

polymers and composites are most commonly used for various biomedical 

applications.  The exceptional mechanical properties of metals and their alloys such as 
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tensile strength, elasticity coefficient and fatigue life makes them attractive materials 

for many load-bearing biomedical systems.  Some of the examples include wires, 

screws, etc., to fracture fixation plates and artificial joints.  Nevertheless, metallic 

materials are highly prone to corrosion and tend to release harmful side products in the 

form of ions, chemical compounds and insoluble components which will cause adverse 

biological reactions.  In the meantime, ceramics emerged as desirable biomaterials 

because of its captivating bioactive, bioinert and biodegradable properties.  They have 

been used in several applications in the dental field; though the poor mechanical 

characteristics like brittleness and low strength, made them unsuitable for wide 

exploitation.  Later, polymers gained greater attention than other materials because of 

their versatility and easy to tailor nature.  Presently, polymers are reported to be the 

most promising type of biomaterials.   

 

 

Common biological substances fall under the second category like collagen, 

heparin, proteins, peptides, carbohydrates, bio-ceramics, etc., are utilized for both 

surface coating and material synthesis.  Though materials completely made of natural 

substances possess fascinating biocompatible properties they fail in several aspects 

because of poor physicochemical and mechanical properties.  To avoid that 

complication, natural materials are coupled with synthetic substances and it falls under 

the third category [5].   

 

 

The longevity of an implant/biomaterial inside the human body is dependent 

on its ability to avoid any adverse reaction or damage to the surrounding environment 

which chiefly relies on the biocompatibility of materials used.  But this crucial property 

is greatly influenced by its physical, chemical, mechanical and biological 

characteristics [7].  If analyzed deeply, the existence of interconnections between all 

these essential properties and the durability of a biomaterial can be inferred.  In 

general, the physicochemical properties such as roughness, hardness, temperature, 

wettability, surface chemistry, surface reactivity (inert or active) and surface charge, 

play a crucial role in determining the hemocompatibility of a material by delaying the 

activation of coagulation pathways, resisting platelets adhesion and avoiding red blood 

cells (RBCs) damage  On the other hand, mechanical properties such as elasticity, yield 

stress, ductility, toughness, deformation, fatigue, hardness, and wear resistance will 
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determine the ability of a material to withstand the dynamism of the internal 

environment.  So, the presence of appropriate surface, mechanical and biological 

properties will ensure desired function and longevity of an implant [8-13].  

 

 

Therefore, in this study, the hemocompatibility of mPE is improved by 

microwave assisted coating of AV extract.  This approach not only eliminates the 

usage of harsh chemicals but also encourage researchers to utilize various natural 

products, which will ultimately help us to produce cost-effective multifaceted 

biomaterials.  

 

 

 

 

1.2  Research Background 

 

 

Polymers have gained a fascinating reputation in the field of biomaterials 

because of excellent physicochemical and mechanical properties.  Basically, a polymer 

is a large molecule built up by the repetition of small and simple chemical units called 

monomers.  The repetition is either linear, much like a chain or branched.  Unlike many 

products whose structure and reactions were well known before their industrial 

application, some polymers were produced on an industrial scale long before their 

chemistry or physics was studied.  Traditionally, polymers are synthesized by either 

simple condensation/step-reaction polymerization methods or addition/chain-reaction 

polymerization methods.  In the biomedical field, polymers like polyurethane (PU), 

polyethylene (PE), polypropylene (PP), silicone, polytetrafluoroethylene (PTFE) etc., 

have sealed vital reputations for usage as surgical devices, implants, drug delivery 

systems, biosensors, bio-adhesives, ocular devices, dental materials, tissue adhesives, 

cardiac valves, artificial hearts, vascular grafts, breast prosthesis, facial prostheses, 

kidney and liver parts, tracheal tubes, food preservation, etc., as illustrated in Fig. 1.1 

[14-22].   
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Figure 1.1 Applications of polymeric implants in the human body [2] 

 

 

The prime advantage of polymers compared to other biomaterials is their ease 

of manufacture to yield intended shapes like membranes, fibers, gels, capsules, etc., at 

minimum cost.  At present, a variety of biodegradable, bio-adhesive and bio-

responsive polymers are mass produced for commercial purposes.  Meanwhile, the 

advent of innovative technologies has created new platforms for exploitation of 

polymers in the form of hydrogels, nanofibers, nanoparticles, nanocomposites, 

nanosponges, nanocapsules, etc., [16].  Besides having commendable mechanical and 

physical properties, polymers fail in numerous cases because of their poor surface 

characteristics, which ultimately activate undesired host-mediated reactions.  Hence, 

the research on exploring feasible approaches to improve the biocompatibility of 

polymers is still actively progressing.   
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The polymer mPE used in this research is one of the rising biomaterials 

belonging to polyolefin family of polymers synthesized using “metallocene catalyst” 

[23].  Because of its low density it has been suggested as an effective alternative to 

commonly used polymers like polyvinylchloride (PVC), for applications including 

blood bags, syringe tubes, and packaging bottles [12, 23].  In addition, the mPE sheet 

also offers a number of attractive features such as superior tensile strength, elasticity, 

toughness, excellent resistance to puncture, impact, blocking and bursting.  On top of 

this, it also inferred to have a better permeability to oxygen when compared with PVC 

and can also provide an effective barrier against the attack of ammonia [23, 24].  The 

property of oxygen permeability is not only important for ocular implants, but also for 

tissue engineering materials since it is reported to facilitate the release of desired 

biomolecules [11].  Further, the existence of O2 permeability may also ensure better 

gas exchange to tissues in contact.  However, mPE elicit undesirable reactions when 

exposed to a biological environment because of poor biocompatibility.  Recent efforts 

have expressed the possibility of enhancing the bioactivity of mPE by subjecting it to 

various surface modifications [12, 13].   

 

 

 

 

1.3  Problem statement 

 

 

Though mPE has excellent physical and mechanical properties, they often lead 

to clot formation because of poor blood compatibility [12].  As mentioned, blood 

compatibility is a crucial factor which determines the quality of a polymer and its 

performance in various applications.  It precisely reflects the ability of a material to 

function in the desired region without triggering an appropriate host reaction.  In 

general, a series of events will be triggered when blood comes in contact with the 

polymer after implementation, which is collectively called blood mediated reactions 

[21].  Based on those subsequent reactions, a material is said to possess good or poor 

blood compatibility.  In general, if the blood contacts the poorly compatible material 

it will lead to the complications such as: (1) Adsorption of plasma proteins and 

platelets on the material surface, (2) Release of clotting factors from activated platelets 

and initiation of coagulation cascades, (3) Interaction of RBCs with poorly compatible 

surface will be followed by the upset in cell integrity and leads to lysis [22].  To solve 



6 

 

these issues, several surface modification techniques have been explored but most of 

them are complicated and limited to a certain family of polymers.  Nowadays, millions 

of investment have been directed towards advanced biomaterial research which 

involves in the exploration of new alternatives [25].  But to cater the future demand, 

more research need to be encouraged to improve the properties of existing medical 

materials using a feasible, eco-friendly and affordable modification technique [26, 27].  

So in this study, the problem of poor blood compatibility reported in the medical usage 

of mPE is rectified by microwave assisted coating of AV extract.  

 

 

 

 

1.4  Research objectives 
 

 

1. To prepare AV extract and coat them on mPE samples pre-treated with 

microwaves. 

2. To assess the physicochemical changes induced on the surface of mPE after 

coating with AV extract. 

3. To determine the hemocompatibility of pristine and AV extract coated mPE 

samples. 

 

 

 

 

1.5 Scope of the study 

 

 

Initially, the semi-transparent gel was separated from fresh, succulent leaves 

of AV and was blended into a thick fibrous extract.  Then, the mPE sheet was cut into 

square samples of dimension 2 x 2 cm2 and treated with microwaves for an optimized 

period of 60 s.  Later, the microwave treated mPE samples were coated with the 

prepared AV extract for selected periods of 12 h and 24 h respectively.  The coating 

process was carried out using a rocking shaker.  After coating, the samples were dried 

and utilized for physicochemical studies includes FTIR, contact angle assay, SEM, 

Hirox 3D microscopy analysis and AFM to determine the alterations in surface 

chemistry, wettability and surface roughness of AV coated mPE samples.  Moreover, 

the coating properties like thickness and strength were also determined, using Hirox 
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3D microscopy, peel test, and degradability test.  Finally, the influence of the 

physicochemical changes in delaying the clotting time, resisting platelet adhesion and 

avoiding RBC’s damage was displayed through in vitro blood compatibility assays 

like activated partial thromboplastin time (APTT), prothrombin time (PT), platelet 

adhesion studies and hemolysis assay respectively. 

 

 

 

 

1.6  Significance of the study  

 

 

Usage of plant extract for improving the biocompatibility of polymers not only 

opens the gate for a spectrum of medical utilization but also offer a nurturing 

environment for cells to proliferate.  Most of the available approaches are complicated, 

expensive, and not eco-friendly because of usage of harsh chemicals and limited to a 

particular material or application.  Therefore, this research is anticipated to encourage 

more studies on developing surface modification tools for multifaceted biomaterials. 

 

 

 

 

1.7  Thesis outline 

  

 

This thesis is divided into five main chapters.  In Chapter 1, a brief explanation 

about the biomaterials and the research background of this study is elaborated.  

Further, the objectives of this study have been presented in the context of rectifying 

clinical complications caused by implants.  Finally, the importance of the proposed 

method and its influence in encouraging future research is also projected.    

  

 

In Chapter 2, key characteristic features of mPE and the problem of 

biocompatibility associated with polymers is explained in the context of blood 

interaction and related responses.  In addition, the importance of surface modification 

techniques in improving the physicochemical properties of materials and its ability to 

act as a coating tool was described in detail.  Lastly, a brief discussion of the medical 

history of AV, its chemical constituents, and biomaterial usages is also framed.   
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In Chapter 3, the research methodology and characterization studies followed 

in this thesis are given in detail.  The discussions mainly cover the details of materials 

used, procedures followed in the optimization of parameters and the need for the 

reported characterization studies.  

 

 

In Chapter 4, the results obtained from proposed characterization studies have 

been elaborated and compared with previously reported work.  This section is the heart 

of the thesis since it reflects the achievement and the effectiveness of the study.  

 

 

In Chapter 5, a short summary of the whole work and its efficacy in eliminating 

a number of existing problems are projected.  Moreover, some suggestion for future 

research is also presented.  
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