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ABSTRACT 

 

 

 

 

Land subsidence is one of the common geological hazards worldwide and 

mostly caused by human activities including the construction of massive 

infrastructures. Large infrastructure such as airport is susceptible to land subsidence 

due to several factors. Therefore, monitoring of the land subsidence at airport is 

crucial in order to prevent undesirable loss of property and life. Remote sensing 

technique, especially Interferometric Synthetic Aperture Radar (InSAR) has been 

successfully applied to measure the surface deformation over the past few decades 

although atmospheric artefact and orbital errors are still a concerning issue in this 

measurement technique. Multi-temporal InSAR, an extension of InSAR technique, 

uses large sets of SAR scenes to investigate the temporal evolution of surface 

deformation and mitigate errors found in a single interferogram. This study 

investigates the long-term land subsidence of the Kuala Lumpur International Airport 

(KLIA), Malaysia and Singapore Changi Airport (SCA), Singapore by using two 

multi-temporal InSAR techniques like Small Baseline Subset (SBAS) and Multiscale 

InSAR Time Series (MInTS). General InSAR processing was conducted to generate 

interferogram using ALOS PALSAR data from 2007 until 2011. Atmospheric and 

orbital corrections were carried out for all interferograms using weather model, 

namely European Centre for Medium Range Weather Forecasting (ECMWF) and 

Network De-Ramping technique respectively before estimating the time series land 

subsidence. The results show variation of subsidence with respect to corrections 

(atmospheric and orbital) as well as difference between multi-temporal InSAR 

techniques (SBAS and MInTS) used. After applying both corrections, a subsidence 

ranging from 2 to 17 mm/yr was found at all the selected areas at the KLIA. 

Meanwhile, for SCA, a subsidence of about less than 10 mm/yr was found. 

Furthermore, a comparison between two techniques (SBAS and MInTS) show a 

difference rate of subsidence of about less than 1 mm/yr for both study area. SBAS 

technique shows more linear result as compared to the MInTS technique which 

shows slightly scattering pattern but both techniques show a similar trend of surface 

deformation in both study sites. No drastic deformation was observed in these two 

study sites and slight deformation was detected which about less than 20mm/yr for 

both study areas probably occurred due to several reasons including conversion of 

the land use from agricultural land, land reclamation process and also poor 

construction. This study proved that InSAR time series surface deformation 

measurement techniques are useful as well as capable to monitor deformation of 

large infrastructure such as airport and as an alternative to costly conventional 

ground measurement for infrastructure monitoring. 
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ABSTRAK 

 

 

 

 
 Pemendapan tanah merupakan salah satu bencana geologi yang sering 
terjadi di seluruh dunia dan kebanyakannya disebabkan oleh aktiviti manusia 
termasuk pembinaan infrastruktur secara besar-besaran. Infrastruktur yang besar 
seperti lapangan terbang juga terdedah kepada masalah pemendapan tanah 
disebabkan oleh beberapa faktor. Oleh itu, pemantauan tanah mendap di lapangan 
terbang adalah penting untuk mengelakkan kerugian yang tidak diingini sama ada 
harta mahupun nyawa. Teknik penderiaan jauh, terutamanya radar apertur sintetik 
interferometer (InSAR) telah berjaya digunakan untuk mengukur perubahan bentuk 
muka bumi sejak beberapa dekad yang lalu walaupun artifak atmosfera dan ralat 
pada orbit masih menjadi isu dalam teknik pengukuran ini. Teknik multi temporal 
InSAR, iaitu lanjutan daripada InSAR, menggunakan set data pemandangan SAR 
yang besar untuk mengkaji evolusi temporal perubahan bentuk muka bumi dan 
mengurangkan ralat yang ditemui dalam satu interferogram tunggal. Kajian ini 
mengkaji pemendapan tanah untuk jangka masa yang panjang terhadap Lapangan 
Terbang Antarabangsa Kuala Lumpur (KLIA), Malaysia dan Lapangan Terbang 
Changi (SCA), Singapura dengan menggunakan dua teknik multi temporal InSAR 
iaitu garis asas bersubset kecil (SBAS) dan pengukuran siri masa InSAR pelbagai 
skala (MInTS). Proses asas InSAR dilakukan untuk menghasilkan interferogram 
dengan menggunakan data ALOS PALSAR dari 2007 hingga 2011. Pembetulan 
atmosfera dan orbit telah dijalankan ke atas semua interferogram menggunakan 
model cuaca iaitu julat pengantar ramalan cuaca pusat Eropah (ECMWF) dan teknik 
Peningkatan Secara Rangkaian sebelum membuat anggaran siri masa pemendapan 
tanah. Keputusan menunjukkan terdapat variasi pemendapan tanah selepas 
pembetulan (atmosfera dan orbit) serta perbezaan antara teknik-teknik InSAR (SBAS 
dan MinTS) yang digunakan. Selepas kedua-dua pembetulan dilakukan, pemendapan 
tanah antara 2 hingga 17 mm/tahun ditemui di semua kawasan yang terpilih di KLIA. 
Sementara itu, bagi SCA, pemendapan tanah kurang daripada 10 mm/tahun ditemui. 
Tambahan pula, perbandingan di antara kedua-dua teknik (SBAS dan MInTS) 
menunjukkan kadar perbezaan pemendapan tanah sebanyak kurang daripada 1 
mm/tahun bagi kedua-dua kawasan kajian. Teknik SBAS menunjukkan hasil yang 
lebih linear berbanding dengan teknik MInTS yang menunjukkan sedikit corak 
serakan tetapi kedua-dua teknik menunjukkan arah aliran deformasi yang sama di 
kedua-dua kawasan kajian. Tiada deformasi permukaan yang ketara diperhatikan di 
kedua-dua tapak kajian dan sedikit deformasi permukaan dikesan iaitu kurang dari 
20mm/tahun di kedua-dua kawasan kajian mungkin berlaku disebabkan oleh 
beberapa sebab termasuk penukaran guna tanah daripada tanah pertanian, proses 
penambakan tanah dan juga pembinaan yang tidak kukuh. Kajian ini membuktikan 
bahawa pengukuran siri masa deformasi permukaan mengunakan InSAR sangat 
berguna serta mampu untuk memantau deformasi di infrastruktur yang besar seperti 
lapangan terbang dan boleh digunakan sebagai alternatif kepada pengukuran 
konvensional di permukaan tanah yang mahal dalam pemantauan infrastruktur. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This chapter explores the background of the study, problem statement and 

research objectives. It describes in brief the significance of this research and the 

outline of this thesis. 

 

 

 

 

1.1 Background of the Study 

 

 

Over the last few decades, land subsidence has become a global problem due 

to several factors like groundwater extraction, sinkhole or underground mine 

collapse, rapid land development, natural hazard and so on (Zizzi, 2013). This 

phenomenon can take place slowly, becoming evident over a time span of many 

years, where the land surface starts to subside and sink due to either geological or 

human activities (Liu et al., 2008). Land subsidence can lead to great economic 

losses (Motagh et al., 2007; Liu et al., 2008) and many other problems, including 

changes in elevation; damage to structures such as storm drains, sanitary sewers, 

roads, railroads, canals, levees, bridges, public and private buildings and so on. 

Additionally, land subsidence may cause serious harm to flood control drainage, land 
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use, urban planning, construction and transportations (Zhou and Zhao, 2013). The 

increasing development of land plays an important role in occurring land subsidence 

around the world. Abidin et al. (2009) discussed the relation between land 

subsidence and urban development activities and found that the spatial and temporal 

variations of land subsidence depend on the corresponding variations of groundwater 

extraction, coupled with the characteristics of sedimentary layers and building loads.  

 

 

Land subsidence associate with groundwater level decline has been 

recognized as a potential problem in various parts of the world. Important cities such 

as London, Venice, Mexico, Jakarta, Tokyo, etc., have experienced land subsidence 

due to over-extraction of groundwater for domestic and industrial purposes (Sahu 

and Sikdar, 2011). Most cities usually have big infrastructures like bridges, tunnels, 

highways, railways, airports, seaports, power plants, dams, wastewater projects, oil 

and natural gas extraction projects, public buildings, information technology 

systems, aerospace projects, and weapons systems (Gupta et al., 2009). These 

infrastructures on the land are most likely to subside due to several factors especially 

the ability of the land to accommodate the pressure from the big infrastructures. For 

example, Mexico City has sunk about 30 feet in the last century due to its 

exponential growth (Huby, 2001) and severe land subsidence due to consolidation of 

the lacustrine aquitard caused by aquifer exploitation (Ortega‐Guerrero et al., 1999).  

 

 

Monitoring land subsidence is very crucial especially in area where massive 

infrastructures have been developed in order to carry out different kinds of activities. 

Several methods are used to monitor the land subsidence, including levelling, total 

station survey, and Global Positioning System (GPS) field survey. Levelling survey 

has been traditionally used for monitoring the land subsidence (Odijk et al., 2003) 

but this technique is expensive and time consuming since it requires a lot of field 

workers and only allows detection of subsidence over a very small area (Strozzi et 

al., 2001). Moreover, the precise levelling is usually required a wide network of 

benchmark for the subsiding area. The used of total station is commonly seen since 

this method can maintain the considerable accuracy for many public works such as 

road, airport and city (Lee and Rho, 2001). Both levelling survey and total stations 
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survey can deliver 0.1mm height change accuracy (Ge et al., 2004). Besides that, 

GPS is also used to detect deformation with millimeter to centimeter accuracy on 

localized areas (Cao et al., 2008). However, GPS observations require logging times 

from one to several hours for each baseline to achieve high precision. This 

expenditure is also highly time consuming and impracticable for many engineering 

works and ground reconnaissance survey (Gili et al., 2000).  

 

 

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) is a valuable 

technique for measuring surface deformation which has been introduced more than a 

decade ago and has become an important part of deformation monitoring (Hooper, 

2008; Samsonov et al., 2010). The technique of InSAR relies on combining phase 

information from two or more SAR acquisition of the same area captured at different 

times from a similar platform to produce an interferogram (Massonet and Feigl, 

1998). This process shows range changes in the view direction between the platform 

and the Earth’s surface, and can be further proceed with a topographic model to 

detect ground deformation up to cm or sub-cm level of precision (Massonet, 2008; 

Samsonov et al., 2010; Liu et al., 2014). InSAR offers the typical advantages like 

data acquisition over inaccessible areas, wide area coverage, its competitive cost, 

data availability, and its high vertical accuracy for remotely measuring the 

deformation of the ground and manmade structures from space (Crosetto et al., 2008; 

Simon and Rosen, 2007). 

 

 

Nevertheless, the InSAR phase is sensitive to the terrain topography and 

relative changes in the elevation occurring between two SAR antenna passes over the 

same area. If the terrain topography of the images scene are available, i.e. a DEM 

(Digital Elevation Model), the corresponding phase component can be subtracted 

from the InSAR phase, leaving the component due to the terrain surface deformation 

is a process called Differential InSAR (DInSAR) technique (Fan et al., 2011). 

DInSAR technique provide high resolution ground deformation at regional level 

along the line-of-sight direction between the satellite antenna and the ground surface 

by exploiting the phase difference between two time-separated complex SAR image 

acquired under similar geometric condition (Massonet et al., 1993,1995; Amelung et 
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al., 2000; Fialko et al., 2005; Shankar, 2013). It has been widely used in a number of 

types of applications like earthquake displacement (Massonet et al., 1993), volcano 

deformation (Massonet et al., 1995), glacier dynamics (Goldstein et al., 1993; 

Joughin, 1996, Mohr et al., 1998), and land subsidence (Strozzi and Wegmuller, 

1999; Strozzi et al., 1999; Fruneau et al., 1999; Ferretti et al., 1999; Strozzi et al., 

2000) considering its usefulness to monitor land subsidence effectively over the 

conventional InSAR technique. 

 

 

Despite the successful use of InSAR/DInSAR technique for the deformation 

monitoring, the limitation as well as the complexity of the processing for this 

technology should not be taken lightly. The complexity of the processing include 

several steps of computation such as baseline estimation, focusing, coregistration, 

generation of interferogram, filtering and phase unwrapping which need to be 

performed carefully based on the data and type of surface feature under 

investigation. Besides, this technique is highly sensitive to atmospheric conditions 

(Wegmuller et al., 2006; Meyer et al., 2006; Chen and Zebker, 2012; Chapin et al., 

2006; Jung et al., 2013) and orbital errors (Kohlhase et al., 2003; Shirzaei and 

Walter, 2011; Liu et al., 2014). The orbit influence can easily be distinguished from 

deformation influences but that error makes the interferogram look sloped and the 

deformation spots often cannot be recognized (Capková, 2005). Since satellite 

propagates the signals through the atmosphere, the signal might either have 

propagation delay or bending effect (Rosen et al., 2000; Ding et al., 2004; Balaji, 

2011). However, most of the signals have the propagation delay because of the effect 

from the troposphere and ionosphere which are known as the main error in 

atmosphere (Ferretti et al., 2001; Mora et al., 2003; Werner et al., 2003; Hooper et 

al., 2004; Lanari et al., 2004; Kampes, 2006; Chen and Zebker, 2012). 

 

 

Recent development of numerous algorithms that combine phase information 

from multiple radar interferograms and produce internally consistent time-series of 

land surface deformation have the ability to overcome atmospheric as well as the 

orbital errors (Ferretti et al., 2001; Berardino et al., 2002; Hetland et al., 2012). 

Combining multiple interferogram allows detection and quantification of both 
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secular and transient displacement and these methods also help to mitigate the effects 

of change in scatterer properties and phase delay introduced by the orbit and 

atmosphere between SAR acquisitions, resulting in measurements of surface 

deformation with subcentimeter accuracy (Hanssen and Klees, 1998; Bürgmann, 

2000; Hetland et al., 2012). Many efforts have been made to minimize troposphere 

error such as by computing the phase delay using global meteorological reanalysis 

data (Jolivet et al., 2011), using wavelet transform (Shirzaei and Burgmann, 2012), 

formation of atmospheric model (Wadge et al., 2002), and atmospheric phase screen 

filters (Puyssegur et al, 2007). Efforts have also been made to remove orbital error 

using a bilinear or biquadratic model (Amelung et al., 2007), using a function in 

terms of the standard deviation of the velocity gradient in range and azimuth 

direction, (Fattahi and Amelung, 2014), using wavelet multiresolution analysis and 

robust regression approach (Shirzaei and Walter, 2011). 

 

 

Nevertheless, the conclusion can be drawn from the above background 

information is that monitoring land subsidence is important and it can be done using 

InSAR technique although several limitations of this approach have been highlighted 

in the literatures. The use of time series InSAR technique is surely an attractive 

approach to measure the land subsidence which can incorporate several SAR 

interferograms and techniques to overcome atmospheric disturbance and the orbital 

decorrelation. Despites, the results of accurate measurements for land deformation 

from previous study demonstrated the usefulness of the InSAR time series approach 

for different types of land surfaces. However, hardly any study can be seen in the 

literature where this time series approach has been used to monitor big 

infrastructures such as airport although massive infrastructural development has been 

occurred in the airport area. 
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1.2 Problem Statement   

 

 

 It is overwhelmingly that land subsidence is a severer threat to large 

infrastructures such as buildings, dams, bridges, roads, and so on. Similar to the 

other infrastructures, airport, which is considered as the centre of the modern 

communication system, is susceptible to have land subsidence problem due to 

several reasons (Liu et al., 2001; Jiang and Lin, 2010; Zhao et al., 2011). Monitoring 

the subsidence of airport is important, not only considering the sustainability of the 

infrastructure but also in order to prevent undesirable loss of property and life 

because subsidence can cause severe accident during take-off and landing of 

airplanes. Remote sensing techniques specifically InSAR technique can be used to 

monitor land subsidence at airport with high spatial accuracy. Several studies have 

successfully demonstrated the capability of InSAR to monitor the land subsidence at 

airport but most of the studies investigation focused on airports that are built on the 

reclaimed land (Liu et al., 2001; Ding et al., 2004; Zhao et al., 2011) or high latitude 

permafrost environment (Short et al., 2014). Nevertheless, there are many airports 

that have not been developed on the reclaimed lands but can still be affected by the 

land subsidence due to natural or human activities especially underground water or 

hydrocarbon extraction (Ding et al., 2004; Aly et al, 2009; Bhattacharya, 2013), 

therefore, the airports area need to be investigated with an effective monitoring 

system in order to monitor the sustainability. 

 

 

Kuala Lumpur International Airport (KLIA) and Singapore Changi Airport 

(SCA) are the two busiest airports in the South East Asia region and these airports 

are the main airport of Malaysia and Singapore respectively. KLIA was built in 1998 

with an area about 100km2 on an agricultural land which has the capacity to handle 

70 million passengers and 1.2 million tonnes of cargo per year (Airports-Worldwide, 

2004). On the other hand, SCA airport was built in 1981 at the eastern tip of the 

main island at Changi, where the airport would easily be expanded through land 

reclamation. It is about 17.2 km northeast from the commercial centre in Changi, on 

a 13km2 site (Bonny, 2001). KLIA is 16 year old and due to the rapid pace of 

development, parts of Malaysia, especially in the Kuala Lumpur, have experienced 
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unprecedented growth rates with development areas increasing and because of the 

shortage of land, the city is expanded over high-risk ground, such as hilly terrain, 

areas with karstic bedrock, ex-mining land, peat and soft sediment areas. The 

existences of geohazards such as landslides and sinkholes have affected the urban 

dwellers (Chand, 1998).  Besides that, SCA is a hydraulic sand filled project with 

associated soil improvement works and this man-made structure is still in expanded 

process from time to time due to high demands for air travel that expected to grow in 

the coming years (Choa, 1994). However, although these two airports are the busiest 

airport in the world, more than one decade old and several extending work have been 

done, no robust system have been developed to monitor the land deformation as well 

as the infrastructural sustainability especially using InSAR technique.  

 

 

Indeed, monitoring the land subsidence of airport using InSAR technique is 

an attractive approach but this technique is not easy to implement without an 

appropriate data processing strategy in order to get better estimation accuracy.  

However, in general, the difficulties of InSAR data processing can be seen with 

respect to few perspectives which includes i) baseline determination, ii) co-

registration, iii) coherence determination, iii) interferogram generation, iv) 

interferogram filtering, v) phase unwrapping (Zebker et al., 1992), as there is no 

clear cut rule that can be followed for each processing step. As a matter of fact, the 

five aforementioned processing steps are mostly relied on several factors such as 

sensor and wavelength, data availability, types of land feature/target under 

investigation, accuracy requirement, and availability of the required software or 

algorithm. 

 

 

Nevertheless, other than the SAR processing problem, an interferogram 

contain four error components due to orbital error, residual topography error, 

atmospheric noise (mainly tropospheric artefact) and decorelation noise (Zebker et al 

1997; Hanssen, 2001; Puysseegur et al., 2007; Liu et al., 2014). Although some 

errors such as topographic error and decoleration error can be reduced 

systematically, atmospheric noise (tropospheric artefact) and orbital errors are the 

major source of error in the SAR data that need to be treated carefully. The 
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troposphere contains approximately 75% of the atmosphere’s mass and 99% of its 

water vapour and aerosol (Meteoblue, 2006). The major contribution to the phase 

delay is the highly variable water vapour content in the troposphere (Lofgren et al., 

2010). The spatial and temporal variability of tropospheric water vapour modifies the 

refractivity of radio wave passing between satellite and the ground (Wadge et al., 

2002; Jolivet, 2011). The pattern and amplitude of the atmospheric phase delay 

shows limitation on the measurement of low amplitude and large spatial wavelength 

signal related to interseismic deformation (Wright et al., 2004). Besides that, the 

orbital error is considered as the main limitation in InSAR. The variations in the 

radial and cross-track components of the orbital error during the SAR acquisition 

generate the orbital fringes, the so-called phase ramp, which is often parallel to the 

satellite track and may also generate the perpendicular fringes (Hanssen, 2001). In 

order to reduce the effects of orbital error, for the case of topography height 

estimation, tie points or ground control points can be used to constrain the reference 

phase at certain points in each interferogram (Massonnet and Feigl, 1998; Hanssen, 

2001; Lundgren et al., 2009) 

 

 

Multi temporal InSAR technique is an extension of InSAR that use large sets 

of SAR scenes to investigate the temporal evolution of deformation and mitigate 

errors found in single interferograms (Wortham, 2014). Stacking or averaging of 

interferograms is the simplest form of multi temporal processing (Sandwell and 

Price, 1998) which assumes that the deformation is linear, and uses the stack average 

to estimate a constant deformation rate. Other multi-temporal approaches include 

Persistent Scatterer InSAR (PS-InSAR) technique (Ferreti et al., 2001; Werner et al., 

2003; Hooper et al., 2004) which analyses the temporal signal on specific targets and 

small baseline (SB) (Berardino et al., 2002; Mora et al., 2003) technique which 

selects the most reliable pairs according to temporal and spatial baselines. Other than 

that, another multi-temporal technique proposed by Hetland et al. (2012) called as 

Multiscale InSAR time series (MInTS) which is based on wavelet decomposition of 

the interferogram in space and a general parametrization in time is a new multi 

temporal approach to extracting spatially and temporally continuous ground 

deformation from InSAR data (Agram, 2013).  
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Therefore, considering the several issues in the problem statement such as i) 

the necessity of monitoring land subsidence/land deformation of these two busiest 

airports, ii) the effectiveness of InSAR time series techniques especially SBAS and 

MInTS for the estimation of land subsidence/land deformation, iii) lack of 

investigations in the literature for monitoring land subsidence/land deformation 

using InSAR technology especially in the study areas, and iv) availability of long-

term SAR data from different satellite sensors, this research is going to take an 

opportunity to study long term (2007-2011) land subsidence/land deformation at the 

KLIA and SCA using data from ALOS PALSAR satellite. Removal of atmospheric 

artificial and orbital error from the interferogram and the estimation of displacement 

were done using SBAS and MInTS techniques. 

 

 

 

 

1.3 Research Objectives 

 

 

The overall objective of this research is to monitor the long term land surface 

deformation at KLIA and SCA using time series InSAR techniques. The sub-

objectives of this research are listed as below: 

 

 

1. To examine the impact of atmospheric (tropospheric) as well as orbital 

correction on the improvement of land deformation estimation accuracy 

 

 

2. To compare the results of the land surface deformation between two 

different time series InSAR techniques which is SBAS and MInTS  

 

 

3. To investigate the deformation pattern of the airports which was built on 

two different types of land which is in agricultural land (KLIA) and 

reclaimed land (SCA) 
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Regarding to objective one, the research questions are as follows: 

 

 

1 How much is the impact of tropospheric and orbital errors on the land 

subsidence estimation? 

 

 

2 What is the different of land subsidence estimation before and after both 

corrections are going to be applied? 

 

 

Regarding to objective two, the research questions are as follows: 

 

 

1. What are the different of land subsidence measurements obtained using 

these two techniques?  

 

 

2. Which technique is the most stable for land surface deformation 

monitoring? 

 

 

Regarding to objective three, the research question are as follows: 

 

 

1. Do the different types of land uses affect the land subsidence at the KLIA 

and SCA? 
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1.4 Scope of the Study  

 

 

1. This study used SAR data since it has wide application in mapping of the 

surfaces of the Earth as well as monitoring ground subsidence from a variety 

of causes, in particular subsidence due to water extraction from underground 

reservoirs and subsidence in reclaimed land.  

 

 

2. A long-term data were obtained in order to study the long-term deformation 

in the study areas. The data from ALOS PALSAR sensor were downloaded 

and used for this study as these sensors can provide data with reasonable 

spatial and temporal resolution.  

 

 

3. KLIA and SCA have been chosen as the area of interest since these two 

airports are the most important infrastructures for both countries in context of 

communication, business, and social connection. 

 

 

4. Due to its availability and the satellite revisit time at the study areas, the SAR 

data from 2007-2011 were used for both study sites which are KLIA and 

SCA. Start with 15 SAR raw data for KLIA and 14 SAR raw data for SCA, 

the data were processed using in order to generate DInSAR and further were 

continued to estimate the land subsidence at both study area.  

 

 

5. An external data like Digital Elevation Model (DEM) were used to generate 

interferogram using DInSAR technique. Shuttle Radar Topography Mission 

(SRTM) (~90 m) data were used and this DEM data is free and spatial 

coverage is available for the study areas. 
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6. Generation of differential interferogram which involves focusing, 

coregistration, interferogram and coherence generation, filtering, phase 

unwrapping and geocoding were first done using InSAR Scientific 

Computing Environment (ISCE) software because it offers to the scientific 

community an open-source, modular and extensible computing environment. 

 

 

7. After the interferogram were unwrapped, the atmospheric correction were 

applied to the unwrapped interferogram by using atmospheric weather model 

i.e. European Center for Medium range Weather Forecasting (ECMWF)  

 

 

8. After the atmospheric correction was applied to each unwrapped 

interferogram, the orbital effects on interferograms were estimated 

independently using the network de-ramping method.   

 

 

9. Time series estimation of land subsidence from the interferogram using 1) 

SBAS where data pairs were characterized by small spatial and temporal 

separation between acquisitions and 2) MInTS which operates in the spatial 

wavelet domain were used 

 

 

10. Both atmospheric and orbital error corrections and also the deformation 

detection for both study area were processed in software named Generic 

InSAR Analysis Toolbox (GIAnT). 
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1.5 Study Area  

 

 

In this study, two study sites were examined in order to evaluate the land 

subsidence measurement. As can be seen in Figure 1.1, the first selected study site is 

the KLIA (02°44′36″N, 101°41′53″E) located in the Langat Basin. Langat basin can 

be divided into 3 distinct zones; the mountainous zone of the northeast corner of 

Hulu Langat district, the hilly area characterized by gentle slopes spreading widely 

from north to the east in the middle part of Langat basin and third zone is a relatively 

flat alluvial plane located in the southwest of Langat Basin (Idrus, 2004).  

 

 

KLIA is the main and largest airport in Malaysia with an area about 100 km². 

KLIA was opened officially on June 27, 1998. It is designed and built to be an 

efficient, competitive and world-class airport for the Asia-Pacific Region (Airports-

Worldwide, 2004). KLIA is completed with the latest technology and state-of-the-art 

facilities, aims at providing maximum passenger safety, comfort and convenience. It 

is a unique airport which has facility for business, entertainment and relaxation.  

 

 

Moreover, it is important to note that it was built on agricultural land which 

was used before for rubber and palm oil plantations and Langat Basin has a history 

of groundwater extraction (Bringemeier, 2001). Based on the results of the detailed 

hydrogeological, geophysical exploration and numerical groundwater modelling, the 

fractured, jointed and partially weathered meta-sandstone beds forming the 

Palaeozoic basement rocks at KLIA and KLIA2 has been identified as potentially 

productive fractured rock aquifers. 
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Figure 1.1 Map of Langat Basin (Source: Bringemeier, 2001) 

 

 

The other selected study site is the SCA (Figure 1.2) which indeed the 

world’s most highly acclaimed airports (Park, 1997). It was opened in 1981 with a 

design capacity of 12 million passengers a year. It is located about 17.2 km northeast 

from the commercial center in Changi, on a 13 square kilometres site. It has three 

passenger terminals with a total annual handling capacity of 66 million passengers 

(Bonny, 2001).  

 

 

This airport could claim to be the region's first real international hub, being 

strategically located at the crossroads between Europe and the Far East, and the Far 

East and Australasia (Paylor, 1994). It is one of the largest single development 

projects in Singapore's history and was built in reclaimed land. The land reclamation 

work is a process of placing fill geomaterials on existing geological formations over 

a large extent. The geological conditions will significantly affect the planning, 

design and implementation of a land reclamation and ground improvement project 

(Bo and Chu, 2006). For Changi Airport, the land-reclamation was carried out to 
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extend the land at the foreshore of the eastern part of Singapore. The area reclaimed 

is about 2000 hectares and it is used for the airport runway, taxiways and the 

terminal buildings. The depth of seabed at the reclamation area ranges between 2 

metres and 15 metres being much deeper at the northern edge of the area (Arulrajah, 

2008).  

 

 

 

Figure 1.2 Singapore Changi Airport (red circle) which built on reclaimed land 

(Source: Utexas, 2016)  

 

 

 

 

1.6 Significance of the Study 

 

 

Monitoring of land subsidence is crucial for several purposes include 

avoiding unwanted damage of property and loss of valuable life. Airport is a big 

infrastructure where thousands of people are gathered together and used hundreds of 

flight in order to perform the valuable journey from one place to another place. 
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Ground surface of an airport especially the runway is very important and sensitive 

part. Any unexpected land subsidence at the runway or ground surface can cause 

severe threat to human life and property. Therefore, an airport needs to be monitored 

for land subsidence with an effective technique.  

 

 

This study is going to find out and efficient technique for the monitoring of 

land subsidence of two busiest airports in Southeast Asian region, hence, 

undoubtedly this research is important and would be beneficial for Malaysia and 

Singapore and also for several agencies, in particular for those who are interested in 

land subsidence monitoring. Some of the specific significance of this study can be 

highlighted as follows: 

 

 

1 As a new technique, the result can be very useful to improve the 

monitoring system of airport in Malaysia and Singapore and can obtain a 

great level of accuracy. 

 

 

2 It can improve capability to predict future subsidence in new area or in 

the existing land subsidence areas at the airports. 

 

 

3 This study would be very helpful for the airport management in order to 

detect the potential location of suspected subsidence area. 

 

 

4 The method will be very useful source for any agencies who are 

interested to apply this method for the other airports or other 

infrastructures in Malaysia and Singapore. 

 

 

5 As a reference for future research to explore more about InSAR technique 

for other purposes like landslide which occurs frequently in Malaysia. 
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1.7 Thesis Outline 

 

 

This thesis has been divided into six chapters which are as follows: 

 

 

Chapter 1 provides general overview of the main topic of this research work, 

problem statement, research identification which includes research aim, objective 

and research questions, scope of the study, study area and significance of the 

study.  

 

 

Chapter 2 provide a literature review on related works including the InSAR 

technique, error in InSAR data like tropospheric and orbital effects, the used of 

SBAS and MInTS technique and also previous method used in order to correct 

both effects and the land subsidence monitoring at airports. 

 

 

Chapter 3 the methodology and details about the data processing and datasets 

are explained.  The parameters related to this topic are described and advantages 

and disadvantages for the chosen method are stated in this chapter. 

 

 

Chapter 4 the results and analysis of the processing were shown which include 

the DInSAR generation, the corrected interferogram after the tropospheric and 

orbital correction were applied and the time series results for both technique. 

 

 

Chapter 5 the overall process from the start to end and the possible reasons for 

what is happening based on the results were discussed. 

 

 

Chapter 6 the conclusion and recommendation for this thesis were drawn.  
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