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ABSTRACT 

Vibration and deflection are two main parameters that always govern the 

constructability of long span cantilever slab. This paper present the dynamic behavior 

of a 12.5m long span cantilever steel-concrete composite floor of an actual new 

proposed construction project. STAAD PRO software was used to analyze the 

structure subjected to both static and the dynamic loading. From the preliminary 

analysis using static loading, it was found that the original proposed structural 

configuration does not pass the deflection limit and is not constructable due to 

requirement for too big steel section not readily available in market. Consequently, 

modification to shorten the cantilever length to 6m is introduced and finally makes the 

structure possible to be build using a ready size of steel beams that are available in 

Malaysian market. In the detail dynamic analysis, excitation of dynamic loadings 

similar to human activity at a few random locations is applied to produced various 

mode shape. Results from the dynamic analysis gives acceleration on adjacent panels. 

The acceleration vs time graph is then used to calculate the critical natural frequency 

of the adjacent panels. This value of natural frequency then used to determine the range 

of recommended peak acceleration using the graph introduced by  

AISC Design Guide No. 11. It is found that the natural frequencies of the adjacent 

floor are in the range of 4 – 7 Hz, which is considered a low frequency floors. With 

the combination of low acceleration and low natural frequencies, it makes the modified 

floor which the new length is 6m still not comfortable to be used. Therefore, 

recommendation to thicken the concrete slab is proposed to increase the natural 

frequency of the floor, so that a comfortable construction is obtained.
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ABSTRAK 

Gegaran dan pesongan merupakan dua perkara penting yang mempengaruhi 

pembinaan lantai komposit julur yang sangat panjang. Kertas kerja ini menerangkan 

kelakuan dinamik lantai komposit keluli-konkrit julur sepanjang 12.5m, yang 

merupakan sebahagian daripada cadangan pembinaan projek baru yang sebenar. 

Perisian STAAD PRO digunakan untuk menganalisis struktur yang dikenakan beban 

statik dan juga beban dinamik. Daripada analisis awalan menggunakan beban statik, 

didapati bahawa konfigurasi asal struktur yang dicadangkan menunjukkan kegagalan 

pematuhan had pesongan dan tidak membolehkan untuk dibina kerana memerlukan 

saiz rasuk keluli yang terlalu besar dan memerlukan tempahan khas. Dengan sebab itu, 

ubahsuai memendekkan panjang julur rasuk kepada 6m dibuat dan akhirnya 

membuatkan struktur boleh dibina menggunakan saiz rasuk keluli yang sedia ada 

dalam pasaran Malaysia. Dalam analisis terperinci, pengenaan beban dinamik yang 

menyerupai aktiviti manusia di beberapa lokasi yang dipilih secara rawak 

menghasilkan pelbagai bentuk mod. Keputusan daripada analisis dinamik memberikan 

pecutan di lantai berdekatan. Graf pecutan melawan masa yang diperolehi daripada 

output perisian digunakan untuk mengira frekuensi semulajadi lantai kritikal yang 

berdekatan. Nilai frekuensi semulajadi pula akan digunakan untuk menentukan had 

pecutan puncak yang paling ideal, yang diperkenalkan oleh AISC Design Guide No.11. 

Adalah didapati bahawa frekuensi semulajadi lantai berdekatan berada antara 4 – 7 Hz, 

yang mana ianya adalah rendah. Kombinasi pecutan dan frekuensi semulajadi yang 

rendah membuatkan lantai masih tidak selesa untuk digunakan. Oleh itu, pengesyoran 

dibuat untuk menebalkan lantai konkrit bagi meningkatkan frekuensi semulajadi lantai 

supaya struktur yang lebih selesa dapat dibina. 
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CHAPTER 1

1 INTRODUCTION 

A steel-concrete composite structure is becoming a popular selection of 

structural system nowadays. This kind of structures is increasingly used to build 

modern landmarks of urban areas. The selection of this composite combination 

normally is due to its fast construction and lightweight. It is also obviously chosen due 

to its tensile-compression ideal combined capacity, where the steel has a very good 

tensile strength capacity, and the concrete is very good in compression strength 

capacity. 

The capacity of resisting higher tension force gives an extra mile for the 

engineer to use the steel as a beam for designing longer span of a steel beam.  

While for the concrete, it is suitable to be paired with the steel beam to construct an 

economical composite concrete slab to resist the compression force at the top middle 

of the slab span. This steel-concrete composite combination makes an engineer’s life 

easier to take the challenge of architecture’s innovative and award winning designs 

these days. 
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1.1 Background of Problem 

A cantilever floor is an attractive and more popular in an architect’s modern 

design nowadays, including the Malaysian architects recently. The designs were often 

impressive and eye-catching to the people surroundings. To make the design possible 

to be build, engineers will normally choose a composite steel-concrete structures 

system to build the cantilever floor.  

A direct consequence of this design trend is the floor become too slender and 

that their design is usually not controlled by ultimate limit states but by serviceability 

criteria, such as a considerable increase in problems related to unwanted composite 

floor vibration. A vibration is usually even more critical in a long span slab or long 

span cantilever slab. The longer the cantilever floor, the more sensitive the floor to  

a vibration problem. 

1.2 Problem Statement 

Floor vibration has become a high-profile research chosen by many researchers 

(Brownjohn and Middleton, 2008). The research topics were so wide that covers 

almost everything that related to a floor vibration from the procedure for predicting 

the floor vibrations, experimental work and computer modelling to study dynamic 

vibration behavior and control of vibrations. Many studies on vibrations of long span 

composite floor decks were reported (Varela and Battista, 2011; Mohamed Fahmy and 

Sidky, 2012; Silva et.al, 2014; An et.al, 2016). However, none of them studied or even 

discuss the vibration on a long span cantilever composite floor. This lead to this 

research objectives that will focus on the dynamic behavior of the long span cantilever 

steel-concrete composite floor. 
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1.3 Objectives 

The objectives of this study are:  

a. To model, analyze and design a 12.5m long cantilever steel-concrete 

composite floor of an actual proposed new office building subjected to 

static loading. 

b. To reanalyze the structure considering human excitation/activities to 

obtain dynamic behavior of the floor, namely natural frequency and 

maximum acceleration. 

c. To determine whether the present design of cantilever floor is meeting 

the acceleration limit due to vibration as specified by guideline. 

d. To propose a strengthening method to the floor slabs so that it meets the 

recommendation peak vibration acceleration limit as specified in the 

guideline. 

1.4 Scope of Work 

This study is to investigate the vibration of a floor of a real steel-concrete 

composite cantilever floor spanning at 12.5m length as proposed by design architect. 

In this investigation, STAAD PRO software was used to perform the finite element 

analysis to get the structure’s vibration acceleration and to calculate the natural 

frequency of the structure due to human activity. From the vibration acceleration, level 

of vibration will be determined and compared with the acceptable limit. Acceleration 

due to vibration might also be reduced by introducing various tie members for 

strengthening the slab system so that the cantilever floor possible to be build. 
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A few assumptions were made in this study to limit the component size of the 

structures, location of the dynamic loading excitations and the maximum deflection 

allowed. As for the steel beam size, it is limited to the size of UB914x419, which the 

maximum readily size available at most Malaysian steel supplier. As for the reinforced 

concrete column, it is limited to size of 1000mm x 500mm, which normally considered 

among biggest column in reinforced concrete building industries. As for the vertical 

deflection limit, Table 8 in the document of BS5950-1:2000 were used as a guidance 

to limit the allowable displacement. 

As for the dynamic loading, a time history from Brownjohn et.al (2008) was 

adopted. The chosen time history is almost equals to the mean body weight of 

Malaysian aged 18-59 years, 62.65kg (Azmi et.al, 2009). The location of the dynamic 

loading excitation randomly chooses at 3 locations 4m interval starting from the last 

beam that supported by the last column to the end of the cantilever floor. At every 

location, five (5) points at intervals of 2.5m were selected as the excitation points. 

1.5 Significance of Research 

Since this is a real project, it is expected to get the most economic universal 

steel beam size that is constructable using available size of universal steel beam in 

Malaysia. If the size of the beam is too huge, a tie members is expected to be introduced, 

so that the floor maintained its cantilever effect at a shorter span. So, this study will be 

use as a reference for engineers to advise their architects for future projects in 

estimating the economical span of cantilever floor. 
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