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ABSTRACT 

This thesis presents the fabrication of glucose biosensor by modifying the 

surface of the glassy carbon electrode (GCE) using optimized carbon nanotubes 

(CNTs). Chemical vapor deposition (CVD) method was utilized to grow vertically 

aligned carbon nanotubes (VACNTs) with various aspect ratios. Field emission 

scanning electron microscopy (FESEM) images coupled with Raman spectroscopy 

results highlighted the high aspect ratio as well as uniformity of the high crystalline 

carbon nanotubes. Transmission electron microscopy (TEM) images of the grown 

CNTs confirm the successful synthesis of multiwall carbon nanotube (MWCNTs) 

due to larger outer diameter of the CNTs. Furthermore, to increase the graphitic ratio 

of synthesized CNTs, sequential experimental strategies based on response surface 

methodology (RSM) was employed to investigate the crystallinity model of CNTs. In 

the next step, glucose oxidase (GOx) was immobilized on the optimized multiwall 

carbon nanotubes/gelatin (MWCNTs/Gl) composite using the entrapment technique 

to achieve enzyme-catalyzed oxidation of glucose at anodic potentials, which was 

drop-casted onto the GCE. Cyclic voltammetry (CV) results coupled with the 

chronoamperometric response obtained from modified GCE indicates that, 

GOx/MWCNTs/Gl/GC electrode can be utilized as a glucose biosensor with high 

direct electron transfer rate (8.42 s
-1

) between GOx and MWCNTs/Gl in a wide 

linearity range (8.9 mM) to glucose. The detection limit of the fabricated biosensor 

recorded was 0.59 mM by keeping its initial stability of 75.4% after 25 days. The 

performance of the fabricated biosensor as an electronic tongue was also investigated 

by designing a frequency based circuit attached to the electrochemical cell. The 

resistivity alteration of GOx/MWCNTs/Gl/GCE was recorded after each drop of 

glucose in the electrochemical cell. The oscilloscope results clearly showed that, by 

adding glucose to the circuit design, the output oscillation frequency changed and the 

square wave frequency reached a new stable value. These results indicated that, the 

modified GCE with the GOx/MWCNTs/Gl showed potential application in the 

determination of glucose in human serum samples as well as voltammetric based 

electronic tongue.   
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ABSTRAK 

Tesis ini memerihalkan penghasilan sebuah penderia glukosa dengan 

mengubahsuai permukaan elektrod karbon berkaca (GCE) menggunakan nanotiub 

karbon (CNT) yang telah dioptimumkan. Kaedah wap pelupusan kimia (CVD) telah 

digunakan untuk menghasilkan susunan nanotiub karbon secara menegak (VACNT) 

dengan pelbagai aspek nisbah. Hasil pemerhatian imej dari pelepasan bidang imbasan 

microskop elektron (FESEM) yang digandingkan dengan keputusan Raman 

spectroscopy menunjukkan aspek nisbah yang tinggi, selain daripada keseragaman 

susunan nanotiub karbon yang berkristal tinggi. Imej dari penghantaran electron 

mikroskop (TEM) pula membuktikan penghasilan nanotiub karbon pelbagai-dinding 

(MWCNT), disebabkan oleh diameter luar CNT yang lebih tebal. Di samping itu, bagi 

tujuan menambah nisbah grafit CNT yang terhasil, strategi eksperimen berangkai 

berdasarkan kaedah gerak balas permukaan (RSM) telah digunakan untuk mengkaji 

model pengkristalan CNT. Dalam langkah yang seterusnya,  oxidase glukosa (GOx) 

telah dikakukan di atas komposit nanotiub karbon pelbagai-dinding/gelatin 

(MWCNTs/G1) menggunakan teknik pemerangkapan bagi mencapai pengoksidaan 

glukosaa berkatalisis dengan enzim pada anod, di mana ia dijatuh-acuankan ke atas 

GCE. Keputusan voltametri siklik yang digandingkan dengan kesan 

chronoamperometric yang didapati daripada GCE menunjukkan. elektrod 

GOx/MWCNTs/G1/GC boleh digunakan sebagai penderia glukosa dengan kadar 

pemindahan elektron secara terus yang tinggi (8.42 s-1) di antara GOx dan MWCNTs/G1 

dalam kawasan kepekatan secara linear dan luas (8.9 mM). Had pengesanan bagi 

penderia yang dihasilkan adalah 0.59 mM dengan mengekalkan kestabilan asal iaitu 

75.4% selepas 25 hari. Penderia yang dihasilkan turut diuji keberkesanannya sebagai 

lidah elektronik dengan mereka-bentuk litar elektrik berasaskan frekuensi yang 

dilekatkan kepada sebuah sel elektrokimia. Perubahan kerintangan bagi 

GOx/MWCNTs/G1/GC telah direkodkan selepas setiap titisan glukosa ke dalam sel 

elektrokimia tersebut. Keputusan osiloskop menunjukkan dengan jelas bahawa frekuensi 

ayunan keluaran telah berubah, dan frekuensi gelombang petak mencapai nilai baru yang 

stabil, apabila glukosa ditambahkan ke dalam rekaan litar elektrik.  Semua keputusan ini 

menunjukkan GCE yang diubahsuai dengan GOx/MWCNTs/G1 mempunyai potensi 

untuk diaplikasikan sebagai alat penderia glukosa di dalam sampel serum manusia, dan 

juga sebagai lidah elektronik yang berasaskan kaedah voltametri. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

Over the past few decades, a number of reports have highlighted the growing 

importance of nanotechnology-based devices. Many types of nano-devices have been 

employed in engineering, fundamental sciences, and biology. One of the most 

valuable applications of nanotechnology is in the development of novel and effective 

biosensors that circumvent the limitations of current molecular diagnostics, provide 

accurate diagnosis, and leading to the development of personalized treatments (Lu et 

al., 2012). Recent advances in nanotechnology that combines sensors with 

nanomaterials introduced efficient and simple devices that can be used to measure 

the analytes’ concentration (Chen et al., 2012; Hasan et al., 2014; Jianrong et al., 

2004). Researchers have exploited a variety of bio-sensing techniques using 

miniaturized and portable devices to optimize, observe, and control biological 

reactions on micro or nano-surfaces. Electrochemical device is one of the promising 

method in biosensor development, due to their simplicity, low costs, accuracy, and 

sensitivity towards medical diagnosis (Ahuja and Kumar, 2009). The electrochemical 

biosensor converts biological recognition events to useful and understandable 

electrical signals. Electrochemical biosensors rely on nanomaterials, especially 

nanostructures (Kumar, 2007). Nanostructures differ from bulk materials, due to their 

small size and unique structure, exhibiting unique physical, chemical, and electronic 

properties (Wu et al., 2012). They can be used to construct novel materials to 

improve biosensors. Generally, nanostructures such as carbon nanomaterials (for 

example, fullerenes, nanotubes, and graphene) possess excellent electrical properties 

and conductivity, rendering them suitable for electrochemical sensors (Hu et al., 
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2010). Carbon nanotube (CNTs) is a novel type of nanomaterials that have 

significantly different properties compared to its counterparts. Rolled graphene 

sheets are known as CNTs with capped ends, which could be single-walled carbon 

nanotube (SWCNTs), double-walled carbon nanotube (DWCNTs), or multi-walled 

carbon nanotubes (MWCNTs) (Odom et al., 2000). Although techniques such as arc 

discharge or laser ablation has been traditionally employed to build CNTs, currently, 

low temperature techniques (<800°C), such as chemical vapor deposition (CVD), 

have been developed to produce CNTs that are touted as the most popular 

synthesizing method of CNTs, due to the possibility of synthesizing CNTs at 

different lengths and diameters, uniform orientation, and extra high purity at low 

costs (Shahriary et al., 2014).  

1.2 World Demand of Electrochemical Glucose Biosensor 

Glucose monitoring is one of the main targets of the bio-sensing studies, as 

5% of the population of developed countries are suffering from diabetes (Meetoo et 

al., 2007). Diabetes mellitus is a common metabolic disorder that results in insulin 

deficiencies and hyperglycemia. This causes the blood glucose levels to fluctuate 

within 80-120 mg/dL (4.4-6.6 mM). Diabetes is a major cause of death or disabilities 

to people across the world, and it also increases the risks of heart disease, kidney 

failure, and blindness. These complications can be prevented, or at least decreased, 

by an accurate personal control of blood glucose levels (Malhotra and Chaubey, 

2003). Therefore, an accurate monitoring of the blood glucose level seems to play a 

major role in the diagnosis and management of diabetes mellitus (Cooper and Cass, 

2004). 

Beside glucose monitoring for diabetes, the biosensors array for electronic 

tongue (ET) has also become an important area of research. Generally, an electronic 

tongue is a single or multisensory device dedicated to the automated analysis of 

complex composition samples and recognizes their characteristic taste properties. 

Recently, the number of fabricated electronic tongues has significantly increased due 

to the increase of the electrochemical detection of biomolecules. However, several 
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possible architectures of electronic tongues were proposed, such as potentiometric, 

voltammetric, embracing mass, and optical-sensors. 

Hence, the reliability of electrochemical biosensors and precise recognition 

process prompted researchers to fabricate electrochemical glucose sensors in the 

simplest and most reliable scheme for multiple applications. Biosensors, as a specific 

kind of chemical modified electrodes (CMEs), is the most common detection method 

for glucose concentration, due to advantages such as simplicity, reliability, and 

sensitivity. A tremendous trend to the development of glucose biosensors based on 

carbon nanostructures such as CNTs can be observed during the past decade due to 

the excellent physical and chemical properties of CNTs (Trojanowicz, 2006). In fact, 

CNTs display unrivaled properties in electrochemical biosensors, due to its high 

surface area for sensing interaction, as well as excessive sensitivity to chemical-

doping effects during the interplay with diverse biological molecules (Cai and Chen, 

2004). Interaction between the nanotube and other entities such as solvents, 

polymers, and biopolymer matrices, or other nanotubes can be tailored by means of 

chemical bonds via covalent and non-covalent functionalization (Casey et al., 2012). 

The basis of the covalent functionalization is the covalent link of functional entities 

onto the nanotube’s carbon scaffold, while a non-covalent functionalization relies on 

supramolecular complexation utilizing a variety of sorption forces like van der 

Waals’ and pi-stacking interaction (Holzinger et al., 2001). Generally, the total 

charge carrier of CNTs will be changed by the adsorbent biomolecules and the 

alteration of the conductance, making CNTs-based biosensors capable of powering a 

full device in continuous monitoring of biological molecules (Hanna Varghese et al., 

2010). Latest advances of electrochemical glucose biosensors is indicative of the fact 

that well-optimized aligned CNTs play an important role towards the incorporation 

of nanotechnology in biosensor to obtain a higher linear range and advisable 

sensitivity for CNTs based electrochemical biosensors (Zhu et al., 2012). CNTs-

based paste electrodes (Shahriary et al., 2014), electrodes modified by CNTs (Mani 

et al., 2013), metallic nanoparticles modified CNTs-based electrodes (Yu et al., 

2014), and CNTs-based electrodes with immobilized enzymes (Xu et al., 2015) are 

some of the recent techniques being implemented for CNTs-based electrochemical 

biosensors. According to previous reports, functionalization via enzymes is the most 

effective approach in modifying the surface of CNTs to fabricate electrochemical 
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biosensors (Wang and Lin, 2008; Yang et al., 2007). In this method, enzymes can be 

attached onto the outer surface of functionalized CNTs due to hydrophobic and 

electrostatic interactions (Mittal, 2014; Saifuddin et al., 2012).The inner channel of 

the opened nanotubes also entraps small proteins via simple adsorption (Wong et al., 

2013).  

The speed of electron-transfer between enzymes’ active sites and the 

electrochemical transducer is crucial towards biosensor designs (Luo et al., 2005), 

due to the fact that it is promotable via CNTs (Barsan et al., 2012). Polymeric 

entrapment with covalent immobilization methods also enhances the direct and fast 

electron transfer between enzymes and CNTs, which is rapidly emerging as a new 

research area in terms of functionalizing CNTs (Ahuja et al., 2007). Gelatin is a 

known natural polymer in electrochemical biosensors, obtained from collagen, which 

is widely used to immobilize matrices to prepare biosensors (Khadka and Haynie, 

2012). A great gel forming ability, high biocompatibility with extremely 

heterogeneous polymer networks, different sizes of polypeptides, and molecular 

weight distribution render gelatin ideal for the preparation of electrochemical 

biosensors (Guiseppi-Elie, 2010). Taking into account previous reports on the 

advantageous properties of gelatin in electrochemical biosensors (Ozdemir et al., 

2010; Sarma et al., 2009), the CNTs gelatin matrix is a promising form of 

nanocomposite to improve the direct electron transfer processes in biosensors via 

hydrophobic–hydrophobic interactions, forming stable dispersions of CNTs.  

1.3 Problem Statement 

It is reported that 5% of the population of developed countries suffers from 

diabetes; thus, a tight monitoring of glucose level is urgent for preventing and 

managing diabetes mellitus. Due to constraints in current glucose detection methods 

such as low stability and sensitivity, high costs, and complex understanding of the 

mechanisms, the implementation of an effective approach is essential in designing 

modern glucose biosensors, such as the electrochemical approach. Electrochemical 

detecting of glucose is mostly owing a wide dynamic detection range and continuous 
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determination of glucose both in diabetic and electronic tongue approaches. CNTs 

demonstrate better electrochemical reactivity due to the hollow core being suitable 

for storing enzyme and promoting electron-transfer reactions of enzymes, such as 

glucose oxides. Unfortunately, there are some limitations in the immobilization of 

enzyme on the electrode’s surface, coupled with the poor electron transfer between 

the enzymes’ active site and the electrode from enzyme leaching and short lifetime of 

enzyme. Based on our knowledge, several methods have been developed to increase 

the biological function, stability, and efficacy of enzyme immobilization in 

electrochemical method by increasing the surface area of the CNTs. Therefore; the 

synthesis of optimized CNTs and fabricating CNTs-modified electrodes for 

electrochemical glucose biosensor is extremely attractive in improving the detection 

range, sensitivity, and the selectivity of the glucose biosensor. 

1.4 Research Objectives 

This thesis mainly focuses on the synthesis, optimization, and the utilization 

of carbon nanotubes composite materials to develop amperometric glucose 

biosensor. Amperometric glucose biosensors would be employed as the model 

system to compare the effects of different components on the performance of the 

biosensors. The objectives are: 

 To synthesize and optimize vertically aligned carbon nanotubes using 

chemical vapor deposition method. 

 

 To fabricate chemically modified glassy carbon electrode using optimized 

carbon nanotubes composite.  

 

 To investigate the performance of fabricated nanocomposite-based electrode 

in electrochemical glucose biosensor and electronic tongue. 
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1.5 Scopes of Research 

The central theme of this dissertation highlights the critical role of optimized 

MWCNTs to achieve enhanced performance and miniaturization of modified glassy 

carbon electrode applied in fabrication of glucose biosensor and electronic tongue. 

With the intention of achieving the above-mentioned objective, a series of scopes 

was carefully designed. The scopes are listed as: 

i. Vertically aligned carbon nanotubes were synthesized by using 

chemical vapor deposition method. Camphor oil and ferrocene was 

used to compose the vaporized CNTs, and different CVD conditions 

were applied to obtain the best morphology of vertically aligned 

CNTs. 

ii. The optimized MWCNTs were mixed with gelatin to produce 

MWCNTs/gelatin composite to entrap glucose oxidase and then drop 

casted on the surface of glassy carbon electrode. The modified glassy 

carbon electrode was examined under the different conditions to 

ensure the successful immobilization of glucose oxidase on the 

modified glassy carbon electrode. 

iii. The modified glassy carbon electrode was used for electrochemically 

detection of glucose in the buffer solution. The polymeric entrapment 

and covalent immobilization of enzyme enhances the direct and fast 

electron transfer in continuous monitoring of glucose. The glucose 

biosensor was attached to a brain-like circuit to fabricate electronic 

tongue which consisted of two different layers: In the first layer, the 

alteration of current obtained by glucose detection of biosensor was 

transduced to a spiking pattern. The spiking pattern was conducted to 

the second layer via paracrine-like optical transmission, and induced 

synchronization of neural spiking activity in the second layer. 
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1.6 Significance of the Study 

The development of an authentic, economical, and convenient glucose bio-

sensing system for diabetes diagnosis is essentially important to monitor and treat 

diabetes. This study is significant, since optimized vertically aligned carbon 

nanotubes can maximize enzyme immobilization on the surface of the electrode, 

which can further promote electron transfer rates between the enzymes’ active site 

and the modified electrode, resulting in an amprometric glucose biosensor with high 

stability and sensitivity. 

1.7 Organization of Thesis 

Chapter 1 of this thesis introduces the synthesis, optimization, properties, and 

electrochemical applications of carbon nanotubes. Chapter 2 describes a 

comprehensive review on the synthesis, characterization, optimization of carbon 

nanotubes, and glucose biosensor based on carbon nanotube composites. Chapter 3 

describes the materials and methods of synthesis, characterization, optimization of 

carbon nanotubes, and modification methods of glassy carbon electrode (GCE) via 

carbon nanotube/gelatin composite. The fabrication method of glucose biosensor and 

electronic tongue will also be discussed in this chapter. Chapter 4 describes the 

results and discussion of all experiments, including the synthesis, characterization, 

and optimization of carbon nanotubes, as well as glucose biosensor and electronic 

tongue based on modified glassy carbon electrodes. Chapter 5 concludes the 

experiments conducted during the course of this work. 
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