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ABSTRACT

Simultaneous Localization and Mapping (SLAM) is an algorithmic technique 

being used for mobile robot to build and create a relative map in an unknown 

environment. FastSLAM is one of the SLAM algorithms, which is capable of 

speeding up convergence in robot’s path planning and environment map estimation. 

Besides, it is popular for its higher accuracy compared to other SLAM algorithms. 

However, the FastSLAM algorithm suffers from inconsistent results due to particle 

depletion problem over time. This research study aims to minimize the inconsistency 

in FastSLAM algorithm using two soft computing techniques, which are particle 

swarm optimization (PSO) and genetic algorithm (GA). To achieve this goal, a new 

hybrid approach based on the mentioned soft computing techniques is developed and 

integrated into the FastSLAM algorithm to improve its consistency. GA is used to 

optimize particle weight while PSO is used to optimize the robot’s estimation in 

generating an environment map to minimize particle depletion in FastSLAM 

algorithm. The performance of the proposed hybrid approach is evaluated using root 

mean square error (RMSE) analysis to measure degree of error during estimation of 

robot and landmark position. The results are verified using margin error analysis. 

With the percentage error analysis results, the new hybrid approach is able to 

minimize the problems in FastSLAM algorithm and managed to reduce the errors up 

to 33.373% for robot position and 27.482% for landmark set position.
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ABSTRAK

Penempatan dan Pemetaan Serentak (SLAM) adalah satu teknik algoritma 

yang digunakan untuk robot mudah alih dalam membina dan membuat peta dari 

persekitaran yang tidak diketahuinya. Algoritma FastSLAM adalah salah satu 

algoritma SLAM yang digunakan bagi mempercepatkan penumpuan semasa 

merancang laluan robot dan menganggar peta persekitaran. Ia juga popular kerana 

mempunyai ketepatan yang lebih tinggi berbanding algoritma SLAM yang lain. 

Walaubagaimanapun, algoritma FastSLAM mengalami masalah kekurangan zarah 

dari masa ke masa yang menyebabkan keputusan yang dihasilkannya tidak selaras. 

Kajian ini bertujuan bagi mengurangkan masalah ketidakselarasan yang berlaku 

didalam algoritma FastSLAM dengan menggunakan dua teknik pengkomputeran 

lembut iaitu pengoptimuman kawanan zarah (PSO) dan algoritma genetik (GA). Bagi 

mencapai matlamat ini, pendekatan hibrid yang baru berdasarkan teknik-teknik 

pengkomputeran lembut tersebut telah dibangunkan dan digunakan ke dalam 

algoritma FastSLAM bagi meningkatkan prestasinya. GA digunakan untuk 

mengoptimumkan nilai berat zarah manakala PSO digunakan untuk 

mengoptimumkan anggaran yang dibuat oleh robot mudah alih dalam menjana peta 

persekitaran bagi mengurangkan masalah pengurangan zarah didalam algoritma 

FastSLAM. Prestasi pendekatan hibrid yang dicadangkan ini telah dinilai 

menggunakan analisis punca min ralat persegi (RMSE) bagi mengukur tahap ralat 

semasa robot menganggar kedudukannya dan objek halangan didalam persekitaran. 

Keputusan ini telah disahkan dengan menggunakan analisis ralat margin. 

Berdasarkan keputusan daripada analisis peratusan ralat, pendekatan hibrid baru ini 

telah berjaya mengurangkan masalah yang berlaku didalam FastSLAM algoritma 

dengan mengurangkan ralat sehingga 33.373% bagi kedudukan robot dan 27.482% 

bagi kedudukam objek.
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CHAPTER 1

INTRODUCTION

1.0 Introduction

In robotics, a mobile robot that is able to autonomously navigate, move and 

explore throughout an unknown environment, such as subsea, disaster area and 

another planet has become a popular topic in recent artificial intelligent robotic 

development. The mobile robot that is capable to think by itself when exploring the 

unknown environment without prior knowledge on such environment becomes a 

promising approach. This is useful since the environment may be possibly harmful or 

unreachable for human beings. As an example, before people can explore the disaster 

areas, such as an earthquake region, a mobile robot is used to observe and gain 

knowledge about the area. Hence, it provides useful information to people before 

they can start to explore the area, and thus avoiding any possible dangerous situation.

1.1 Problem Background

An autonomous robot that is able to perform designated tasks without 

intervention from human beings becomes highly desirable, especially in artificial 

intelligent navigation system. The tasks, such as self-exploration in an unknown 

environment become a trend in recent robotic development. Exploration in an 

unknown planet, disaster area, seabed, or any environment which are unreachable 

and potentially harmful to human beings can be done by the autonomous robot.
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It should be a robot that is able to perform the designated tasks by itself 

without human intervention. It is scientifically known as artificial intelligent robot as 

it is able to ‘think’ before making decision and ‘act’ accordingly then. This research 

focuses on the autonomous mobile robot that is able to move into an unknown 

environment. The robot must ‘think’ how it should move. According to Pirahansiah 

et al. (2013), the challenges faced by autonomous robot are the environment factors, 

its capability to explore, navigate without any knowledge on the unknown 

environment and generates its own map for the environment. Another challenge 

faced by the robot is its capabilities to recognize its own position, landmark and any 

obstacles, and making decision based on the new environment data and is able to 

navigate through the environment without human intervention.

The most notable solution ever being introduced is called simultaneous 

localization and mapping (SLAM). SLAM is an algorithm where a mobile robot 

simultaneously generates a map of environment (mapping) and uses the map to 

locate its own position within the environment (localization) (Durrant-Whyte and 

Bailey, 2006a). Both mapping and localization are done simultaneously and 

recursively as it navigates and explores in the unknown environment. In theoretical 

view, a SLAM is considered as perfect or solved solution, but in practice, there are 

certain issues arise in making the mobile robot truly autonomous (Pascal and Kuhn, 

2013). There are several SLAM algorithms and one of them is called FastSLAM 

algorithm, introduced by Montemerlo et al. (2002). The FastSLAM is popular for its 

good data accuracy compared to other SLAM algorithms. However, it suffers from 

sample degradation over time, due to particle depletion which degrades its overall 

performance.

Many conducted studies focused on improving robot’s performance during 

estimation and most of them often measure the distance between estimated and true 

location of the robot and landmarks based on a given map (Burgard et al., 2009). The 

robot’s task is to make itself accurately recognizes its own position, surrounding 

landmarks and is able to make an appropriate path planning based on the given map. 

The difficulty is, when SLAM is implemented in real environment, the geographical 

structures are usually very complex. The robot might encounter numerous difficulties 

and thus unable to perform its designated tasks as expected. The difficulties are how
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the robot accurately estimates its own position, surrounding landmarks (obstacles) 

and make an appropriate path planning within the environment map it created. 

Hence, it can be say that even the robot manages to locate its own position and 

surrounding landmarks but the estimated position might deviates from actual 

position.

A perfect SLAM algorithm should estimate robot’s position and landmarks 

position without any errors. The errors are the distance of estimated robot and 

landmarks position which deviates from actual position and surrounding landmarks. 

The longer the distance between the estimated position and actual position, the larger 

the error would be. However, it is impossible to achieve zero error, due to several 

limitations, such as noisy received data from hardware and algorithm’s 

computational complexity.

This study are trying to understand the structure of FastSLAM algorithm and 

the problems it faces in detail. Then, this research are attempting to minimize the 

problem by providing a promising solution. Among the introduced solutions, the 

most interesting one is implementing a soft computing technique into the FastSLAM 

algorithm. The idea of soft computing technique into the FastSLAM algorithm is not 

something new since previous works have done before. For example, previous work 

done by Xia and Yang (2011), who implemented genetic algorithm in FastSLAM 

algorithm and work done by Heon-Cheolet al. (2009) who implemented particle 

swarm optimization in FastSLAM algorithm. They will be further explained in 

Chapter 2.

The implementation of soft computing technique indeed provides a promising 

solution in minimizing the problem during robot estimation. For example, work done 

by Xia and Yang (2011), which implements genetic algorithm in FastSLAM 

algorithm. The algorithm uses a particle filter to estimate robot’s landmark position. 

Hence, the particles can be used by genetic algorithm as search operator to perform 

its task in optimizing the FastSLAM algorithm.

One concerned issue is the effectiveness of the solution when being used in 

different maps. Different researchers used different map representations to evaluate
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their own developed solutions. Xia and Yang (2011) and Heon-Cheol et al. (2009), 

both use different maps to evaluate their own solutions. Hence, there isn’t any 

standardized or benchmarked map environment to analyze performance of the 

proposed solution since different maps yield different results. The real question here: 

Does the solution work well in different maps and environment?

1.2 Problem Statements

Problem statements of this research:-

1) What are the significant SLAM parameters and their setting values required 

for the proposed simulation model of selected SLAM map environment?

2) What is the best approach to minimize errors in robot estimation in 

FastSLAM algorithm?

3) How to improve the performance of a new hybrid approach in terms of error 

rate in robot position and landmark position estimations?

1.3 Research Goal and Objectives

The research goals:-

“To introduce a new hybrid approach by implementing soft computing 

technique into FastSLAM algorithm using a standardized parameters and its 

setting values that is capable to improve FastSLAM performance by 

minimizing error rate in estimation”
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The research objectives were identified and stated as follows:-

1) To analyze and identify significant SLAM parameters and their setting values 

for the proposed simulation model of the selected SLAM map environment.

2) To implement a new hybrid approach into FastSLAM algorithm using genetic 

algorithm (GA) and particle swarm optimization (PSO).

3) To improve performance of the new hybrid approach for error rate in robot 

position and landmark position estimations.

1.4 Research Scope

1) Existing SLAM Algorithms and Hybrid Approach

In this research, an existing SLAM method, i.e. the FastSLAM algorithm is 

used. Other existing hybrid approaches using soft computing technique in 

FastSLAM algorithm are also used for reference. The existing hybrid 

algorithm approach will be compared with the FastSLAM algorithm and 

developed hybrid approach to calculate the robot’s estimation capability. It 

will be further explained in Chapter 2.

i. FastSLAM algorithm :-

An existing SLAM algorithm introduced by Montemerlo et al. (2002), is 

used in developing the proposed hybrid approach.

ii. FastSLAM algorithm with GA :-

It was introduced by Xia and Yang (2011) who implemented the genetic 

algorithm (GA) in FastSLAM algorithm.

iii. FastSLAM algorithm with PSO :-

It was introduced by Heon-Cheol et al. (2009) who implemented the 

particle swarm optimization (PSO) approach in FastSLAM algorithm.
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iv. FastSLAM algorithm with GA and PSO:-

These hybrid approaches are the research proposed hybrid approach 

which implements GA and PSO in FastSLAM algorithm.

2) Simulation Model and Data Structure

The experiment is conducted in a simulated two-dimensional sparse map 

environment. The map is generated from the SLAM toolbox. This research 

reconstruct the environment map used by Heon-Cheol et al. (2009). Figure

1.1 shows the reconstructed simulated environment map.

Figure 1.1 : Reconstructed simulated environment maps

In Figure 1.1, before the simulation started, significant parameters were set 

and required configuration data must be properly set up. Once the simulation 

begins, the virtual robot starts to explore the environment map by following 

the assigned waypoint. As the virtual robot moves, it estimates its current 

position in the environment map and detects landmarks location using its 

virtual sensors. The exploration completed when it reaches the last 

checkpoints of the assigned waypoints. This will be explained in detail in 

Chapter 2, 3 and 4.
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3) Parameter Determination and Setting Values

Parameter determination and its setting value are conducted to ensure that the 

results are consistent and avoid any unexpected errors in experiments. Several 

parameters have been selected (Refer chapter 4, section 4.2.2). To select 

suitable parameters, it should not heavily affect the experiment process in 

terms of computational complexity. Computational complexity is the time 

taken for one occurrence. For that, some parameters are selected based on 

best average by considering computational complexity of the experiment. For 

some parameters that are not affected by the computational complexity, the 

values selection is based on the lowest error values of robot or landmark 

position. A validation has also been conducted to observe the pattern of 

experiment result produced by the experiment. From the validation, the 

pattern produced is the same and consistent (Refer chapter 4, section 4.2.4.1).

4) Performance and Data Analysis

In this study, the performance of the developed hybrid approach are analyzed 

based on the error occurs during estimation process. Root mean square error 

(RMSE) analysis is used to calculate the errors. The error is calculated based 

on two indicators, i.e. robot and landmark set position. To verify the results 

produce in RMSE analysis, margin error analysis is used. Percentage error 

analysis is used to measure capabilities of the developed hybrid approach in 

minimizing the error rate in FastSLAM algorithm. It will be explained in 

detail in Chapter 3 at section 3.6.

5) Software and Tools

Matlab is used as platform to conduct the research experiments. For the used 

tools is SLAM toolbox which developed by Tim Bailey (3 April 2015) to 

observe and validate the developed hybrid approach. For the performance and 

data analysis, Matlab is also used to calculate the data results (i.e. RMSE, 

margin error and percentage error analysis). OriginPro is used to visualize the 

calculated data for RMSE and margin error analysis.
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1.5 Significance of Research

The significance of the research is as follows:-

1) The propose hybrid approach is able to provide a promising solution to

improve the performance of FastSLAM algorithm by minimizing errors in

robot position and landmark estimation.

2) Introduction of implementation of more than one soft computing technique 

for solving problems in FastSLAM algorithm.

1.6 Chapter Outline

This thesis consists of six main chapters. Chapter one is the introduction that 

briefly summarizes and provides general overview of this research. Chapter two 

gives literature review that discusses about research results and findings of this 

research. Chapter three mentions the research methodology that explains research 

framework and how the research is conducted. Chapter four is the proposed hybrid 

approach. It explained about this research experiment process and the proposed 

hybrid approach which is GA-PSO-FastSLAM. Chapter five are analysis that 

explained about this research results and findings. And lastly, Chapter six describes 

the conclusions of the research.
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