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ABSTRACT

Microwave assisted pyrolysis of scrap tires allows recovery of energy and 

useful materials, such as pyrolytic oil, char and gases. Scrap tire were being heated in 

inert atmosphere at temperature between 400 and 600 °C to produce liquid fuel. In this 

study, a modified conventional microwave and equipped with a custom made quartz 

reactor was used in pyrolysis process of scrap tire. Microwave pyrolysis process were 

performed with and without activated carbon as microwave absorbent. The effect of 

heating temperature and activated carbon on pyrolysis yield were studied. Pyrolytic oil 

was characterized for calorific value, composition and compound functional group. 

Temperature of 500 °C was the optimum temperature for the highest yield of pyrolytic 

oil at 54.39 wt% was obtained at the run of experiment with activate carbon as 

microwave absorbent. The obtained tire pyrolytic oil possessed high calorific value in 

range of 42.09 -  43.07 MJ/kg. The benefit of this thermal treatment was conversion of 

waste material into high calorific pyrolytic oil, which could be burnt directly in an 

unmodified diesel engine. Moreover, tire pyrolytic oil was blended with petroleum 

diesel and biodiesel at different ratio for performance and exhaust emission study. 

Engine performance such as engine torque, engine brake power, brake specific fuel 

consumption and brake thermal efficiency were examined with different blend ratio of 

fuel. Results showed neat pyrolytic oil showed an average of 7.93% lower torque and 

emission of carbon monoxide (CO), hydrocarbon (HC), nitrogen oxides (NOX) and 

sulphur dioxide (SO2), at an average of 207.4 %, 201.7 %, 42.5 % and 580.7 % higher, 

respectively than that of petroleum diesel fuel. At an optimum temperature of 500 °C 

the consumed electrical energy required to produce per unit mass of tire pyrolytic oil 

was 2.698 kWh/kg.
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ABSTRAK

Pirolisis tayar buangan dengan gelombang mikro membolehkan pemulihan 

tenaga dan bahan berguna, seperti minyak pirolisis, arang karbon dan gas. Tayar 

buangan telah dipanaskan dalam suasana lengai pada suhu dari 400 sehingga 600 °C 

untuk menghasilkan bahan api cecair. Dalam kajian ini, ketuhar gelombang mikro 

konvensional yang diubahsuai dan dilengkapi dengan reaktor kuarza telah digunakan 

dalam proses pirolisis tayar buangan. Proses pirolisis gelombang mikro telah 

dilakukan dengan dan tanpa karbon diaktifkan sebagai penyerap gelombang mikro. 

Kesan suhu pemanasan dan karbon diaktifkan pada hasil pirolisis telah dikaji. Minyak 

pyrolytic dicirikan untuk nilai kalori, komposisi dan kumpulan berfungsi kompaun. 

Suhu 500 °C adalah suhu optimum dengan penghasilan minyak pirolisis tertinggi 

sebanyak 54.39 wt% telah diperolehi pada eksperimen dengan karbon mengaktifkan 

sebagai penyerap gelombang mikro. Minyak tayar pirolisis diperolehi memiliki nilai 

kalori yang tinggi dalam lingkungan 42.09 - 43.07 MJ/kg. Proses rawatan haba ini 

bermanfaat kerana membolehkan penukaran bahan buangan ke dalam minyak pirolisis 

yang berkalori tinggi dan boleh dibakar secara langsung dalam enjin diesel tanpa 

diubahsuai. Selain itu, minyak tayar pyrolisis telah dicampur dengan diesel dan 

biodiesel pada nisbah yang berbeza untuk kajian prestasi dan ekzos pelepasan. Prestasi 

enjin seperti daya kilas enjin, kuasa enjin brek, kecekapan penggunaan bahan api dan 

kecekapan enjin yang telah diperiksa dengan nisbah campuran bahan api yang berbeza. 

Hasil kajian menunjukkan minyak pirolisis tulen menunjukkan purata daya kilas 7.93 

% lebih rendah berbanding dengan diesel. Manakala, pelepasan karbon monoksida 

(CO), hidrokarbon (HC), nitrogen oksida (NOx) dan sulfur dioksida (SO2), lebih tinggi 

pada purata 207.4 %, 201.7 %, 42.5 % dan 580.7 %, masing-masing berbanding 

dengan bahan api diesel. Pada suhu optimum 500 °C, tenaga elektrik yang diperlukan 

untuk menghasilkan seunit jisim minyak pirolisis tayar adalah 2.698 kWh/kg.
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CH APTER 1

INTRODUCTION

1.1 Introduction

In order to combat petroleum depletion, the use of renewable energies play a 

mightily important role. As we know the consumption of energy resources are growing 

gradually and getting demanding day by day. So, both the environmental conservation 

subjects including the finding alternative sources of energy for the continuously 

depletion of petroleum reserves and the environmental issue relating to the disposal of 

solid wastes take part in among important research subject that researchers studied 

densely on. Furthermore, negative impact of waste rubber tires disposal is getting 

critical as the growth of automotive industries in recent decades. Regrettably, about 65

-  70 % of these scrap tires are disposed legally or illegally landfills, or are exposed to 

open air. In fact, both cases cause severe environmental pollutions, threatening 

situations, and high loss of added value materials (Boxiong et al., 2007b; Galvagno et 

al., 2002). In sustainable environment, management of waste rubber tires is one of the 

most important issues that should be controlled. Conservative estimation indicate that 

over one billion scrap tires are produced annually (RMA, November 2006).

It is crucial to develop a feasible and strategic investigation about practicable 

innovation together with long-term development in the management of waste rubber 

tires. Pyrolysis technology is one of the preeminent alternative renewable energy that 

provide the only source of renewable solid, liquid and gaseous fuels. Moreover, 

pyrolysis is a favorable ecofriendly alternative source of renewable energy in the 

context of contemporary energy scenario (Ward et al., 2014). From pyrolysis we can
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obtain multiple types of renewable fuels and particular attention is given on liquid state 

high calorific pyrolysis oil. This technology provide the best way mitigation of 

pollution including reducing greenhouse gases. Pyrolysis oil can be considered as a 

method of energy security which perform as an alternative of fossil fuels that are 

shortage in supply. Nowadays, the utilization of this renewable energy expanded 

around the world. It has high potential to be developed in populated growing regions 

especially South East Asia. Pyrolysis technology can be a good way to manage 

disposed scrap tires because it allows recovery of useful materials and energy. These 

refined materials can be used as source of chemicals or energy in industries.

Among variable types of pyrolysis process, microwave assisted pyrolysis 

shows a remarkable alternative to conventional heating because microwave can heat 

rapidly and directly on any microwave absorbing materials with significant reduction 

of reaction time (Andrea et al., 2011). Microwave assisted pyrolysis is extensively 

applied to treatment of various types of feedstocks. First, it is widely applied to 

biomass especially for the production of bio-oil (Abubakar et al., 2013; Salema et al., 

2011; Salema et al., 2012), or biochar (Salema et al., 2013). Microwave assisted 

pyrolysis is also applied in various treatment of polymeric waste, including 

polystyrene (PS) (Bartoli et al., 2015) and polyethylene terephthalate (PET) (Siddiqui 

et al., 2012). Gasoline-range hydrocarbons is produced by heating of polyethylene (PE) 

in the presence of catalyst (Zhang et al., 2015). In order to improve microwave heating 

efficiency, activated carbon with high surface area promoted a better microwave 

absorbent is to be used as catalyst to transfer heat energy to polymeric materials 

including tires (Ani and Nor, 2012). Microwave pyrolysis allows to regulate yields and 

properties of liquid and gas by using different microwave power (Undri et al., 2013). 

The production of microwave tire rubber pyrolytic oil and the use of its blend in 

internal combustion devices had received much attention.
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1.2 Background of Study

Pyrolysis is defined as thermochemical decomposition of materials at elevated 

temperatures in range of between 400 °C -  800 °C under the absence of oxygen to 

produce mainly liquid, solid and gaseous products. In these decades, pyrolysis of waste 

rubber tires with different method conventional heating were reported in literature. The 

awareness of renewable energy utilization and waste management are causing 

development of this technology because of several issues, which include global 

warming and controlling over dependence of society on fossil fuels. It is also well- 

known that the high consumption of fossil fuels by our society has driven to its 

depletion and to a negative consequences on the environment mainly due to the 

greenhouse gases and the emission of harmful pollutants like sulphur dioxide (SO2), 

nitrogen oxides (NOx) and particulates. Parallel to this, disposal of solid waste is 

increasing as the growth of human population around the world. From the data, world 

polymeric production in 2009 was 230 million tons, up to 54% of these materials are 

disposed as wastes (Sienkiewicz et al., 2012). In spite of the fact that majority of these 

waste materials are non-biodegradable, they are disposed as landfill because recycling 

is not economically attractive. Used automotive rubber tires is categorized in to this 

kind of solid waste and it is a burden that adds significant cost over disposal and in 

many cases acts as a barrier to improve resource efficiency.

Besides that, the shortage of intellectual knowledge in both economic and 

technical mechanisms in waste reprocessing also causes that scrap rubber tires are 

considered a severe pollution in terms of waste management. Scrap automotive rubber 

tires have significant higher value of calorific value than coal as well as remarkable 

amount of carbon black, it is a great benefit to find an alternative to take advantage of 

its high calorific value in order to produce alternative fuels, greenhouse gases 

reduction and pollution mitigation. In recent years, pyrolysis technology is receiving 

attention and interest to solve the scrap rubber tires disposal issues while allowing 

energy recovery.

Microwave assisted pyrolysis of scarp rubber tires with the purpose of 

producing renewable fuel for the usage as a substitution fuel in internal ignition
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engines can be seen as environmental friendly, hygienic and efficient way of scrap 

rubber tires management. Microwave assisted pyrolysis (Zabaniotou et al., 2003) is 

one of the most prospective technology in energy recovery process due to its 

competency of heating instantly and directly on any microwave absorbing material 

(Dominguez et al., 2007; Menendez et al., 2004). Scrap rubber tires contain carbon 

black up to 30wt% which is perfect microwave absorbent. Carbon black is capable to 

transform the microwave radiation into heat within seconds, high temperature of 1556 

K is reached in 120 s by using a power of 600 W (Tierney et al.). The product yield 

and the constitution of each fraction obtained in the tire pyrolysis primarily depend on 

the specific characteristics of the pyrolysis process applied (i.e. fluidized bed, jet bed 

reactor, vacuum pyrolysis reactor, fixed bed reactor, temperature and pressure) (Ucar 

et al., 2005b; U?ar et al., 2005; Unapumnuk et al., 2008) and less on types of tires, 

because the essential component of the tires are more or less the same 

("http://www.etra-eu.org/.").

In a previous study, a batch in term of ton of scrap rubber tires were pyrolysed 

to produce char, oil and gas (Williams et al., 1998). In conventional pyrolysis, scrap 

rubber tires is heated in fixed bed reactor (Williams et al., 2003). Generally the 

identifiable setup of non-microwave assisted pyrolysis consists of heating reactor, 

condensing unit and liquid collecting devices. It was reported in the literature 

(Laresgoiti et al., 2004), scrap rubber tire with sample sizes of 2 - 3 cm wide, 

representative of a whole car tire, have been heated under flow of nitrogen in a 3.5 dm3 

autoclave at 300, 400, 500, 600 and 700 °C. Meanwhile, at temperature above 500 °C 

there is no effect of temperature on gas and liquid product yields were about 17 and 

38%. Furthermore, catalysts have been applied in several studies for enhancing the 

product in term of quality and quantity during scrap rubber tire pyrolysis (Boxiong et 

al., 2007a; Boxiong and Chunfei, 2007b), respectively.

Despite that, previous studies provides limited amount of data over the state of 

are of microwave assisted pyrolysis of different types of materials. However, the 

research studies are mainly targeted on the experimental and apparatus set up but less 

studies are concentrated on the use of the product in internal combustion devices. 

Therefore, this research consists a thorough studies of the governing variables

http://www.etra-eu.org/
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influence on both yield and quality of the pyrolytic liquid products, including the effect 

of both use of activated carbon as catalyst and pyrolysis temperature. The aim is to 

provide essential studies to understand the microwave assisted pyrolysis process 

applied to scrap rubber tires, including the physicochemical properties of the products 

and their performance in internal combustion devices. In this studies, special attention 

is given on the scrap rubber tires management problem and the current alternative to 

reuses it. The literature review also includes information about pyrolysis technology 

and the properties of scrap rubber tires as feedstock for this process. Besides that, types 

of pyrolysis reactor and experimental condition for classifying the category of 

pyrolysis are also studied. In the literature, the governed experimental variables in the 

tire pyrolysis are including temperature, carrier gas flow rate, heating rate and volatiles 

residence time. However, temperature in microwave assisted pyrolysis plays an 

important roles in the pyrolysis yields. Special attention is given to the liquid yield in 

microwave assisted pyrolysis of scrap rubber tires, highlighting its properties as 

alternative fuel in compression ignition engines.

However, the efficiency of pyrolysis oil in internal combustion engines 

remains an issues makes it tough for this alternative energy to compete with 

conventional petroleum fuel. The utilization of internal combustion engines is the 

major contributors to the formation of greenhouse gases and pollutants. Emissions 

from internal combustion engines also causes negative impact on the environment due 

to their intrinsic toxicity, which release gases direct or indirect destroying the 

environment. Incomplete combustion in internal combustion engines releases a series 

of pollutants such as carbon monoxide, aldehydes, sulphur oxides, nitrogen oxides, 

polycyclic aromatic hydrocarbon, unburned hydrocarbon and heavy metals. In 

European countries, engine emissions such as hydrocarbon, carbon monoxide and 

nitrogen oxide are strictly regulated. In order to meet the European Emission Trading 

System (EU ETS) operational policies commencing from December 2007 and ending 

in December 2020, the Environment Agency has legislated more stringent controls 

regarding tolerable limits of exhaust gas emissions and diesel engine characteristics. 

Exhaust emission is highly affected by engine characteristics and fuel types.
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In order to mitigate environmental issues caused by pollution and shortage of 

fossil fuel so development of alternative fuel must be taken into consideration. 

Development of tires pyrolysis oil is absolutely necessary for reducing the dependence 

of society on diesel fuel and mitigating land pollution caused by tire disposal. The 

mass collection of scrap rubber tires for tires pyrolysis oil production as alternative 

fuel also reduces the exploitation of petroleum fuels for energy generation and cost 

reducing. Tires pyrolysis oil has similar calorific value compared with diesel, which 

makes it a high potential fuel alternative to fossil fuel, and can be used in blends with 

diesel fuels in different proportions or neat, in the unmodified compression ignition 

engines. In spite of the fact that tire pyrolysis oil brings numerous remarkable positive 

aspects, numerous disadvantages should be evaluated, i.e. capability of conventional 

diesel engine to run on various fuels, engine emissions, power efficiency and chemical 

content of tire pyrolysis oil. Besides that, some properties to be considered are 

elemental content, ash content, moisture content and viscosity. These properties are 

closely related to the chemical composition of the scrap rubber tires used. Previous 

studies shows various blends of tires pyrolysis oil in diesel fuel are utilized in 

conventional diesel engine (ilkili9 et al., 2011).

The studies shows when high blend of tire pyrolysis oil in diesel fuel is 

combusted in diesel engines, the engines shows downtrend in both efficiency and 

output performance due to the differences in physical properties between diesel fuel 

and tires pyrolysis oil. Meanwhile, emission test results of diesel engine also shows a 

significant difference along various proportion of blends between tires pyrolysis oil 

and diesel fuel. Basically, tires pyrolysis oil has slightly lower calorific value 

compared with diesel fuel. With the presence of elements such as heavy metal and 

Sulphur, these will affect the properties of tires pyrolysis oil, causing another issues 

on environmental pollution and tires pyrolysis oil’s feasibility in internal combustion 

devices. Presence of Sulphur also changes physical and chemical properties of fuel 

combustion in term of decreasing pH value leading to an increase in corrosiveness. 

However, the high cost of input energy to produce per unit volume of tires pyrolysis 

oil can make tires pyrolysis oil unfeasible to completely replacing petroleum fuel. In 

the literature, different studies have been performed on pyrolysis oil production by 

using various method including conventional pyrolyzer, fluidizer bed, fixed bed, rotary 

kiln, but not as much studies was performed in diesel engine performance and emission
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using tires pyrolysis oil made from microwave pyrolysis technology. Tires pyrolysis 

oil produced by microwave heating has high potential to be used in internal 

combustion devices and bringing environmental benefits. It is observable scrap tires 

pyrolysis will control solid waste and it does not consume food crops like production 

of biodiesel. The purpose of current study is to evaluate the feasibility of scrap tire 

pyrolysis oil production by using microwave technology with addition of coconut 

activated carbon as catalyst. The series of research studies conducted are 

characterization of feedstock and products, liquid yield efficiency analysis, gases 

emission and combustion performance of its blends in unmodified compression 

ignition engines. The studies were operated in laboratory scaled, in the following steps; 

firstly characterization of feedstock, secondly production of scrap rubber tires 

microwave pyrolysis oil with catalyst, then finally the engine performance and 

emission characteristics of Yanmar N70 diesel engine using different ratio of tires 

pyrolysis oil, diesel and biodiesel blends were evaluated.

The observable advantages of using scrap rubber tires pyrolysis oil in diesel engines 

are (Ilkili^ and Aydin, 2011):

i. Fully renewable and environmental protective by reducing solid waste disposal.

ii. In low blend with diesel can be utilized in compression ignition engine without 

any modification.

iii. The low volatility makes the pyrolysis oil easier for storage as conventional 

diesel.

iv. Non explosive due to high flash point makes the storage safe.

However, some of the disadvantage of utilizing scrap tires pyrolysis oil as fuel are 

(ilkilig and Aydin, 2011):

i. Relative higher viscosity, flashpoint and sulfur content compared to diesel fuel.

ii. Relative higher sulfur dioxide (SO2), carbon dioxide (CO), oxide of nitrogen 

(NOx), unburned hydrocarbon (HC) at emission compared to diesel fuel.

iii. Generate lower engine torque and power due to lower calorific value compared 

to diesel fuel.

iv. Scrap tires pyrolysis oil cannot completely replace diesel fuel.



8

1.3 Problem Statement

Polymeric materials are referred to synthetic or naturally occurring polymer. 

Polymers can be categorized according to their types of source. These included the 

scrap rubber tires which is produced from matrix of natural rubber and synthetic rubber, 

synthetic plastics which are made from fossil fuel and also naturally occurred polymer 

including biomass substances. Waste polymeric materials can be treated as a 

renewable energy sources, because these high energy content substances can be reused 

and process into pyrolysis oil. Scrap rubber tires can be considered as alternative 

renewable energy source. The remarkable calorific value of scrap rubber tires made 

this polymeric material a strong alternative to become an energy source. Occasionally, 

scrap rubber tires is used directly as solid fuel in heating of steam boiler to power the 

steam turbine. However, the unhandy situation of scrap rubber tires has made 

inconvenience in storage and reusing it as solid fuel. As result of that, most of waste 

rubber tires are usually abandoned or thrown. This issues rise an alarming situation in 

waste management.

Generally landfilling is the ordinary way to eliminate excess waste. However, 

awareness of environmental sustainability and establish of stringent laws have led to 

the reducing of landfill method. Besides that, open air combustion is another usual way 

of eliminating waste rubber tires. However, open air combustion releases toxic gases 

and brings severe negative effects to the environment. In order to mitigate problems 

as mentioned, effective countermeasure have to be implemented in order to improve 

the management of waste rubber tires. Retreatment of waste rubber tires might be one 

of the best alternative in solving the problem as rubber tires possess high calorific 

value. Thermal treatment such as microwave pyrolysis transforms the waste rubber 

tires into liquid fuel, solid char and gaseous products which possess higher market 

value. The product of pyrolysis such as tire pyrolytic oil can be utilized in extensive 

types of application as previous studies have confirmed that the rubber tires pyrolysis 

oil possess comparable calorific value to conventional diesel fuel. However, the 

incurred cost in producing the pyrolysis oil is higher than the cost used in producing 

the equivalent amount of fossil fuel. In short, microwave pyrolysis with the aid of 

activated carbon as catalyst might be a solution to improve the liquid yielding
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efficiency. In addition, more studies have to be done to investigate the efficiency of 

tire pyrolysis oil in term of chemical characteristics and it combustions in internal 

combustion devices.

1.4 Objective of Study

The following objectives of research studies were set in order to achieve the aim:

i. Evaluation of physical, chemical properties of scrap tire and microwave tire 

pyrolysis oil.

ii. Perform pyrolysis of scrap tire by using microwave heating.

iii. Evaluation of diesel engine performance and emissions using different blend of 

diesel and biodiesel with various proportions of tire pyrolysis oil.

1.5 Scope of Study

i. Producing tire pyrolytic oil from granular form tire pellet with size of 1- 5 

mm3

ii. Perform pyrolysis of automotive tires using conventional microwave

iii. Perform engine performance test of tire pyrolytic oil by using a single 

cylinder Yanmar diesel engine with displacement of 0.32L
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