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ABSTRACT 

 

 

 

 

 This research focuses on improving indoor localization using wireless network 

and artificial neural network (ANN). This involves strategic study on wireless signal 

behavior and propagation inside buildings, suitable propagation model to simulate 

indoor propagation and evaluations on different localization methods such as distance 

based, direction based, time based and signature based. It has been identified that 

indoor signal propagation impairments are severe, non-linear and custom to a specific 

indoor location. To accommodate these impairments, an ANN is proposed to provide 

a viable solution for indoor location prediction as it learns the location specific 

parameters during training, and then performs positioning based on the trained data, 

while being robust to severe and non-linear propagation effects. The versatility of 

ANN allows different setup and optimization possibilities to affect location prediction 

capabilities. This research identified the best feedforward backpropagation neural 

network configuration for the generated simulation data and introduced a new 

optimization method. Indoor-specific received signal strength data were developed 

with the Lee’s in-building model according to a custom indoor layout. Simulation 

work was done to test localization performance with different feedforward 

backpropagation neural network setups with the generated received signal strength 

data as input. A data preparation method that converts the received signal strength raw 

data into average, median, min and max values prior to be fed into the neural network 

process was carried out. The method managed to increase location prediction 

performance using feedforward neural network with two hidden layers trained with 

Bayesian Regularization algorithm producing root mean squared error of 0.0821m, 

which is 50% better in comparison to existing research work. Additional tests 

conducted with six different relevant scenarios verified the scheme for localization 

performance robustness. In conclusion, the research has improved the performance of 

indoor localization using wireless network and ANN. 
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ABSTRAK 

 

 

 

 

 Kajian ini memberi tumpuan kepada menambah baik penyetempatan lokasi 

tertutup menggunakan rangkaian isyarat tanpa wayar dan rangkaian neural tiruan 

(ANN). Ini merangkumi kajian tentang kelakuan isyarat tanpa wayar dan perambatan 

dalam bangunan, model perambatan yang sesuai untuk simulasi perambatan dalam 

kawasan tertutup dan penilaian ke atas kaedah penyetempatan berbeza seperti kaedah 

berdasarkan jarak, kaedah berdasarkan arah, kaedah berdasarkan masa dan kaedah 

berdasarkan corak. Telah dikenal pasti bahawa ketaksempurnaan perambatan isyarat 

di lokasi tertutup adalah teruk, tidak sekata dan unik untuk lokasi tertutup tertentu. 

Bagi mengatasi ketaksempurnaan ini, satu ANN dicadangkan untuk memberikan 

penyelesaian baik kepada penyetempatan lokasi tertutup kerana ianya dapat 

mempelajari maklumat khusus lokasi semasa latihan dan melakukan jangkaan lokasi 

tertutup berdasarkan data latihan, sambil kekal teguh kepada kesan perambatan teruk 

dan tidak sekata. Kepelbagaian ANN membolehkan persediaan berbeza dan 

kemungkinan pengoptimuman bagi mempengaruhi kemampuan ramalan lokasi. Oleh 

itu, kajian ini mengenal pasti konfigurasi rangkaian neural suap depan rambatan balik 

terbaik untuk data simulasi yang dibangunkan sambil memperkenalkan kaedah 

penambahbaikan yang baharu. Data kekuatan isyarat penerima khusus untuk lokasi 

tertutup telah dibangunkan menggunakan model dalam bangunan Lee berdasarkan 

susun atur lokasi tertutup unik. Simulasi dijalankan untuk menguji prestasi 

penyetempatan menggunakan rangkaian neural suap depan rambatan balik berbeza 

menggunakan data kekuatan isyarat yang telah dibangunkan sebagai input. Satu 

kaedah penyediaan data yang menukarkan data kekuatan isyarat yang diterima kepada 

nilai purata, nilai tengah, nilai minimum dan nilai maksimum sebelum dimasukkan ke 

dalam proses rangkaian neural telah dilaksanakan. Penggunaan kaedah ini berjaya 

meningkatkan prestasi jangkaan lokasi menggunakan rangkaian neural suap depan 

rambatan balik dengan dua lapisan tersembunyi yang dilatih dengan algoritma 

pengaturan Bayesian, menghasilkan ralat min punca kuasa dua pada 0.08210 meter, 

iaitu 50% lebih baik berbanding kajian terkini. Ujian-ujian tambahan yang dijalankan 

dengan enam senario berbeza membuktikan keteguhan prestasi jangkaan lokasi 

menggunakan kaedah yang diperkenalkan dalam kajian ini. Kesimpulannya, kajian ini 

berjaya menambah baik prestasi penyetempatan lokasi tertutup menggunakan 

rangkaian isyarat tanpa wayar dan ANN. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Indoor Localization 

 

 

Localization is a process of determining the position of devices within a 

specific area. It is also recognized as geolocation, radiolocation, parameter sensing or 

positioning [1]–[5]. Normally localization determines the coordinates of a target node 

in two or three dimensions, specifying the latitude and longitude of where the node is 

located. Localization leads to many pioneering application potentials which can be 

developed by utilizing this technology especially when the targeted device’s 

coordinates can be identified wirelessly or even better, involving capability to engage 

mobile or non-static devices. Consequently, over the past decades a lot of research 

work have been done due to the interest of improving current systems in terms of 

accuracy performance, computational cost, complexity and production cost [6]. While 

resolving and finding solutions for many issues, research work also contribute in 

identifying new problems and limitations. This therefore introduces opportunities for 

further research work to be done.  

 

 

In reference to Elliot D. Kaplan et. al [7], a popular method for localization 

would be through the implementation of the Global Navigation Satellite Systems 

(GNSS), which estimates the target node positions by calculating the transmitted data 

from multiple satellites to the receiver. The most well-known among currently 

available GNSSs is the Global Positioning System (GPS) which is managed by the 

United States government. Other options of GNSSs include the Global Navigation 
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Satellite System (GLONASS), Galileo, Chinese Navigation Satellite System (CNSS) 

named Compass/Beidou, Japanese Quasi-Zenith Satellite System (QZSS) and the 

Indian Regional Navigational Satellite System (IRNSS). In total more than 100 

satellites are involved to operate GNSSs around the globe. These satellites transmit 

their time and position data continuously while the receivers on the ground monitor 

and process these data with equations that estimate location via calculations involving 

measurements of deviation with the true time relative to the satellites position. In order 

to achieve acceptable coordinating performance, a minimum of 4 satellites must be in 

view of the receiver for sufficient data computation [8]. 

 

 

As a result, particular limitations are introduced upon urban areas where 

satellite signals are most likely to be blocked by the high density of buildings and 

infrastructures. Therefore, an alternative method is required to apply localization 

especially in indoor situations where GNSSs do not work [9]. Many researchers are 

going through the route of using Wireless Signal Networks to achieve this as it is 

already widely used inside buildings for telecommunication and data transmissions 

[1]. However, various errors on location prediction are occurring due to non-linear 

propagation effects, which are more severe in indoor areas and are sensitive to the 

performance of the localization system [10]. 

 

 

Having an accurate and reliable GPS like system indoors would open up 

towards many possibilities of useful applications [11]. For example, during an 

emergency situation in a busy hospital, where a patient must be attended as soon as 

possible, having a system that would know the positions of every doctor or medical 

officer and call the closest one available may contribute to having an efficient 

personnel management in complicated environments while increasing the chances of 

being a life saver. This may also apply similarly to other situations where people can 

be quickly allocated and assembled for immediate meetings in business, government, 

educational or law enforcement organizations. On the other hand, asset or equipment 

management can be improved through parameter fencing system where attached nodes 

can be monitored on real-time basis preventing misplacement and also making sure 

the security is optimized by applying triggering mechanisms when the asset or 

equipment is taken out from a certain set of parameters. Additionally, an indoor 
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navigation system would benefit users on finding desirable destinations more 

effectively and conveniently within a large building such as shopping malls, faculty 

buildings, stadiums or expo halls.  

 

 

 

 

1.2 Problem Statement and Research Motivation 

 

 

In order to understand the relationship between radio signal propagation and 

radio signal transmission distance, it is essential to know behavior of electromagnetic 

radiation relative to the space between the transmitter and receiver. According to 

David M. Pozar [12], research on the nature of electromagnetic radiation has started 

since the 18th century where James Clerk Maxwell developed his theory stating that 

radio waves move through free space at finite velocity with an order of magnitude 

similar to the of speed of light while involving instantaneous propagation effects which 

were not consistent with ‘action at a distance’ theories. Maxwell’s theory was then 

verified by Heinrich Hertz whom undertook controlled experiments to confirm that the 

electromagnetic behavior predictions by Maxwell were indeed true.  

 

 

Fundamental theories provide a basis of the understanding radio propagation 

with the assumption of radio signal transfer in free space or in a uniform dielectric 

medium. However, real live implementation requires further considerations as it 

involves contact with large variety of transfer medium which are different in 

properties, shapes, sizes and distribution. This results to radio signal impairments and 

distortion as it goes through the transmission process from the transmitter to the 

receiver. Subsequently, the impairments of radio signal transfer also contribute to error 

in location measurements based on radio propagation. The effects of radio propagation 

include reflection, diffraction, scattering and fading. 

 

 

Indoor localization introduces a very tough environment for signal 

propagation. The signal distortion and impairments are more severe inside buildings 

due to the existence of multiple objects of different materials affecting the transmission 

of signal between the transmitting antenna and the receiving antenna. Different surface 
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shapes and roughness, object sizes and composition and object location and 

distribution all lead to different propagation effects. Furthermore, the higher density 

of these objects indoors increases the complexity of signal propagation as non-line of 

sight (NLOS) situations are more likely. Indoor environments are very different at 

different locations. This means signal distortion and impairments are also different 

depending on the location. Therefore, in general, a parameter adaptive method of 

location estimation is necessary to solve non-linear propagation effects for indoor 

localization scheme. 

 

 

The main motivation of this research is the profound ability of artificial neural 

networks to classify non-linear problems for pattern recognition. Artificial neural 

network mimics the brain function of learning and solving problems based on the 

information learnt. This concept can be applied directly for indoor localization which 

needs an adaptive mechanism to estimate position based on the parameters of a certain 

location. The signal propagation will provide a specific pattern for each location and 

these data will be taught and trained into the artificial neural network. Then during the 

online phase, the neural network will predict the location based on the training data. 

There are many ways to configure the neural network plus there are numerous 

optimization possibilities within the application of neural network process. 

 

 

As severe indoor propagation causes non-linear and location specific signal 

patterns relative to the distance of signal transmission, this creates challenging input 

data for the neural network to process and utilize to predict the mobile node location. 

Therefore, there is a need of an effective optimization technique to allow the neural 

network to receive a more distinguishable pattern which would lead to better 

performance in mobile location prediction. 

 

 

 

 

1.3 Objectives of Research 

 

 

 The paramount objective of this research is to provide a valid location 

prediction solution for the problems occurring during indoor parameter sensing using 
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wireless networks, following the path of our research motivations, with the end goal 

of producing a better performance for indoor localization system by utilizing suitable 

artificial neural network processes. Specifically, the objectives of this research are 

stated in the list below: 

 

 

i. To investigate for a feedforward backpropagation neural network 

configuration suitable for indoor localization using the developed simulation 

data.  

ii. To optimize neural network based indoor localization with proposed data 

preparation strategy for improved location prediction accuracy. 

iii. To conduct comprehensive performance evaluation on the proposed method of 

indoor localization. 

 

 

 

 

1.4  Scope of research 

 

 

The research focuses on WSN localization for indoor parameter sensing. 

Centralized localization method is used where the computation takes place at the 

receivers which are interconnected while mobile nodes only act as transmitters. The 

study is based on 5.8GHz radio frequency suitable for short range femtocell 

applications. The basic triangulation technique is adopted where the received signal 

strengths (RSS) from three different receiver base station locations provide input 

parameters for the neural network to process and conduct location prediction 

accordingly. The primary simulation tool is the Matlab software. The neural network 

toolbox is utilized to process the obtained simulation data with different types of 

Artificial Neural Network algorithm configurations for location prediction. With 

exemption to the max epoch and max validation error, all training parameters are 

according to default values of the neural network toolbox. Data preparation provides 

strategic input pattern to the Artificial Neural Network. The prepared data is limited to 

100 values generated from 100 raw data. The research is based on static receivers and 

ignores the effect movements of the mobile transmitter nodes as indoor localization 

applications normally involve static or low velocity movements of the mobile 
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transmitter nodes. The received signal strength data is developed using the Lee’s in-

building model according to a custom indoor layout. The indoor layout design is 

limited to an empty building structure. 

 

 

 

 

1.5 Research Contributions 

 

 

 The research work done provide contributions by introducing methodologies 

which are compliant to improving indoor localization approach and application as 

listed below. 

 

 

i. The research provides an indoor specific development of simulation data by 

utilizing the Lee’s in-building model to provide received signal strength data 

in locations according to a custom indoor layout. In contrary to the log-normal 

shadowing model used by many research works related to indoor localization 

[13]–[17], the Lee’s in-building model takes into consideration of additional 

indoor-specific parameters including wall thickness, wall material, floor 

material, height of the transmitter and the receiver, Fresnel zone distance 

between the transmitter and receiver, LOS and NLOS properties of the signal 

path and the number of rooms within the signal path to model the received 

signal strength accordingly. Therefore, a more relevant simulation data is 

produced which better simulates severe radio signal propagation in indoor 

environments. 

ii. The research also proposes the application of a novel data preparation method 

on the RSS data to optimize location prediction with 2 hidden layer 

feedforward backpropagation neural network trained with Bayesian 

Regularization training algorithm. The proposed data preparation method 

involves manipulating the raw RSS data into min, max, median and average 

values which provide a more strategic input to be processed by the neural 

network for location prediction. This method is contrary to traditional filtering 

methods where portions of valuable RSS information is eliminated to create a 

desirable range of RSS data. The proposed data preparation method enables 
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respectable location prediction accuracy with RMSE of 0.08210m which better 

than the most recent related research work [18]. This research also provides 

comprehensive analysis on indoor localization with the proposed data 

preparation method by evaluating several different scenario applications.  

 

 

 

 

1.6  Thesis Organization 

 

 

This thesis is organized into 6 chapters respectively. The first chapter provides 

introductory insight into the research by laying out the fundamental background of the 

research topic, the problem statements, the research objectives, the scope which limits 

the research and the contributions yielded by the completion of the research. The 

second chapter provides elaborate discussion on the theories and previous research 

work related to the research topic. By conducting critical review of relevant literatures, 

the research problem is magnified which consequently reveals existing research gaps 

providing reference for the direction of research. The third chapter establishes the 

general blueprint of the research. This is where the methodology framework is 

presented in detail, presenting actions taken to achieve the objectives of the research. 

The fourth chapter provides analysis discussions on the indoor localization 

performance of different feedforward backpropagation neural network configurations, 

the effects of the data preparation method to location prediction and comparison 

analysis between the proposed data preparation method and the weighted mean filter 

method. The obtained results are analyzed to verify that the fulfillment of objectives 1 

and 2 of the research. Chapter 5 proceeds with location prediction performance 

evaluation analysis of the proposed method in different controlled scenarios to satisfy 

the third objective of the research. The last chapter synthesizes the overall research 

work into a complimentary conclusion and recommends future research works to 

further improve indoor location prediction. 
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