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ABSTRACT 

 

 

 

 

 In this study, one of the green surface modification techniques, steam treatment 

was employed to improve the surface characteristics and haemocompatibility of 

metallocene polyethylene (mPE). The mean contact angle of untreated mPE (87.4º) 

decreased sharply for steam exposed mPE (60.25º). The increased surface roughness 

was demonstrated by atomic force microscopy (AFM), scanning electron microscopy 

(SEM) and Hirox 3-D microscopy. The mean roughness (Ra) of control mPE (2.757 

nm) was increased to 8.753 nm by steam treatment, showed enhanced hydrophilicity. 

Fourier transform infrared spectroscopy (FTIR) analysis illustrated no chemical 

changes but the changes in absorbance intensity ensures the morphological changes in 

the treated samples. The blood compatibility studies were assessed by coagulation 

assays, haemolysis and platelet adhesion tests. The coagulation assays indicated a 

delay in clotting time on the steam exposed surface whereas haemolysis and platelet 

adhesion were significantly reduced. The green surface modification of mPE using 

steam enhanced its surface properties and haemocompatibility. The improved blood 

compatibility of mPE may help in efficient designing of haemocompatible 

biomaterials like cardiovascular implants. 
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ABSTRAK 

 

 

 

 

 Dalam kajian ini, salah satu teknik pengubahsuaian permukaan semula jadi 

iaitu rawatan wap telah digunakan untuk meningkatkan ciri-ciri permukaan dan 

keserasian darah metallocene polyethylene (mPE). Min sudut untuk stim tidak dirawat 

mPE (87.4º) menunjukkan penurunan mendadak selepas rawatan stim untuk mPE 

(60.25º). Peningkatan kekasaran pada permukaan ditunjukkan dengan kekerasan 

mikroskop atom (AFM), mikroskop imbasan elektron (SEM) dan Hirox 3-D 

mikroskop. Min kekasaran (Ra) kawalan MPE (2.757 nm) telah meningkat kepada 

8.753 nm oleh rawatan stim, menunjukkan hidrofilik dipertingkatkan. Fourier 

spektroskopi inframerah (FTIR) analisis menunjukkan tiada sebarang perubahan kimia 

tetapi perubahan keamatan kuantiti menunjukkan perubahan morfologi dalam sampel 

yang telah dirawat. Kajian keserasian darah dinilai menerusi ujian pembekuan,  

hemolisis dan ujian lekatan platelet. Masa pembekuan darah di permukaan stim 

ditangguhkan, hemolisis dan platelet melekat telah berkurang dengan ketara. 

Pengubahsuaian permukaan melalui kaedah semula jadi untuk mPE menggunakan 

rawatan stim telah meningkatkan ciri-ciri permukaan dan keserasian darah. Keserasian 

darah yang bertambah baik dengan mPE boleh membantu dalam mereka bentuk bahan 

keserasian darah seperti kardiovaskular implan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 General Introduction 

 

 

A biomaterial is any matter, or construct that interacts with the biological 

systems. Biomaterials possess biocompatibility which refers to the ability of a 

material to perform with an appropriate host response in a specific situation 

(Williams, 1999). Biomaterials can be derived either from nature or synthesized in 

the laboratory using a variety of chemical approaches utilizing metallic components, 

polymers, ceramics or composite materials. They are often used and/or adapted for a 

medical application, and thus comprise whole or part of a living structure or 

biomedical device which performs, augments, or replaces a natural function 

(Williams, 2009). 

 

 

 The recent report expresses the reality that by 2017, the estimated global 

market for biomaterials will be 88.4 billion US$ with a compound annual growth 

rate (CAGR) of 15% (Markets and Markets, 

http://www.marketsandmarkets.com/PressReleases/global-biomaterials.asp). 

Biomaterials broadly fall into the four main types, namely metals, ceramics, 

polymers and biological substances. The selection of a biomaterial depends on the 

surrounding environment where it will be implanted. The implanted material should 

not cause any adverse effects like allergies, inflammation and toxicity, either 

immediately after surgery or under post-operative conditions.  

 

 

http://www.marketsandmarkets.com/PressReleases/global-biomaterials.asp
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The surface modification of biomaterials is defined as the process of 

changing the surface properties of a biomaterial by altering its physical, chemical or 

biological properties different from the existing characteristics that found on the 

surface of a material. The surface modification techniques are classified into three 

major categories namely 1. Physico-chemical methods, 2. Mechanical methods and 

3. Biological methods, with each method having different divisions.  

 

 

 

 

 

Figure 1.1: An example for the application of biomaterials 

 

 

  Among all four types, the polymers have widespread application in the field 

of biomaterials because of its excellent physico-chemical properties. The total North 

American market volume of polymers in medical devices totaled 1,370.0 million 

pounds, corresponding to revenues in excess of $1 billion. By 2018, revenues are 
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expected to equal $1.45 billion, fuelled by a compound annual growth rate of 5.2 

percent (http://www.frost.com/prod/servlet/press-release.pag?docid=266870643).  

 

  

Table 1.1: Biomedical applications of polymers 

 

 

Parts of the body Polymers used 

Ear and ear parts acrylic, polyethylene, silicone, 

poly vinyl chloride (PVC) 

Denture acrylic, ultrahigh molecular 

weight polyethylene (UHMWPE), Polymethyl 

methacrylate 

Facial prostheses acrylic, silicone, nylon, 

Polyurethane, Polytetrafluoroethylene 

Tracheal tubes acrylic, silicone, nylon 

Vascular grafts Polytetrafluoroethylene, 

Polyethylene terephthalate. 

Breast implants Polydimethylsiloxane. 

Heart valves polyester, silicone, PVC 

Pacemaker polyethylene, acetal 

Lung , Kidney and liver parts polyester, polyaldehyde, PVC 

Oesophagus segments polyethylene, polypropylene (PP), PVC 

Blood vessels PVC, polyester 

Orthopaedic implants acrylic, nylon, silicone, PP, UHMWPE 

Hip and knee joint replacements Polyethylene, Polydimethylsiloxanes 

 

 

 New advancements in polymer technology to resolve this increasing demand of 

polymers in medical field inspired us to explore the existing metallocene 

polyethylene (mPE) that possess a variety of attractive performances like better 

tensile strength, elongation, toughness with excellent resistance to puncture, impact 

and bursting (Lipsitt, 1998). The excellent permeability to oxygen and excellent 

fence to ammonia and water makes metallocene polyethylene as a promising 

candidate for blood contacting devices and medical implants. 

http://www.frost.com/prod/servlet/press-release.pag?docid=266870643
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The foremost reason for the limitation of mPE in medical applications is the 

lacking of its blood compatibility (Mohandas et al., 2013) and so various surface 

modification techniques are being employed to improve the surface characteristics 

thereby enhancing the blood compatibility of metallocene polyethylene 

 

 

The green surface modification using steam is non-toxic, non-corrosive 

controlled oxidation technique to modify the surface characteristics providing better 

biocompatibility with improved surface properties. Further, it’s safer and eco-

friendly which makes steam treatment technology as an attractive choice over the 

other treatments in surface modification of biomaterials (Feldbauer, 2007). 

 

 

Steam treatment is interrelated with green chemistry, which does not involve 

in usage of any chemicals that encourages the design of products and its processes, 

thereby minimizing the use and production of hazardous substances or wastes. Since, 

steam is entirely pure it does not produce any harmful effect to the surface and also 

to the environment and no toxicity to human health (Lee et al., 2013). 

 

 

Generally, the surface modification of biomaterials can be performed 

especially for the biocompatibility enhancement, which is the most important feature 

while selecting a medical implant (Jaganathan et al., 2014b). For the first time, the 

mPE polymer was treated with steam, a gaseous state of water to enhance its blood 

compatibility. In this work, the surface characteristic changes along with blood 

compatibility of steam treated mPE were studied and documented. 

 

 

 

 

1.2 Problem Statement 

 

 

Blood compatibility is the  foremost consideration for the medical implants. 

Although mPE has excellent physico-chemical and mechanical properties it fails as a 

promising biomaterial because of its poor bio and blood compatibility. 

Biocompatibility is a vital factor which determines the quality of a biomaterial and 

its application in various arenas. It may be defined as the ability of the material to 
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perform at a specific region with the appropriate host reaction. The events occur 

when the blood comes in contact with the implant is collectively called as blood 

mediated reactions or blood compatibility.  

 

 

Whenever the blood comes in contact with the implants (biomaterial) it will 

lead to following complications: 

 

 

1. Blood component's interaction with surfaces resulting in protein and water 

absorption  

 

 

2. Blood cells interfere with the surface of biomaterial and may result in 

destruction of blood cells and these actions lead to the haemostasis and coagulation.  

 

 

 
 

 

Figure 1.2: Blood compatibility problems resolved through surface modification 

(John et al., 2015) 
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A promising biomaterial is one which does not elicit the above reactions. 

Hence, the biomaterials are subjected to surface modification to enhance its blood 

compatibility by eliminating the above mentioned complications  

 

 

 

 

1.3 Objectives 

 

 

1. To study the physico-chemical modifications of steam treated mPE and 

comparing it with the physico-chemical characteristics of untreated mPE. 

 

 

2. To investigate the changes in the blood compatibility of the steam treated 

mPE surface. 

 

 

 

 

1.4 Scope of the Research 

 

 

The first part of the research was focused on the surface characterization  of 

the metallocene polyethylene. The hydrophilicity of mPE was evaluated by means of 

contact angle measurements. The surface roughness were determined using scanning 

electron microscope (SEM), Hirox 3D microscopy and Atomic force microscopy 

(AFM). The chemical or functional group changes was investigated through 

Attenuated total reflectance fourier transform infrared spectroscopy (ATR-FTIR). 

The purpose of the surface characteristic study was to access the  hydrophilicity and 

surface changes of mPE modified by the steam treatment  

 

 

The second part of the study involved in blood compatibility studies of steam 

exposed metallocene polyethylene. The blood clotting time was estimated through 

Activated partial thromboplastin time (APTT) and Prothrombin time (PT). 

Haemolysis assay (HA) was performed to evaluate the destruction of red blood cells 

due to the implant material (mPE). The number of platelets adhered to the material 

surface was estimated by performing platelet adhesion test. The intention of this 

study is to evaluate the blood compatibility of steam exposed mPE. 
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Figure 1.3: Scope of the Research 

 

 

Lastly the steam induced metallocjuene polyethylene was studied in terms of 

both surface characteristics and blood compatibility studies. 

 

 

 

 

1.5 Significance of the Research 

 

 

This research provides a scope for the polymer implant manufacturers in 

producing the steam treated mPE implants possessing enhanced blood compatibility. 

Evaluating both the physico-chemical and blood compatibilty of the steam treated 

mPE helps in promoting the longevity of biomaterial implants.  
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Steam treatment is one of the green surface modification techniques that does 

not involve in usage or production of any chemicals or hazardous wastes. It is the 

most cost effective surface modification technique and also harmless method. 

Further, it’s safer and eco-friendly which makes steam treatment technology an 

attractive choice over the other treatments in surface modification for the blood 

compatibility enhancement. 
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