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ABSTRACT 

The developments of cheap and environmentally benign synthetic methods remain 

the challenges facing scientists. Kaolin is an abundant and non-toxic mineral over the 

expensive and toxic aluminium alkoxides or inorganic salts used in the synthesis of 

mesoporous gamma alumina for industrial application. In this study, a novel synthesis of 

mesoporous γ-Al2O3 from Kano kaolin in the presence of non-toxic surfactant, 

polyoxyethylene (40) stearate (PS), is reported. For comparison alumina is synthesized using 

PEG-6000. To explore the effect of surfactant mixing mode, PS was added to the boehmite 

precursor prior and after precipitation. Furthermore, the influence of varying PS 

concentration and aging time were also studied. The mesoporous γ-Al2O3 was modified with 

NaOH using the wet impregnation method, and tested for the methanolysis of corn oil by 

batch reaction process. The reaction conditions for the methanolysis are 5% catalyst, 67 
o
C 

temperature, 1:15 oil to methanol molar ratio and 3 hours reaction time. The kaolin, alumina 

and the catalysts were characterized using X-Ray Fluorescence (XRF), Thermogravimetric-

Derivative Thermal Analysis (TG-DTA), X-Ray Powder Diffraction (XRD), Fourier 

Transform Infrared (FTIR), N2 Adsorption-Desorption, Field Emission Scanning Electron 

Microscopy (FESEM), Solid State 
27

Al MAS NMR, Basic Back Titration and Temperature-

Programmed Desorption of CO2 (CO2-TPD). The product biodiesel was analyzed using 

Fourier Transform Infrared-Attenuated Total Reflection Analysis (FTIR-ATR), Nuclear 

Magnetic Resonance spectroscopy (
1
H NMR) and Gas Chromatography-Flame Ionization 

Detector (GC-FID). Structural properties and morphology of the mesoporous γ-Al2O3 was 

found to improve with increasing surfactant amount from 0.45 g to 1.8 g and aging time 

from 1 to 2 days then dropped beyond that. Mesoporous γ-Al2O3 synthesized with 1.8 g PS, 

mixed after precipitation and age for 2 days possessed a surface area (SA) of 222.7 m
2
/g, 

narrow pore size distribution (PSD) of 5.6 nm and pore volume (PV) of 0.45 cm
3
/g. Whereas 

higher SA of 319.2 m
2
/g, PSD of 2.7 nm and PV of 0.42 cm

3
/g were obtained with mixing 

prior to precipitation. Although, alumina synthesized with PEG has higher SA of 365.1 m
2
/g, 

nevertheless, the one with PS have better thermal stability. Response surface methodology 

(RSM) was applied for the optimization of methanolysis reaction using four-level factorial 

Box-Behnken Design (BBD). Up to 98.9% yield was obtained using mesoporous γ-Al2O3 

modified with 15% NaOH, 6% catalyst loading, 1:15 oil:methanol molar ratio and 2 hours 

reaction time. From kinetics study, the activation energy, 67.7 kJ mol
-1

, fall within the range 

26-82 kJ mol
-1

 indicating that the methanolysis was kinetically controlled. The high value of 

k, 0.03386 min
-1

, was attributed to the presence of high levels of unsaturated FFA in corn oil. 

While from the thermodynamics evaluation the positive values of enthalpy and Gibb’s free 

energy implied the methanolysis reaction is endothermic and non-spontaneous, whereas the 

negative entropy value suggested it is reversible. Result from catalyst reusability tests 

revealed that the catalyst is relatively stable. 



vi 

ABSTRAK 

Pembangunan kaedah sintetik yang murah dan mesra alam sekitar kekal sebagai 

cabaran yang dihadapi oleh saintis. Kaolin merupakan mineral yang amat banyak dan bukan 

toksik dibandingkan dengan alkoksida aluminium yang mahal dan toksik atau garam tak 

organik yang digunakan bagi mensintesis alumina gama mesoliang untuk kegunaan industri. 

Dalam kajian ini, sintesis novel γ-Al2O3 mesoliang dari Kano kaolin dengan kehadiran 

surfaktan tak toksik, polioksietilena (40) stearat (PS), adalah dilaporkan. Sebagai 

perbandingan, alumina telah disintesis menggunakan PEG-6000. Untuk meneroka kesan 

mod pencampuran surfaktan, PS telah ditambahkan kepada pelopor boehmit sebelum dan 

selepas pemendakan. Tambahan pula, pengaruh kepekatan PS yang berbeza-beza dan masa 

penuaan turut dikaji. γ-Al2O3 mesoliang diubahsuai dengan NaOH menggunakan kaedah 

pengisitepuan basah, dan diuji untuk metanolisis minyak jagung menggunakan proses tindak 

balas kelompok. Keadaan tindak balas metanolisis adalah 5% mangkin, suhu pada 67 
o
C, 

nisbah molar minyak kepada metanol 1:15 dan masa tindak balas selama 3 jam. Kaolin, 

alumina dan mangkin tersebut telah dicirikan menggunakan pendarfluor sinar-X (XRF), 

analisis terma pembezaan-termogravimetri (TG-DTA), pembelauan sinar-X serbuk (XRD), 

spektroskopi inframerah transformasi Fourier (FTIR), penjerapan-penyahjerapan N2, 

mikroskopi pengimbasan elektron pemancaran medan (FESEM), 
27

Al MAS NMR keadaan 

pepejal, pentitratan balik bes dan penyahjerapan CO2-suhu teraturcara (CO2-TPD). Produk 

biodiesel telah dianalisis menggunakan spektroskopi inframerah transformasi Fourier-

pantulan keseluruhan dikecilkan (FTIR-ATR), spektroskopi resonans magnet nukleus (
1
H 

NMR) dan kromatogafi gas-pengesan pengionan nyalaan (GC-FID). Sifat struktur dan 

morfologi γ-Al2O3 mesoliang didapati bertambah baik dengan peningkatan jumlah surfaktan 

dari 0.45 g kepada 1.8 g dan masa penuaan dari 1 kepada 2 hari kemudian menjunam selepas 

itu. γ-Al2O3 mesoliang yang disintesis dengan 1.8 g PS, dicampurkan selepas pemendakan 

dan penuaan selama 2 hari memiliki luas permukaan (SA) 222.7 m
2
/g, taburan saiz liang 

sempit (PSD) 5.6 nm dan isipadu liang (PV) 0.45 cm
3
/g. Manakala SA yang lebih tinggi iaitu 

319.2 m
2
/g, PSD 2.7 nm dan PV 0.42 cm

3
/g telah diperoleh dengan pencampuran sebelum 

pemendakan. Walaupun alumina yang disintesis dengan PEG mempunyai SA lebih tinggi 

iaitu 365.1 m
2
/g, namun bahan yang mengandungi PS didapati mempunyai kestabilan haba 

yang lebih baik. Kaedah gerak balas permukaan (RSM) telah digunakan untuk 

pengoptimuman tindak balas metanolisis menggunakan reka bentuk faktorial empat tahap 

Box-Behnken (BBD). Sehingga 98.9% penukaran telah diperoleh menggunakan γ-Al2O3 

mesoliang yang diubahsuai dengan 15% NaOH, 6% muatan mangkin, nisbah molar minyak: 

metanol 1:15 dan masa tindak balas 2 jam. Daripada kajian kinetik, tenaga pengaktifan 

adalah 67.7 kJ mol
-1

, termasuk dalam julat 26-82 kJ mol
-1

 yang menandakan bahawa 

metanolisis tersebut terkawal secara kinetik. Nilai k yang tinggi, 0.03386 min
-1

, adalah 

disebabkan oleh paras FFA tak tepu yang tinggi dalam minyak jagung. Sementara dari 

penilaian termodinamik, nilai positif entalpi dan tenaga bebas Gibb menunjukkan bahawa 

tindak balas metanolisis adalah endotermik dan tak spontan, sedangkan nilai entropi negatif 

mencadangkan ianya adalah berbalik. Keputusan daripada ujian kebolehgunaan semula 

mangkin mendedahkan bahawa mangkin tersebut relatifnya stabil. 
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CHAPTER 1 

1INTRODUCTION 

1.1 Background of the Research 

Clays are complex minerals composed of very small particles (< 2μm in 

diameter) derived from the weathering of silicate rocks by the action of water 

containing dissolved carbonic acid or other elements (Hornyak et al., 2008). Clays 

are compounds containing aluminium/magnesium silicates having 1:1 or 1:2 layer 

structures. They are thermally inert and environmentally friendly. Due to their high 

aspect ratio and ease of delamination they have many applications such as in 

processing of active components, binders, catalysts, as ion-exchangers for food 

processing, additives in detergents and thickening agents in oil drilling operation 

(Choudhury and Misra, 2011). 

Kaolin is a naturally occurring mineral of the clay family comprising largely 

of one of the kaolin group of minerals; halloysite, dictkite, nacrite and kaolinite. 

Kaolinite is however, the most common kaolin mineral with most versatile and wide 

industrial applications due to its physical and chemical properties, crystal structure, 

and surface chemistry (Fitos et al., 2015). Kaolinite is planar hydrous phyllosilicate 

clay with dioctahedral 1:1 (TO) interlayer structure. The 1:1 structure have structural 

dimension in the nanometer range with layer thickness of about 0.7 nm (Salahudeen 

et al., 2015b). Kaolin as a family of clay is an abundant and inexpensive mineral 

which makes it more economical, over the expensive aluminium alkoxides or 

inorganic salts, as a precursor for synthesizing mesoporous γ-Al2O3. Due to its 
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excellent properties that includes highly uniform channels, large surface area and 

narrow pore size distribution it has been extensively used as adsorbents, catalysts 

supports, ceramics, heat insulating materials, and reinforcements for composite 

materials (Pan et al., 2013a). 

The discovery of M41S type molecular sieves by Mobil Oil Corp. scientists 

in 1990s open the door for material science to the synthesis of silica and alumina 

based mesoporous materials. These materials, due to their large surface area (~1000 

m
2
/g) and narrow pore size distribution with long range ordering, have potentiality 

for various scientific and industrial applications. Some of these applications include; 

heterogeneous catalysis, separation process, host guest chemistry, adsorbents host for 

quantum structures, separation of large biological molecules and environmental 

pollution control (Naik and Ghosh, 2009).  

Alumina exist in various meta-stable states including the γ-, η-, σ-, θ-, κ- and 

χ-phase, as well as the stable α-Al2O3 phase. Due to its physical, textural, thermal, 

and chemical properties, mesoporous γ-Al2O3 is an important material used as 

catalyst substrates in automotive and petroleum industries, structural composites for 

space crafts, abrasive and thermal wear coatings. It is the most extensively used 

catalysts support due to its high surface area and relative stablity over the 

temperature range of interest for most catalytic processes. The pore structural 

properties of mesoporous γ-alumina, high surface area and large pore volume, allow 

for higher loading of active catalytic phases (Yang et al., 2010; Shi et al., 2016; Xu 

et al., 2016).  

Catalyst is capable of making reaction to occur under the mildest possible 

conditions which would otherwise be not feasible. Catalyst could be simple or 

complex, synthetic or natural chemicals. Recently synthetic chemists have developed 

interest on clays and zeolites derived from soil as one of the important family of 

catalysts (Nagendrappa, 2002).  
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Homogeneous catalysts comprising of strong acidic solutions such as 

hydrochloric acid and sulphuric acid as well as strong basic solutions such as sodium 

hydroxide, sodium methoxide and potassium hydroxide where traditionally used in 

the transesterification reaction (Stoytcheva and Montero, 2011). High energy 

consumption, corrosion and costly separation of homogeneous catalyst from the 

reaction mixture make the process uneconomical and unsafe. There is also the 

problem of the formation of soaps through neutralization of FFAs or saponification 

of triglycerides.  

Heterogeneous catalysts are developed in order to overcome the problem 

encountered with homogeneous catalysts. Heterogeneous catalyst can eliminate the 

corrosion problem and consequent environmental hazards posed by the homogeneous 

catalyst (Sivasamy et al., 2009). Solid heterogeneous catalysts have the advantage of 

reusability which makes continuous fixed-bed operation possible. Such continuous 

process can reduce costs for biodiesel separation and purification, which will make it 

cheaper as such can compete with commercial petroleum-based diesel fuel 

(Stoytcheva and Montero, 2011). Furthermore, heterogeneous catalyst can be 

designed to give high activity, selectivity and long catalyst life time (Xu and Liu, 

2011). 

Heterogeneous base catalysts have shorter history than their acids 

counterparts. They contained Brønsted and/or Lewis basic activity centers that can 

accept proton from or supply electrons to reactants. Solid base catalysts have higher 

activity, long catalyst life time (shelf life) and can perform under moderate reaction 

conditions compared with the solid acid catalysts. Thus base catalyzed 

transesterification reaction is about 4000 times faster than the acid catalyzed 

transesterification reaction (Kumar et al., 2012; Atadashi et al., 2013). 

Rudolf Diesel proposed vegetable oil as an engine fuel over 100 years ago, 

(Shay, 1993). However, due to high viscosity its utilization as fuel for diesel engines 

became unpracticable (Demirbas, 2008). Chemical or physical modifications 

including pyrolysis, micro-emulsification, dilution, and transesterification have been 

attempted to improve its properties. Transesterification is the most common method 
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used to lower the vegetable oils viscosity. The products are collectively called 

‘biodiesel’ because they can be used either neat or blended with the petro-diesel 

(petroleum diesel) (Lee, 2009). 

The developments of environmentally friendly synthetic methods that will not 

cause long-lasting damage to the environment or disturb the ecological balance are 

the challenges facing scientists (Nagendrappa, 2002). The greatest advantages of 

biodiesel are its renewable nature and environmentally benign characteristics. 

Biodegradability of biodiesel makes it possible to recycle the carbon dioxide 

emissions, and significantly reduce the emission of green-house gases. Furthermore 

biodiesel has advantage over traditional petroleum-based diesel fuel due to its higher 

cetane number, absence of aromatic compounds, very little amount of sulfur, and 10 

to 11 percent oxygen by weight. This makes the emission profile of biodiesel and 

biodiesel-diesel blends to be much cleaner with substantially lower sulfur emissions 

compared to petroleum-based diesel (Spivey and Dooley, 2011). Additionally, 

biodiesel blended with petro-diesel fuel in different proportions will have similar 

energy density and kinematic viscosity to the petro-diesel as such can be used direct 

in the existing engines without extensive modifications. Due to all these benefits, the 

development of biodiesel worldwide is rapidly growing annually (Ong et al., 2013). 

Polyoxyethylene (40) stearate is a non-ionic surfactant and is considered not 

hazardous according to OSHA Hazard Communication Standard (HCS) under the 

toxic and hazardous substances (29 CFR 1910.1200), this gives it advantage over 

cationic and anionic surfactants that are both toxic. It is used as emulsifier and 

solubilizer, and due to its non-toxic nature is also used in pharmacy as carrier of solid 

dispersion to improve the dissolution of griseofulvin and as excipient (Zhu et al., 

2009a). For the first time the effect of this surfactant is reported on the synthesis of 

mesoporous gamma alumina in the present research.  

Polyethylene glycol 6000 PEG-6000 is used as an inactive ingredient in the 

pharmaceutical industry as a solvent, plasticizer, surfactant, ointments and 

suppository base, as well as tablet and capsule lubricant. PEG-6000 has low toxicity 

with systemic absorption less than 0.5%. Polyethylene glycol families are widely 



5 

used surfactants for the synthesis of mesoporous alumina. Many reports were 

available on the synthesis of mesoporous alumina using PEG families (Sun et al., 

2008a; b; Zhu et al., 2009b; c, 2010; Shi et al., 2014). For this reason PEG-6000 will 

be used as surfactant in this study to serve as standard for comparison with the novel 

synthesis using polyoxyethylene (40) stearate. 

Nigerian kaolin is reported to have been restricted for the manufacture of 

bricks, paints, refractories and ceramics, and sold locally or exported to the 

neighbouring countries, even though it could have promising applications in several 

clay-based industries, based on its physical and chemical properties (Ekosse, 2010). 

The uses of kaolin depend on several factors including but not limited to the 

geological conditions under which the kaolin is formed, the total mineralogical 

compositions of the kaolin deposits, and its physical and chemical properties 

(Murray, 2006). Although there are reports on the synthesis of mesoporous alumina 

from different kaolin, there is none using Kano kaolin. Impact detailed study, 

characterization and analysis of this kaolin are still limited, hence, the need to 

evaluate its potentiality for the synthesis alumina.  

1.2 Statement of the Problem 

The reported common synthesis of mesoporous gamma alumina using 

aluminium alkoxide or inorganic salts as precursor is hazardous and uneconomical, 

as they are corrosive and expensive. In the present study, an enveronmentally 

friendly and inexpensive process utilizing abundant and non-toxic kaolin is reported. 

It is first of its kind utilizing Kano kaolin for the synthesis mesoporous γ-alumina. 

Since there is no report on the use of non-ionic polyoxyethylene (40) stearate (PS) 

surfactant on the synthesis of mesopotous gamma alumina, the effect of this 

surfactant on the mesoporous alumina synthesis is unknown. This study is the novel 

investigation of the effect of polyoxyethylene (40) stearate on the synthesis of 

mesoporous gamma alumina. The optimization of the synthesis procedure is explored 

by varaying surfactant mixing mode, surfactant concentration and aging time. 
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Furthermore, the possible mechanism of interaction between the PS surfactant and 

alumina precursor is also proposed.    

Sodium hydroxide is an excellent catalyst commonly used for 

transesterification reaction with very good biodiesel yield. But, NaOH suffered from 

many problems that includes high energy consumption, corrosion and costly 

separation of catalyst and glycerol associated with homogeneous catalysts. To 

overcome these problems studies were reported in the literature using alumina as 

catalyst support for NaOH (Kim et al., 2004; Arzamendi et al., 2007; Taufiq-Yap et 

al., 2011). However, all these catalysts used commercial alumina as support, as such 

little is known on the catalytic activities of mesoporous alumina in transesterification 

reaction. The development of mesoporous gamma alumina with large surface area, 

large pore volume, narrow pore size distribution and good thermal stability as 

catalyst support for NaOH is reported in this study. Additionally, the use of NaOH-

modified alumina in transesterification of corn oil has not been reported. Also, full 

evaluation of recyclability, kinetics and thermodynamics of this catalyst are not 

available in the literature.   

The growing increase in the environmental problems caused by excessive 

usage of fossil fuels, increased in the world energy demand and decreased in fossil 

fuel supply prompted the need for an alternative energy source (Veljkovic et al., 

2009). Renewable energy from biodiesel is one of the most promising substitutions 

of fossil fuel that help in reducing the emission of greenhouse gases. In the present 

study the use of corn oil, for biodiesel production, which is generally considered less 

expensive than other vegetables oil is reported. This will help in reducing the price of 

biodiesel. Additionally, utilizing corn oil for biodiesel production will not cause the 

problem of food versus fuel competition since the oil is extracted from the germ of 

the corn not the corn itself.          
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1.3 Objectives of the Research 

The objectives of this research are; 

i- To synthesize and optimize mesoporous γ-Al2O3 from Kano kaolin sample in 

the presence of polyoxyethylene (40) stearate surfactant and polyethylene 

glycol 6000 for comparison. 

ii- To modify the mesoporous γ- Al2O3 synthesized from polyoxyethylene (40) 

stearate using sodium hydroxide by wet impregnation method.  

iii- To carry out methanolysis of corn oil and optimization using the as-prepared 

and modified mesoporous γ-Al2O3.  

iv- To study the kinetics, thermodynamics and stability of the synthesized 

catalyst.  

1.4 Scopes of the Research 

The scope of this research covered the synthesis, characterization and 

evaluation of base modified mesoporous gamma alumina for use as stable catalyst in 

biodiesel production.  

The first stage of the research focus on the synthesis of mesoporous gamma 

alumina from Kano kaolin using novel polyoxyethylene 40 stearate (PS) as 

surfactant. For comparison another mesoporous γ-alumina was also be synthesized 

using polyethylene glycol 6000 (PEG-6000) since there are many literature reports 

on its application for mesoporous alumina synthesis. The effect of varying surfactant 

mixing mode, surfactant concentration as well as aging time was also explored. The 
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alumina precursor was leached out from the calcined kaolin using hydrochloric acid 

at 90 
o
C, then PS surfactant was added to the AlOOH precursor, followed by 

calcination to obtained the mesoporous gamma alumina. The synthesized 

mesoporous γ-Al2O3 was modified using sodium hydroxides by wet impregnation 

method. The instrumentation techniques for characterization of Kano kaolin, 

mesoporous γ-Al2O3 and catalyst include thermogravimetric-derivative thermal 

gravimetric (TG-DTG), X-Ray powder Diffraction (XRD), Fourier transform Infra-

red (FTIR), X-ray fluorescence (XRF), N2-adsorption desorption (BET), field 

emission scanning electron microscopy (FESEM-EDX), 
27

Al-MAS NMR, basic back 

titration and temperature-programmed desorption of CO2 (TPD-CO2).  

The second stage was the  application of the catalysts for the production of 

biodiesel through batch transesterification reaction of corn oil with methanol. The 

conditions for the transesterification are 5% catalyst loading, 1:15 oil to methanol 

molar ratio, 67 
o
C reaction temperature and 3 hours reaction time. The methanolysis 

reaction was also optimized using RSM by Box-Bahnken Design with the aid 

“Design Expert 7.1.6” statistical software. The design factors are NaOH doping (10-

20%), catalyst loading (3-6%), oil to methanol molar ratio (1:6-1:15) and reaction 

time (1-3 hours). Proton nuclear magnetic resonance (
1
H NMR), Fourier transform 

Infra-red (FTIR) and gas chromatoraphy-flame ionisation detector  (GC-FID) 

techniques were used in the analysis of the biodiesel products. Furthermore, the 

kinetics, thermodynamics and stability of the catalyst were also studied.  

1.5 Significance of the Research 

Alumina is the most frequently employed catalyst or catalytic support in the 

chemical industry. The improvement of alumina properties is significant for their 

catalytic applications. The use of polyoxyethylene (40) stearate (PS) in the synthesis 

of the alumina is expected to improve the properties of the alumina. Kaolin is a 

cheap source of aluminium and can serve as a good precursor for the synthesis of 

mesoporous alumina. Its utilization will reduce the cost of alumina production, and 
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also make the production environmentally benign as both the kaolin and surfactant 

are non-toxic. Since the synthesis of mesoporous alumina using PS is novel, PEG-

6000, a well established surfactant for mesoporous alumina synthesis will also be use 

for the sake of comparison. 

Biodiesel is an alternative source of energy that will help in reducing 

emission of greenhouse gases caused by the excessive usage of fossil fuels. The use 

of corn oil which is generally less expensive than other vegetables oil will help in 

reducing the price of biodiesel. In some African countries like Nigeria there is large 

production of corn, but utilization of germ of the corn for oil production is to a very 

small extent. Using corn oil for biodiesel production will serve as source of income 

generation at the same time reducing environmental problem.  

There are extensive reports in the literature on the kinetics and 

thermodynamics studies of transesterification reactions under different reaction 

conditions and methods. However, since each catalyst has its own unique properties 

there is a need for kinetics and thermodynamics study with introduction of new 

catalyst. The information derived from the study is expected to be different from the 

previous ones and will be useful for research development and commercialization. 

The kinetics study will enable the determination of the reaction rates and catalyst 

efficiency. Whereas, thermodynamics study will provides information on the energy 

requirements involved in the methanolysis process.    

1.6 Thesis Structure 

The thesis is divided into six Chapters based on the research background, 

literature review, experimental works, discussion of findings and conclusion. 
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Chapter 1 presents the general background of the research area, problem 

statement, objectives of the research, scope of the research, significance of the 

research and the thesis structure. 

 Chapter 2 presents a comprehensive review on the related literature survey in 

the area of the present research. 

Chapter 3 presents the methodology used for the alumina synthesis, catalysts 

preparation, methanolysis reaction, optimization, kinetics and thermodynamics 

analysis as well as characterizations. 

Chapter 4 presents the results and discussion on the characterization of Kano 

kaolin, mesoporous alumina synthesized using polyethylene (40) stearate and 

polyethylene glycol 6000 surfactant, as well as prepared catalysts. 

Chapter 5 presents the results and discussion on the application of catalysts 

obtained from the synthesized alumina in methanolysis of corn oil, optimization, 

kinetics and thermodynamics study, as well as catalyst recyclability and leaching 

test. 

Chapter 6 contains the conclusion and recommendations for further works in 

the research area. 
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