THERMAL BEHAVIOUR OF MIXED BLENDED ASHES AERATED CONCRETE

RAHMAH BINTI ZALANI

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Environmental Engineering

> School of Graduate Studies Universiti Teknologi Malaysia

> > SEPTEMBER 2015

To my beloved family and friends

ACKNOWLEDGEMENT

Thanks to Allah Almighty, who has given me the opportunity and will to perform this Master project. I find myself helpless to find the words to express the kindness and mercy of Almighty Allah, the most gracious, the most merciful, who is the ultimate source of all good to his creations.

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Prof Madya Dr. Mohd Fadhil Md Din, for his vital guidance, encouragement and support throughout the process of my studies and his great contribution to the completion of this report. Without his supervision, the report would not have been the same as presented here.

Next, I would like to thank Mr. Zaabar for their technical help in fabricating the experiment model and using the instrumentation. I appreciate the useful advices and technical assistance that given to me during the experimental period.

I would like to extend my appreciation to my coursemates and peers especially Mrs. Eedzyah Aminudin for sharing their insights and opinions on the project. Besides, I am very thankful to my family members for their continuous support and motivation. Lastly, I would like to convey my appreciation and acknowledgement to any individuals who had directly or indirectly contributed in making this project a success.

ABSTRACT

This research investigated the used of bottom ash and palm oil fuel ash (POFA) from Tanjung Bin Power Plant and Kahang Palm Oil Mill respectively as sand replacement to produce mixed blended ashes aerated concrete. The goal is to determine characterization and thermal behaviour of the product and to compare the best POFA ratio replacement with existing commercial products. POFA was used as sand replacement at 0%, 10%, 20% and 30% by weight with fixed amount of bottom ash. A small-scale wall structure models was developed to study thermal behaviour of product through conduction and convection mechanism heat transfer for seven sunny days at 24-hour. The result showed that thermal conductivity of P30% achieved 0.48 W/mK, 81% lower than conventional concrete. P30% gave the best insulation result among different POFA ratio replacement with 122 minutes in time lag. As for the comparison with commercial aerated concrete, P30% achieved fastest thermal absorption rate with an hour earlier to reach absorption peak and 50% more in thermal mass. This gave better indoor thermal comfort. P30% also exhibited fastest adiabatic state rate with two hour earlier compared to commercial aerated concrete. Good insulation property also gave better result in lessen Urban Heat Island effect at night. However, the stored heat inside the wall contributed towards hotter indoor temperature compared to commercial aerated concrete. Further study in building design alteration might help in mitigating this drawback such as providing better air circulation with cooling chimney and window.

ABSTRAK

Kajian ini menyiasat penggunaan abu bawah dan abu sisa bahan api minyak sawit (POFA) dari Tanjung Bin Power Plant dan Kahang Palm Oil Mill sebagai pengganti pasir untuk menghasilkan konkrit berudara berasaskan campuran abu. Matlamat kajian adalah untuk menentukan karakter dan sifat termal produk serta nisbah terbaik POFA berbanding produk komersial sedia ada. POFA digunakan sebagai pengganti pasir pada berat 0%, 10%, 20% dan 30% dengan jumlah abu bawah yang tetap. Model struktur dinding berskala kecil telah dibina untuk mengkaji sifat termal produk melalui mekanisma pemindahan haba konduksi dan perolakan selama 7 hari yang panas dalam tempoh 24 jam. Keputusan menunjukkan nilai konduktiviti termal P30% mencapai 0.48 W/mK, 81% kurang daripada nilai konduktiviti konkrit konvensional. P30% memberikan keputusan terbaik penebat bagi POFA berlainan nisbah penggantian dengan masa tangguhan selama 122 minit. Bagi perbandingan dengan konkrit berudara komersial, P30% mencapai kadar penyerapan termal terpantas dengan mencapai puncak penyerapan satu jam lebih awal dan 50% lebih banyak jisim termal. Ini memberikan keselesaan termal dalaman yang lebih baik. P30% juga mempamerkan kadar keadaan adiabatik terpantas dengan dua jam lebih awal berbanding konkrit berudara komersial. Sifat penebat haba yang bagus juga memberikan keputusan yang lebih baik dalam mengurangkan kesan Pulau Haba Bandar di waktu malam. Walau bagaimanapun, haba yang tersimpan di dalam dinding memberikan bacaan suhu dalaman yang lebih panas berbanding konkrit berudara komersial. Kajian lanjut melibatkan pengubahan reka bentuk bangunan mampu membantu dalam mengatasi kelemahan ini seperti menyediakan peredaran udara yang lebih baik melalui cerobong penyejuk dan tingkap.

TABLE OF CONTENTS

TITLE

CHAPTER

	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xiii
	LIST OF ABBREVIATIONS	xvi
	LIST OF SYMBOLS	xvii
1	INTRODUCTION	1
	1.1 Background of the Study	1
	1.2 Aim and Objectives of the Study	4
	1.3 Scope of the Study	5

1.3	Scope of the Study	5
1.4	Significance of the Study	6

2	LITERATURE REVIEW			7
	2.1	Urban Heat Islands	,	7

PAGE

2.2	Impac	ts of Urban Heat Islands	9
	2.2.1	Increased Energy Consumption	9
	2.2.2	Emissions of Air Pollutants and	
		Greenhouse Gases	9
	2.2.3	Compromised Human Health and Comfort	10
2.3	Therm	al Comfort in Building	10
2.4	Proper	rties of Building Materials	11
	2.4.1	Solar Reflectance	11
	2.4.2	Thermal Capacity	13
	2.4.3	Thermal Conductivity	14
2.5	Heat F	Flux Mechanism	15
	2.5.1	Heat of Convection	16
	2.5.2	Heat of Radiation	17
	2.5.3	Heat of Conduction	18
2.6	Relati	onship between Surface and Ambient Temperature	19
2.7	Previo	ous Research on Cooling Building Material	20

RES	EARCH METHODOLOGY	27
3.1	Introduction	27
3.2	Materials in Mixed Blended Ashes Aerated Concrete	29
	3.2.1 Palm Oil Fuel Ash (POFA)	29
	3.2.2 Bottom Ash	29
	3.2.3 Cement	30
	3.2.4 Hydrated Lime	30
	3.2.5 Superplasticizer	30
	3.2.6 Aluminium Powder	30
3.3	Optimum Mix Design of Mixed Blended Ashes Aerated	
	Concrete	31
3.4	Construction of Small-scale Simulated Models	32
3.5	Experimental Parameters	35
	3.5.1 Temperature	36
	3.5.2 Solar Radiation	36

3

	3.5.3 Relative Humidity	37
3.6.1	Equipments	37
	3.6.1 Data logger	37
	3.6.2 Thermal Graphic Measurement	38
	3.6.3 HOBO Data logger	39
3.7	Data Collection and Sampling Method	40

4	RESU	ULTS A	ND DISCUSSION	42
	4.1	Introd	uction to Physical Properties of Mixed Blended	
		Ashes	Aerated Concrete	42
		4.1.1	Relationship between Thermal Conductivity and	
			Density	42
		4.1.2	Relationship between Thermal Conductivity and	
			Percentage of POFA	44
		4.1.3	Water Absorption and Air Void Volume	45
	4.2	Conclu	usion for Physical Properties of Mixed Blended	
		Ashes	Aerated Concrete	46
	4.3	Introd	uction to Thermal Behavior of Mixed Blended	
		Ashes	Aerated Concrete	47
	4.4	Overv	iew of Monitored Data	48
	4.5	Therm	al Behaviour for Aerated Concrete with	
		Differ	ent Percentage of POFA	49
		4.5.1	Analysis of Surface Temperature Profiles:	
			Outdoor and Indoor Surface for Aerated Concrete	
			with Different Percentage of POFA	49
			4.5.1.1 Outdoor Surface Temperature	50
			4.5.1.2 Indoor Surface Temperature	53
		4.5.2	Analysis of Surface Temperature Difference, dT_s	57
		4.5.3	Effect of Time Lag, τ on Thermal Performance	59
		4.5.3.1	Analysis of Time Lag, t Profile	59
		4.5.4	Analysis of Heat Flux Mechanism	62
			4.5.4.1 Heat of Convection (Outdoor)	62
			4.5.4.2 Heat of Convection (Indoor)	65

	4.5.4.3 Heat of Conduction	68
	4.5.5 Thermographic Analysis	72
4.6	Conclusion for Thermal Behaviour for	
	Aerated Concrete with Different Percentage	
	of POFA	77
4.7	Thermal Behavior for Optimum Mixed Blended	
	Ashes Aerated Concrete compared to	
	Commercial Products.	78
	4.7.1 Heat of Convection (outdoor)	79
	4.7.2 Heat of Conduction	83
	4.7.3 Heat of Convection (indoor)	89
4.8	Conclusion of Thermal Analysis for Optimum	
	Mixed Blended Ashes Aerated Concrete	
	compared to Commercial Products	95

5	CONCLUSION AND RECOMMENDATION		
	5.1	Conclusions	97
	5.2	Recommendations for Future Works	98

REFERENCES	100
Appendices I - II	104 - 107

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Thermal Conductivity and Compressive Strength of	
	Concrete with POFA as Sand Replacement	25
3.1	Mix Proportion of Mixed Blended Aerated Concrete	
	Element (Eurocode 6)	31
3.2	Mix Proportion of Mixed Blended Aerated Concrete	
	Element with addition of POFA (Eurocode 6)	32
3.3	Technical specifications of the thermal-infrared (TIR)	
	camera system	39
4.1	Thermal Conductivity and Density of Specimen.	43
4.2	Percentages of Water Absorption and Air Void Volume	46
4.3	Maximum Surface Temperature of Outdoor and Indoor	
	at Peak Point for Aerated Concrete with POFA as	
	Sand Replacement	60
4.4	Time lag, τ for Material with Different Percentage of	
	POFA	61
4.5	The Thermal Images in a Day at Different Time	
	Periods Of Mixed Blended Ashes Aerated	
	Concrete with POFA as Sand Replacement	74
4.6	Description of Convection Heat Flux between Outdoor	
	Surface Wall and Outdoor Area	81
4.7	Description of Conduction Heat Flux between Outdoor	
	Surface Wall and Indoor Surface Wall	86

91

Description of Convection Heat Flux between Indoor
Surface Wall and Indoor Area

LIST OF FIGURES

FIGURE	NO.
IJUUML	110.

TITLE

PAGE

2.1	Urban Heat Island Profile	8
2.2	Thermal Comfort Temperature	11
2.3	Solar Energy versus Wavelength Reaching Earth's	
	Surface	12
2.4	Various Urban Environment Albedos	13
2.5	Heat Transfer Processes Occurring in a Wall	15
2.6	Thermal conductivity of Concrete with Bottom Ash as	
	Sand and Cement Replacement	23
2.7	Compressive Strength of Concrete with Bottom Ash as	
	Sand and Cement Replacement	24
2.8	Porosity of Concrete with Bottom Ash as Sand and	
	Cement Replacement	24
2.9	Thermal Performance of Hollow Concrete and	
	Hollow Aerated Concrete	26
3.1	Framework of the Study	28
3.2	Setup of Small-scale Wall Structure Models for Aerated	
	Concrete with Different Percentage of POFA	33
3.3	Setup of Small-scale Wall Structure Models	34
3.4	Front View of Prototype Wall	34
3.5	Setup of Thermal Conductivity Testing	35
3.6	a) Dimension of concrete and b) top view thermal	
	conductivity testing.	35

3.7	Equipments: a) Data Logger b) Pyronometer	37
3.8	Thermal camera	38
3.9	HOBO Data Logger	39
3.10	Example of Material undergo Compressive Strength	
	Test	41
3.11	Hot Wire Thermal Conductivity Meter	41
4.1	Relationship between Thermal Conductivity and Density	43
4.2	Relationship between Thermal Conductivity and	
	Percentage of POFA	45
4.3	Representative Weather Data for 6 Days	48
4.4	Representative Weather Data for hottest day	
	(9 th November 2011)	49
4.5	Outdoor Surface Temperature of Aerated Concrete	
	Blocks with 0, 10, 20 and 30 Percents of POFA	51
4.6	Initial Phase of Outdoor Surface Temperature	52
4.7	Steady State Phase of Outdoor Surface Temperature	52
4.8	Final Phase of Outdoor Surface Temperature	53
4.9	Indoor Surface Temperature of Aerated Concrete Blocks	
	with 0, 10, 20 and 30 Percent of POFA	54
4.10	Initial Phase of Outdoor Surface Temperature	55
4.11	Steady Phase of Outdoor Surface Temperature	56
4.12	Final Phase of Outdoor Surface Temperature	56
4.13	Surface Temperature Difference for 0%, 10%, 20%	
	and 30% of POFA as Sand Replacement	58
4.14	Time lag, τ for Material with Different Percentage of	
	POFA	61
4.15	Convection Heat Flux between Outdoor Surface and	
	Ambient for Aerated Concrete with Different	
	Percentage of POFA as Sand Replacement	63
4.16	The Convection Heat Flux between Outdoor Surface	
	and Ambient (absorb)	64
4.17	Convection Heat Flux between Outdoor Surface and	
	Ambient (release)	65

4.18	Convection Heat Flux between Indoor Surface and	
	Ambient for Aerated Concrete with Different	
	Percentage of POFA as Sand Replacement	66
4.19	Convection Heat Flux between Indoor Surface and	
	Ambient (absorb)	67
4.20	Convection Heat Flux between Outdoor Surface and	
	Ambient (release)	68
4.21	Conduction Heat Flux for Aerated Concrete with	
	Different Percentage of POFA as Sand Replacement	69
4.22	Conduction Heat Flux (absorb)	70
4.23	Conductive Heat Flux (storage)	71
4.24	Conductive Heat Flux (release)	72
4.25	Convection Heat Flux between Outdoor Surface and	
	Ambient for Optimum and Commercial Products	80
4.26	Conduction Heat Flux (outdoor) for Optimum and	
	Commercial Products	85
4.27	Convection Heat Flux (indoor) for Optimum and	
	Commercial Products	90
4.28	Indoor Ambient Temperature for Optimum and	
	Commercial Products	95

LIST OF ABBREVIATIONS

UHI	-	Urban Heat Island
POFA	-	Palm Oil Fuel Ash
CB	-	Control Bottom Concrete
CS	-	Control Sand Aerated Concrete
Al	-	Aluminium
Ca(OH) ₂		Calcium Hydorxide
H_2O	-	Water
CaO	-	Calcium Oxide
Al_2O_2	-	Aluminium (II) Oxide
SiO ₂	-	Silica
Al_2O_3	-	Aluminium Oxide
Fe ₂ O ₃	-	Ferric Oxide
MgO	-	Magnesium Oxide
K ₂ O	-	Potassium Oxides
SO_3	-	Sulfur Trioxide
H_2	-	Hydorgen
P0%	-	Aerated Concrete with 0 percent of POFA
P10%	-	Aerated Concrete with 10 percent of POFA
P20%	-	Aerated Concrete with 20 percent of POFA
P30%	-	Aerated Concrete with 30 percent of POFA

LIST OF SYMBOLS

SYMBOL

QUANTITY

UNIT

έ	Emissivity		
σ	Stefan-Bolltzmann coefficient ($5.67 \times 10-8$)	$Wm^{-2}K^{-4}$	
$T_{\rm s}$	Surface Temperature	°C or K	
Ta	Ambient Temperature	°C or K	
$\mathbf{S}_{\mathbf{r}}$	Solar Radiation	Wm ⁻²	
RH	Relative Humidity	%	
Ε	Energy of Radiation	W/m^2	
Т	Temperature	°C or K	
Α	Area of the Surface Material	m^2	
$q_{ m rad}$	Heat of Radiation	W or J/s	
$q_{ m conv}$	Heat of Convection	W or J/s	
$q_{ m cond}$	Heat of Conduction	W or J/s	
$K_{ m conv}$	Convection Heat Transfer Coefficient	$W/m^2.K$	
$N_{ m GR}$	Grashof Number		
L	Length in Vertical Planes	m	
ρ	Density	kg/m ³	
8	Acceleration of Gravity (9.80665)	m/s ²	
β	Volumetric Coefficient of Expansion of Fluid	Κ	
$1/(T_{\rm ev}) = 1/(T + T)$			

 $1/(T_{\rm film}) = 1/(T_{\rm s}+T_{\rm a})$

ΔT	Positive Temperature Different between the	
	Wall and Bulk Fluid	°C or K
μ	Viscosity	kg/m.s
$N_{ m PR}$	Prandtl Number	
C_{p}	Heat Capacity	J/kg.K
k	Thermal Conductivity	W/m.K
x	Thickness	m
To	Outdoor Temperature	°C or K
Ti	Indoor Temperature	°C or K
T_{ao}	Outdoor Ambient Temperature	°C or K
T _{ai}	Indoor Ambient Temperature	°C or K
T_{so}	Outdoor Surface Wall Temperature	°C or K
T _{si}	Indoor Surface Wall Temperature	°C or K
dT_s	Surface Wall Temperature Difference	°C or K

CHAPTER I

INTRODUCTION

1.1 Background of the Study

Building energy efficiency is vital aspect in construction industry as it is related closely with the consumption of energy such as electricity, utilization of natural resource and effect towards climate change. It is undeniable that building con suming huge amount of energy, especially in terms of electricity and cooling utilities to ensure human comfort inside the building, as studied by Gershenfeld, et al. in 2010, where approximately 40% of primary energy is used for buildings in the United States, while more than 70% from this percentage is for electricity generation of buildings. Additionally, several studies on how to consume energy efficiently were made, and one of the focal point is the research on the building material itself.

The goal of research in building material is to find the suitable material that will consume less energy in order to meet the requirement of internal thermal comfort while at the same time avoiding global warming phenomenon such as Urban Heat Island (UHI). The building materials that cause distinctive heat transfer are crucial in mitigating towards controlling the UHI effect. The higher the specific heat, the more resistant the substance is to changes in temperature. Hence, materials with low specific heat will have more influence over the UHI. Heat transfer occurs through conduction, convection and radiation. As the molecules of the structures absorb the radiant energy, the temperature difference that take place will create a molecular motion, which results in the behavior of heat.

Urbanization transformation initiated by human being from agricultural-based rural area to man-made infrastructures without a doubt is the crucial factor behind the significant rise of temperature in urban areas. The impact of buildings materials is one of the main contributors of environment issues in cities related to heat, besides the heat caused by the adsorption of solar radiation by roads and other subsurface materials during daytime.

Urban climate is characterized as hotter, humid, pollution known as Urban Heat Island (UHI). Absorption, re-radiation of heat from surface of built environment, and emission of artificial heat through combustion is one of major effect of Urban Heat Island phenomenon. This elevated temperatures phenomenon associated to developed areas more compared to rural surroundings as high-density urban areas are compacted with excessive tall buildings that experience higher air temperature than its surrounding (heat island) due to the accumulated solar heat from inter-reflection and re-radiation from ground surfaces, building envelopes and wall surfaces (Santamouris, 2013). Building materials seems to escalate the impact towards this phenomenon. Hence, the building materials should be chosen based on human comfort temperature while considering material heat capacity.

Basically, heat transfer occurred in three ways, which are conduction, convection and radiation. The occurrence of heat transferred through wall also influenced by several thermal properties of building materials such as thermal conductivity, thermal resistance and thermal mass. During daytime, solar radiation drives heat through building envelopes while during night time, the stored heat inside the building is being released to environment. These discomfort condition towards people in the building due to thermal balance leads to widely utilization of air conditioner, hence, may rise cost of electricity caused by consumption of energy for cooling purpose and contribute towards carbon emission, which may increase the carbon footprint. Indirectly, this results in increases of peak electricity demand (Santamouris, et al., 2013).

The excess usage of cooling energy to maintain human comfort index leads to higher emissions of oxides group as well as carbon dioxide which is one of greenhouse gases that contribute in global warming. While, the production on an abundance of waste ashes generated from Coal Power Plant and Palm Oil Mill may create possibility of soil pollution due to its heavy metals content while dispose it into landfill. Therefore, instead of creating a waste, these ashes can be used as a new resource for building materials, in this case, as the main ingredients in multiple blended ashes aerated concrete. This prospect is not only can be seen as a resolve towards environmental benefit, but also as a means to mitigate issues regarding human comfort due to building material. By using recycled materials, it will create a better flow, low cost and environmental benefits (Mahlia, et al., 2010).

This study focused on aerated concrete, which is a building material that was considered to mitigate the effect of UHI due to its good thermal properties even without the aid of insulation. In general, aerated concrete consists of quartz-rich sand, hydrated lime, cement and aluminium powder. Aluminium powder was added to produce hydrogen gas when it reacts with calcium hydroxide. The hydrogen gas basically produced a stable air bubbles in slurry form. This production of air bubbles or air voids leads to higher porosity. Aerated concrete absorbed large amounts of radiant energy and slowly releases this thermal energy to the surroundings. It has such advantages as soil saving, energy saving, easy construction, and simple production process (Yang, et al., 2012). Mixed blended ashes aerated concrete is a lightweight concrete with low bulk density ranging of 400-900 kg/m³, having low thermal conductivity, low shrinkage and high heat resistance. The low density property give reduction of dead load, faster building rate and have a lower haulage cost.

In this study, the approach on material as wall non-load bearing application was identified through its thermal behavior. At the end of the project, it was found that, the developed material was not only good for reducing the heat flux from entering into the building, but it also can be used as the precast wall or panel wall, with lightweight features or as non load bearing construction material.

1.2 Aim and Objectives of the Study

The purpose of the project is to choose the best building wall material from selected materials based on its characteristics and thermal performance. Characterization of the material includes both engineering and thermal properties. This study of product development is expected to help in enhancing the features of environmental friendly framework, energy savings and future construction applications.

As a summary, the following objectives of the study were listed out to meet the aim of study:

- To determine characterization of material with different percentage of Palm Oil Fuel Ash (POFA)
- (ii) To investigate thermal behavior for materials with different percentage of POFA.
- (iii) To analyze thermal behavior of optimum percentage of POFA compared to existing commercial products.

1.3 Scope of the Study

The thermal study was carried out at outdoor environment that was suitable to measure the ambient and surface temperature as well as the humidity. Six set of concretes with difference in thermal and engineering propeties was set up in a smallscale prototype. These prototypes were placed on the parking lot at Universiti Teknologi Malaysia, Skudai. The difference in the surface temperature and heat flux was measured. As for the study of engineering and structure properties, several tests were performed at Structural and Material Laboratory, UTM as well as laboratory at Malaysian Palm Oil Board, Bangi.

The materials utilized in this study were listed as below:

- (i) Aerated concrete block with different percentage of POFA (0%, 10%, 20%, 30%) as sand replacement.
- (ii) Control sand concrete block.
- (iii) Commercial aerated concrete block.
- (iv) Red brick.

The measured parameters in this study were stated as below:

- (i) Thermal conductivity, k (W/mK).
- (ii) Heat flux, $q (W/m^2)$ (conductive and convective heat tranfers).
- (iii) Temperature, T (0 C).
- (iv) Thermal graphic.
- (v) Density, ρ (kg/m³).
- (vi) Percentage of air void (Porosity), %.
- (vii) Water absorption, %.

1.4 Significance of the Study

This study was expected to prove the effectiveness of multiple blended ash aerated concrete consists of abundance waste ashes as building material in reducing surface temperature in order to achieve thermal comfort while reducing urban heat island phenomenon. The details of several justification points of this study were as follow:

- (i) High heat storage capacity during the day prevents heat from transmitted inside building area while avoiding Urban Heat Island (UHI) phenomenon at night.
- Longer time lag contributing towards better wall insulation with low thermal conductivity.
- (iii) Reduction of load for massive structure since it is a lightweight concrete with less dense structure.

REFERENCES

- Abdul Awal, A. S., & Warid Hussin, M. (2011). Effect of Palm Oil Fuel Ash in Controlling Heat of Hydration of Concrete. *Procedia Engineering*, 14, 2650– 2657.
- Al-Jabri, K. S., Hago, A. W., Al-Nuaimi, A. S., & Al-Saidy, A. H. (2005). Concrete blocks for thermal insulation in hot climate. *Cement and Concrete Research*, 35, 1472-1479.
- Al-Khameis, M., Mahmoud, M., Ben-Nakhi, A., Mahmoud, A. M., & Ben-Nakhi, A. (2011). Couple heat transfer modes for calcultion of cooling load through hollow concrete building walls. *Journal of Building Performance Simulation*, 4(2), 125-140.
- Antar, M. A. (2010). Thermal radiation role in conjugate heat transfer across multiple-cavity building block. *Energy*, *35*, 3508-3516.
- Catalina, T., Virgone, J., & Kuznik, F. (2009). Evaluation of thermal comfort using combined CFD and experimentation study in a test room equipped with a cooling ceiling. *Building and Environment*, 44, 1740-1750.
- Chow, W. T., & Roth, M. (2006). Temporal dynamics of the urban heat island of Singapore. *International Journal of Climatology*, 26, 2243-2260.
- Christen, A., & Vogt, R. (2004). Energy and Radiation Balance of Central European City. *International Journal of Climatology*, 24(11), 1395-1421.
- Din, M. F., Lee, Y. Y., Ponraj, M., Ossen, D. R., Iwao, K., & Chelliapan, S. (2014). Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. *Journal of Thermal Biology*, 41, 6–15.
- Emmanuel, M. R. (2005). An Urban Approach to Climate-Sensitive Design. Strategies for the Tropics. *London, Spon Press.*

- Franco, A. (2007). An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. *Applied Thermal Engineering*, 27, 2495-2504.
- Gershenfeld, N., Samouhos, S., & Nordman, B. (2010). Intelligent infrastructure for energy efficiency. *Science*, *327*, 1086-1088.
- Goodman, S. J., & Samuelson, D. *Earth Science Office*. Retrived on May 29, 2013, from http://wwwghcc.msfc.nasa.gov/urban/urban_heat_island.html
- *Heat Island Group*. (Lawrence Berkeley National Laboratory) Retrived on May 29, 2013, from http://heatisland.lbl.gov/
- Kurama, H., Topcu, I. B., & Karakurt, C. (2009). Properties of the autoclaved aerated concrete produced from coal bottom ash. *Journal of Materials Processing Technology*, 209, 767-773.
- Lai, L. W., & Cheng, W. L. (2009). Air Quality Influenced by Urban Heat Island Coupled with Synoptic Weather Patterns. *Science of Total Environment*, 407, 2633-2724.
- Levinson, R., & Akbari, H. (2010). Potential benefits of cool roofs on commercial buildings: conserving energy, saving money, and reducing emission of greenhouse gases and air pollutants. *Energy Efficiency*, 3(1), 53-109.
- Lim, S. K., Tan, C. S., Lim, O. Y., & Lee, Y. L. (2013). Fresh and hardened properties of lightweight foamed concrete with palm oil fuel ash as filler. *Construction and Building Materials*, 46, 39-47.
- Mahlia, T. M., & Iqbal, A. (2010). Cost benefits analysis and emission reductions of optimum thickness and air gaps foe selected insulation materials for building walls in Maldives. *Energy*, 35, 2242-2250.
- Mahmoud, A. M., Ben-Nakhi, A., Ben-Nakhi, A., & Alajmi, R. (2012). Conjugate conduction convection and radiation heat transfer through hollow autoclaved aerated concrete blocks. *Journal of Building Performance Simulation*, 5(4), 248-262.
- Memon, R. A., Leung, D. Y., & Chunho, L. (2008). A review on the generation, determination and mitigation of Urban Heat Island. *Journal of Environmental Sciences*, 201(1), 120-128.
- Muthusamy, K. (2009). Properties of Palm Oil Palm Boiler Ash Fuel ash cement based aerated concrete. Universiti Teknologi Malaysia.

- Ocana, S. M., Guerrero, I. C., & Requena, I. G. (2004). Thermographic survey of two rural buildings in Spain. *Energy and Buildings*, *36*, 515-523.
- Ozel, M. (2014). Effect of insulation location on dynamic heat-transfer characteristics of building external walls and optimization of insulation thickness. *Energy and Buildings*, 72, 288–295.
- Prado, R. T., & Ferreira, F. L. (2005). Measurement of albedo and analysis of its influence the surface temperature of building roof materials. *Energy and Buildings*, 37, 295-300.
- Qi, R., Lu, L., & Yang, H. (2012). Investigation on air-conditioning load profile and energy consumption of desiccant cooling system for commercial buildings in Hong Kong. *Energy and Buildings*, 49, 509-518.
- Santamouris, M. (2013). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. *Renewable and Sustainable Energy Reviews*, 26, 224-240.
- Sata, V., Jaturapitakkul, C., & Kiattikomol, K. (2007). Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete. *Construction and Building Materials*, 21, 1589–1598.
- Schwarz, N., Sclink, U., Franck, U., & Großmann, K. (2012). Relationship of land surface and air temperatures and its implications forquantifying urban heat island indicators—An application for the city of Leipzig (Germany). *Ecological Indicators, 18*, 693–704.
- Shahmohamadi, P., Che-Ani, A. I., Ramly, A., Maulud, K. N., Tawil, N. M., & Abdullah, N. A. (2011). Review Article: The Impact of Anthropogenic heat on Formation of Urban Heat Island and Energy Consumption Balance. *Hindawi Publishing Corporation, Article ID: 497524.*
- Sun, Y., & Augenbroe, G. (2014). Urban heat island effect on energy application studies of office buildings. *Energy and Buildings*, 77, 171-179.
- Uemoto, K. L., Sato, N. M., & John, V. M. (2010). Estimating thermal performance of cool colored paints. *Energy and Buildings*, 42, 17-22.
- Ulgen, K. (2002). Experimental and theoretical investigation of effect wall's thermophysical properties on time lag and decrement factor. *Energy and Buildings*, *34*, 273-278.

- Wong, N. H., & Chen, Y. (2009). Tropical Urban Heat Islands: Climate, buildings and greenery. *Taylor & Francis Group*.
- Wongkeo, W., & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. *Materials Science and Engineering*, 527, 3676–3684.
- Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., & Chaipanich, A. (2012). Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. *Materials and Design*, 35, 434-439.
- Yu, B., Chen, Z., Shang, P., & Yang, J. (2008). Study on the influence of albedo on building heat environment in a year-round. *Energy and Buildings*, 40, 945– 951.