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ABSTRACT 

 

 

 

 

This research investigated the used of bottom ash and palm oil fuel ash 

(POFA) from Tanjung Bin Power Plant and Kahang Palm Oil Mill respectively as 

sand replacement to produce mixed blended ashes aerated concrete. The goal is to 

determine characterization and thermal behaviour of the product and to compare the 

best POFA ratio replacement with existing commercial products. POFA was used as 

sand replacement at 0%, 10%, 20% and 30% by weight with fixed amount of bottom 

ash. A small-scale wall structure models was developed to study thermal behaviour 

of product through conduction and convection mechanism heat transfer for seven 

sunny days at 24-hour. The result showed that thermal conductivity of P30% 

achieved 0.48 W/mK, 81% lower than conventional concrete. P30% gave the best 

insulation result among different POFA ratio replacement with 122 minutes in time 

lag. As for the comparison with commercial aerated concrete, P30% achieved fastest 

thermal absorption rate with an hour earlier to reach absorption peak and 50% more 

in thermal mass. This gave better indoor thermal comfort. P30% also exhibited 

fastest adiabatic state rate with two hour earlier compared to commercial aerated 

concrete. Good insulation property also gave better result in lessen Urban Heat Island 

effect at night. However, the stored heat inside the wall contributed towards hotter 

indoor temperature compared to commercial aerated concrete. Further study in 

building design alteration might help in mitigating this drawback such as providing 

better air circulation with cooling chimney and window. 
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ABSTRAK 

 

 

 

 

Kajian ini menyiasat penggunaan abu bawah dan abu sisa bahan api minyak 

sawit (POFA) dari Tanjung Bin Power Plant dan Kahang Palm Oil Mill sebagai 

pengganti pasir untuk menghasilkan konkrit berudara berasaskan campuran abu. 

Matlamat kajian adalah untuk menentukan karakter dan sifat termal produk serta 

nisbah terbaik POFA berbanding produk komersial sedia ada. POFA digunakan 

sebagai pengganti pasir pada berat 0%, 10%, 20% dan 30% dengan jumlah abu 

bawah yang tetap. Model struktur dinding berskala kecil telah dibina untuk mengkaji 

sifat termal produk melalui mekanisma pemindahan haba konduksi dan perolakan 

selama 7 hari yang panas dalam tempoh 24 jam. Keputusan menunjukkan nilai 

konduktiviti termal P30% mencapai 0.48 W/mK, 81% kurang daripada nilai 

konduktiviti konkrit konvensional. P30% memberikan keputusan terbaik penebat 

bagi POFA berlainan nisbah penggantian dengan masa tangguhan selama 122 minit. 

Bagi perbandingan dengan konkrit berudara komersial, P30% mencapai kadar 

penyerapan termal terpantas dengan mencapai puncak penyerapan satu jam lebih 

awal dan 50% lebih banyak jisim termal. Ini memberikan keselesaan termal dalaman 

yang lebih baik. P30% juga mempamerkan kadar keadaan adiabatik terpantas dengan 

dua jam lebih awal berbanding konkrit berudara komersial. Sifat penebat haba yang 

bagus juga memberikan keputusan yang lebih baik dalam mengurangkan kesan Pulau 

Haba Bandar di waktu malam. Walau bagaimanapun, haba yang tersimpan di dalam 

dinding memberikan bacaan suhu dalaman yang lebih panas berbanding konkrit 

berudara komersial. Kajian lanjut melibatkan pengubahan reka bentuk bangunan 

mampu membantu dalam mengatasi kelemahan ini seperti menyediakan peredaran 

udara yang lebih baik melalui cerobong penyejuk dan tingkap. 
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CHAPTER I 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Building energy efficiency is vital aspect in construction industry as it is 

related closely with the consumption of energy such as electricity, utilization of 

natural resource and effect towards climate change. It is undeniable that building con 

suming huge amount of energy, especially in terms of electricity and cooling utilities 

to ensure human comfort inside the building, as studied by Gershenfeld, et al. in 

2010, where approximately 40% of primary energy is used for buildings in the 

United States, while more than 70% from this percentage is for electricity generation 

of buildings. Additionally, several studies on how to consume energy efficiently 

were made, and one of the focal point is the research on the building material itself. 

 

 

The goal of research in building material is to find the suitable material that 

will consume less energy in order to meet the requirement of internal thermal 

comfort while at the same time avoiding global warming phenomenon such as Urban 

Heat Island (UHI). The building materials that cause distinctive heat transfer are 

crucial in mitigating towards controlling the UHI effect. The higher the specific heat, 

the more resistant the substance is to changes in temperature. Hence, materials with  
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low specific heat will have more influence over the UHI. Heat transfer occurs 

through conduction, convection and radiation. As the molecules of the structures 

absorb the radiant energy, the temperature difference that take place will create a 

molecular motion, which results in the behavior of heat. 

 

 

Urbanization transformation initiated by human being from agricultural-based 

rural area to man-made infrastructures without a doubt is the crucial factor behind the 

significant rise of temperature in urban areas. The impact of buildings materials is 

one of the main contributors of environment issues in cities related to heat, besides 

the heat caused by the adsorption of solar radiation by roads and other subsurface 

materials during daytime. 

 

 

Urban climate is characterized as hotter, humid, pollution known as Urban 

Heat Island (UHI). Absorption, re-radiation of heat from surface of built 

environment, and emission of artificial heat through combustion is one of major 

effect of Urban Heat Island phenomenon.  This elevated temperatures phenomenon 

associated to developed areas more compared to rural surroundings as high-density 

urban areas are compacted with excessive tall buildings that experience higher  air 

temperature than its surrounding (heat island) due to the accumulated solar heat from 

inter-reflection and re-radiation from ground surfaces, building envelopes and wall 

surfaces  (Santamouris, 2013). Building materials seems to escalate the impact 

towards this phenomenon. Hence, the building materials should be chosen based on 

human comfort temperature while considering material heat capacity. 

 

 

Basically, heat transfer occurred in three ways, which are conduction, 

convection and radiation. The occurrence of heat transferred through wall also 

influenced by several thermal properties of building materials such as thermal 

conductivity, thermal resistance and thermal mass. During daytime, solar radiation 

drives heat through building envelopes while during night time, the stored heat inside 

the building is being released to environment. These discomfort condition towards 

people in the building due to thermal balance leads to widely utilization of air 
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conditioner, hence, may rise cost of electricity caused by consumption of energy for 

cooling purpose and contribute towards carbon emission, which may increase the 

carbon footprint. Indirectly, this results in increases of peak electricity demand 

(Santamouris, et al., 2013). 

 

 

The excess usage of cooling energy to maintain human comfort index leads to 

higher emissions of oxides group as well as carbon dioxide which is one of 

greenhouse gases that contribute in global warming. While, the production on an 

abundance of waste ashes generated from Coal Power Plant and Palm Oil Mill may 

create possibility of soil pollution due to its heavy metals content while dispose it 

into landfill. Therefore, instead of creating a waste, these ashes can be used as a new 

resource for building materials, in this case, as the main ingredients in multiple 

blended ashes aerated concrete. This prospect is not only can be seen as a resolve 

towards environmental benefit, but also as a means to mitigate issues regarding 

human comfort due to building material. By using recycled materials, it will create a 

better flow, low cost and environmental benefits (Mahlia, et al., 2010). 

 

 

This study focused on aerated concrete, which is a building material that was 

considered to mitigate the effect of UHI due to its good thermal properties even 

without the aid of insulation. In general, aerated concrete consists of quartz-rich 

sand, hydrated lime, cement and aluminium powder. Aluminium powder was added 

to produce hydrogen gas when it reacts with calcium hydroxide. The hydrogen gas 

basically produced a stable air bubbles in slurry form. This production of air bubbles 

or air voids leads to higher porosity. Aerated concrete absorbed large amounts of 

radiant energy and slowly releases this thermal energy to the surroundings. It has 

such advantages as soil saving, energy saving, easy construction, and simple 

production process (Yang, et al., 2012). Mixed blended ashes aerated concrete is a 

lightweight concrete with low bulk density ranging of 400-900 kg/m
3
, having low 

thermal conductivity, low shrinkage and high heat resistance. The low density 

property give reduction of dead load, faster building rate and have a lower haulage 

cost. 

 



4 

 

In this study, the approach on material as wall non-load bearing application 

was identified through its thermal behavior. At the end of the project, it was found 

that, the developed material was not only good for reducing the heat flux from 

entering into the building, but it also can be used as the precast wall or panel wall, 

with lightweight features or as non load bearing construction material.  

 

 

 

 

1.2 Aim and Objectives of the Study 

  

 

The purpose of the project is to choose the best building wall material from 

selected materials based on its characteristics and thermal performance. 

Characterization of the material includes both engineering and thermal properties. 

This study of product development is expected to help in enhancing the features of 

environmental friendly framework, energy savings and future construction 

applications.  

 

 

As a summary, the following objectives of the study were listed out to meet 

the aim of study: 

 

 

(i) To determine characterization of material with different percentage of 

Palm Oil Fuel Ash (POFA)  

(ii) To investigate thermal behavior for materials with different 

percentage of POFA. 

(iii) To analyze thermal behavior of optimum percentage of POFA 

compared to existing commercial products. 

 

 



5 

 

1.3 Scope of the Study 

 

 

The thermal study was carried out at outdoor environment that was suitable to 

measure the ambient and surface temperature as well as the humidity. Six set of 

concretes with difference in thermal and engineering propeties was set up in a small-

scale prototype. These prototypes were placed on the parking lot at Universiti 

Teknologi Malaysia, Skudai. The difference in the surface temperature and heat flux 

was measured. As for the study of engineering and structure properties, several tests 

were performed at Structural and Material Laboratory, UTM as well as laboratory at 

Malaysian Palm Oil Board, Bangi.  

 

 

The materials utilized in this study were listed as below: 

 

 

(i) Aerated concrete block with different percentage of POFA (0%, 10%, 

20%, 30%) as sand replacement. 

(ii) Control sand concrete block. 

(iii) Commercial aerated concrete block. 

(iv) Red brick. 

 

 

The measured parameters in this study were stated as below: 

 

 

(i) Thermal conductivity, k (W/mK). 

(ii) Heat flux, q (W/m
2
) (conductive and convective heat tranfers). 

(iii) Temperature, T (
0
C). 

(iv) Thermal graphic. 

(v) Density, ρ (kg/m
3
). 

(vi) Percentage of air void (Porosity), %. 

(vii) Water absorption, %. 
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1.4 Significance of the Study 

 

 

This study was expected to prove the effectiveness of multiple blended ash 

aerated concrete consists of abundance waste ashes as building material in reducing 

surface temperature in order to achieve thermal comfort while reducing urban heat 

island phenomenon. The details of several justification points of this study were as 

follow: 

 

 

(i) High heat storage capacity during the day prevents heat from 

transmitted inside building area while avoiding Urban Heat Island 

(UHI) phenomenon at night. 

(ii) Longer time lag contributing towards better wall insulation with low 

thermal conductivity. 

(iii) Reduction of load for massive structure since it is a lightweight 

concrete with less dense structure. 
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