ENGINEERING PROPERTIES AND STRUCTURAL PERFOMANCE OF RUBBERIZED CONCRETE PAVING BLOCKS

LING TUNG CHAI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JULY 2008

Dedicated to God and to my beloved physical and spiritual family members.

ACKNOWLEDGEMENT

This study would not have been possible without the assistance and support of those who guided me in the course of my graduate work. First, I would like to thank God for His grace and mercy throughout this research. It is by His hands and wisdom in guiding me to finish my work within the study period.

Secondly, I would like to extend my thanks to my honorable supervisor, Prof. Ir. Dr. Hasanan Md. Nor for his support, encouragement, and academic guidance during the course of my study. I would like to specially thank his patience and tolerance towards me, in which he always trusts me that I am able to do it. His diligence, dedication and working attitude are good examples for me to follow. I would also like to express my sincere thanks to the Ministry of Science, Technology and Innovation (MOSTI), Malaysia under IRPA research grant no. 03-02-06-0129-EA0001

Thirdly, I would also like to thank and show my appreciation to all technicians from (1) Highway Laboratory and (2) Structural and Materials Engineering Laboratory at Faculty of Civil Engineering; (3) Material Engineering Laboratory and (4) Applied Mechanics and Materials Testing Laboratory at Faculty of Mechanical Engineering; and (5) Acoustic Laboratory at Faculty of Electrical Engineering. Technical help and valuable suggestion provided by Sunway Paving Solution Co. Ltd. (Senai Plant, Johor) is gratefully acknowledged. Last but not least, I am grateful to my physical and spiritual family members for their love, support and encouragement.

ABSTRACT

Waste tyres could be utilized as partial replacement in order to preserve natural resources such as sand and to prevent the environment from further damage due to improper disposal of the tyres. There also been considerable research and development in the use of high toughness recycled tyres in concrete mixture to improve some engineering properties. In response to these demands, series of investigations were conducted and divided into three major parts in this project. For Part I, the laboratory trials were conducted to study the correlation between rubberized concrete paving blocks (RCPB) mixtures at different percentages of crumb rubber, water-cement ratio and strength. The effects of crumb rubber size, cement content and dosage of styrene-butadiene rubber latex were also investigated. To promote a practical use and acceptance of using RCPB by potential end users, Part II was carried out to investigate the manufacturing processes and the feasibility of producing RCPB in a commercial plant setting. A total of 4,300 RCPB containing 10% (10-RCPB), 20% (20-RCPB) and 30% (30-RCPB) of rubber and control concrete paving blocks (CCPB) were produced and tested for voids, abrasion, sound absorption, skid resistance, scanning electron microscopy, and long-term strength development in compression, flexural and splitting-tensile. The effect of compressive strength under three curing conditions of RCPB was also assessed. A relationship for the strength development between compression, flexural and splitting-tensile was therefore established. In Part III of this study, Highway Accelerated Loading Instrument (HALI) was developed. The concept of HALI development, including design, fabrication, calibration and performance monitoring, is also presented. RCPB pavement was tested with HALI and subjected to 10,000 cycles of load repetition. Additional tests, including shear resistance, skid resistance, and impact resistance were also conducted in order to have a better understanding of the effects of RCPB on the pavement behaviour. Results obtained from threedimensional models showed CCPB tend to yield slightly better than other types of RCPB. Despite better skid resistance and interlocking force of CCPB, the other types of RCPB containing crumb rubber showed a great improvement in toughness. The plant manufactured RCPB can be categorized as high strength and low toughness (CCPB); high strength and moderate toughness (10-RCPB); low strength and high toughness (20-RCPB and 30-RCPB). Therefore, all types of RCPB can be introduced to various types of pavement according to the traffic volume and the application of the pavement.

ABSTRAK

Tayar buruk boleh digunakan sebagai gantian separa untuk mengurangkan penggunaan sumber semulajadi seperti pasir dan melindungi alam sekitar daripada pembuangan tayar yang tidak teratur. Terdapat juga pertimbangan dalam penyelidikan dan pembangunan bagi mencampurkan tayar buruk yang mempunyai kekerasan yang tinggi dalam konkrit bagi meningkatkan sifat kejuruteraan konkrit. Untuk memenuhi keperluan tersebut, beberapa ujian yang telah dilaksanakan dibahagikan kepada tiga bahagian utama dalam projek ini. Untuk Bahagian I, ujian makmal dijalankan untuk mengkaji hubungan di antara peratusan getah, nisbah airsimen dan kekuatan mampatan bagi turapan blok konkrit bergetah (RCPB). Kesan daripada saiz getah, kandungan simen dan dos susu getah stirena butadiene juga dikaji. Untuk mempromosikan kegunaan dan kebolehterimaan penggunaan RCPB oleh pengguna yang berpotensi, Bahagian II telah dijalankan untuk mengkaji pemprosesan dan pratikaliti bagi menghasilkan RCPB di kilang secara komersil. Sebanyak 4300 RCBP yang mengandungi 10% (10-RCPB), 20% (20-RCPB) dan 30% (30-RCPB) getah termasuk turapan blok konkrit kawalan (CCPB) telah dihasilkan dan diuji untuk lompang udara, lelasan, serapan bunyi, rintangan pengeliciran, mikroskopi elektron pengimbasan, perkembangan jangka panjang bagi kekuatan mampatan, lenturan, tegangan pecah. Kesan daripada tiga jenis keadaan pengawetan terhadap kekuatan mampatan RCPB juga diperhatikan. Hubungan untuk perkembangan di antara kekuatan mampatan, lenturan dan tegangan pecah ditentukan. Dalam Bahagian III bagi kajian ini, alat Highway Accelerated Loading Instrument (HALI) telah cipta. Konsep pembangunan HALI termasuk rekabentuk, pembuatan, kalibrasi dan pengujian perlaksanaan, juga dibentangkan. Turapan RCPB diuji dengan HALI dan dikenakan 10000 kali beban berulangan. Pengujian tambahan, termasuk rintangan ricih, rintangan pengelinciran dan rintangan hentaman juga dijalankan untuk menambahkan pengetahuan kesan-kesan RCPB terhadap kelakuan turapan. Secara keseluruhan, keputusan yang diperolehi daripada model tiga dimensi, menunjukkan CCPB lebih baik daripada RCPB. Meskipun CCPB mempunyai lebih baik rintangan pengelinciran dan kekuatan penguncian, RCPB yang mengadungi getah menujukkan penambahan ketahanlaksakan yang tinggi. Penghasilan RCPB di kilang boleh dikategorikan kepada kekuatan tinggi dan ketahanlasakan rendah (CCPB); kekuatan tinggi dan ketahanlasakan sederhana (10-RCPB): kekuatan rendah dan ketahanlasakan tinggi (20-RCPB dan 30-RCPB). Oleh yang demikian, semua jenis RCPB berpotensi untuk diaplikasikan dalam pelbagai jenis turapan jalan berdasarkan bilangan trafik dan kegunaan bagi turapan berkenanan.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	TIT	LE PAGE	i
	DEC	CLARATION PAGE	ii
	DEI	DICATION PAGE	iii
	ACI	KNOWLEDGEMENT	iv
	ABS	STRACT	V
	ABS	STRAK	vi
	TAF	BLE OF CONTENTS	vii
	LIS	T OF TABLES	XV
	LIS	T OF FIGURES	xvii
	LIS	T OF SYMBOLS	xxiv
	LIS	T OF APPENDICES	xxvii
1	INTI	RODUCTION	1
	1.1	Introduction	1
	1.2	Research Background	2
	1.3	Objectives	5
	1.4	Scope of Investigation	6
	1.5	Significance of the Research	8
2	LIT	ERATURE REVIEW	10
	2.1	Introduction	10
	2.2	Rubberized Concrete	11

	2.2.1	Rubber Aggregate	11
	2.2.2	Density	13
	2.2.3	Air Content	14
	2.2.4	Mechanical Strength	14
	2.2.5	Effect of Treatment and Surface Texture	
		of Rubber Aggregate	16
	2.2.6	Effect of Using Special Cements	18
	2.2.7	Toughness and Impact Resistance	18
	2.2.8	Sound Insulation	20
2.3	Specif	fication of CPB	21
	2.3.1	Materials Constituents of CPB	22
		2.3.1.1 Cement	22
		2.3.1.2 Aggregate	22
		2.3.1.3 Sand	23
		2.3.1.4 Water	23
		2.3.1.5 Superplasticizers	23
	2.3.2	Appearance	24
	2.3.3	Shape and Dimensions	24
2.4	Manu	facture of CPB	24
	2.4.1	Pressure Manufacture	26
	2.4.2	High Frequency Vibration Manufacture	27
2.5	The N	lature of Concrete Block Pavement	29
2.6	Advar	ntages and Limitations of Concrete Block	
	Paven	nent	30
	2.6.1	Manufacture of CPB Units	32
	2.6.2	Construction	32
	2.6.3	Operation	33
	2.6.4	Maintenance	33
2.7	Factor	rs Affecting the Structural Performance	
	of Cor	ncrete Block Pavement	34
	2.7.1	Shape and Size of the CPB	35
	2.7.2	Thickness of the CPB	36
	2.7.3	Laying Pattern	37
	2.7.4	Strength of the Individual CPB	39

	2.7.5	Bedding Sand	40
	2.7.6	Base	41
2.8	Туре	of Trafficking Test on Concrete Block	
	Paven	nent	41
	2.8.1	Static Loading Tests	42
	2.8.2	Actual Pavements Traffic Tests	46
	2.8.3	Accelerated Pavement Loading Tests	47
		2.8.3.1 Vehicles Design Loads	48
		2.8.3.2 Axle and Wheel Loads	48
		2.8.3.3 Tyre Pressures	50
		2.8.3.4 Accelerated Repetitions	50
	2.8.4	Existing Accelerated Pavement Loading	
		Test	51
		2.8.4.1 Dynamic Loading Test	51
		2.8.4.2 RUB-StraP	52
		2.8.4.3 Heavy Vehicle Simulator	54
		2.8.4.4 Newcastle University Rolling Load	
		Facility	55
		2.8.4.5 Accelerated Pavement Test Facility	56
		2.8.4.6 Model Mobile Load Simulator	57
RES	EARCH	I METHODOLOGY	59
3.1		luction	59
3.2	Labor	atory Investigation of CPB Incorporating	
	Crum	b Rubber and SBR Latex	61
	3.2.1	Materials	60
		3.2.1.1 Cement	60
		3.2.1.2 Sand	62
		3.2.1.3 Aggregate	63
		3.2.1.4 Water	64
		3.2.1.5 Superplasticizer	64
		3.2.1.6 Crumb rubber	64
		3.2.1.7 Polymer Depression	66

3

	3.2.2	Mix Proportioning	66
	3.2.3	RCPB Specimens Preparation	69
	3.2.4	Test Methods	72
		3.2.4.1 Density	72
		3.2.4.2 Compressive Strength	72
		3.2.4.3 Skid Resistance	74
3.3	Feasit	ility and Engineering Properties of Pilot	
	Plant	Manufactured RCPB	74
	3.3.1	Materials	74
	3.3.2	Mix Proportioning	75
	3.3.3	RCPB Making Process	76
		3.3.3.1 Samples Preparation by Manual-	
		Cast Technique	79
		3.3.3.2 Samples Preparation for Non-	
		Facing Layer 30-RCPB	79
	3.3.4	Fresh RCPB	80
	3.3.5	Curing of RCPB	81
	3.3.6	Finished Products and Packing	83
	3.3.7	Test Methods	85
		3.3.7.1 Density, Water Absorption and Voids	85
		3.3.7.2 Acoustic Properties	86
		3.3.7.3 Compression Strength	87
		3.3.7.4 Splitting Tensile Strength	88
		3.3.7.5 Flexural Strength	90
		3.3.7.6 Abrasion Resistance	91
		3.3.7.7 Skid Resistance	92
		3.3.7.8 Impact Resistance	93
3.4	Struct	ural Performance of RCPB Pavement	94
	3.4.1	Design of HALI	94
	3.4.2	Calibration of HALI	96
		3.4.2.1 Loading Applied to Wheel	97
		3.4.2.2 Speed of Mobile Carriage	99
		3.4.2.3 Tyre Pressure	99

3.4.3	HALI Performance Monitoring	99
	3.4.3.1 Construction of Test Pavement	100
	3.4.3.2 Procedures of Accelerated Trafficking	
	Test	101
	3.4.3.3 Rut Depth and Permanent Deformation	
	Measurement	103
	3.4.3.4 Joint Width Measurement	104
3.4.4	Structural Performance of RCPB Pavement	104
	3.4.4.1 Construction Procedures of RCPB	
	Pavement	105
	3.4.4.2 Rut Depth and Permanent Deformation	
	Measurement	106
	3.4.4.3 Pull-Out Test	107
	3.4.4.4 Skid Resistance Test	108
	3.4.4.5 Falling Weight Test	109

LAB	LABORATORY INVESTIGATION OF CPB			
INCO	ORPOR	ATING CRUMB RUBBER AND SBR LATEX	110	
4.1	Introd	uction	110	
4.2	Result	ts and Discussion	111	
	4.2.1	Density	111	
		4.2.1.1 Effect of Cement Content and W/C	111	
		4.2.1.2 Effect of Crumb Rubber Size	112	
		4.2.1.3 Effect of Crumb Rubber Content		
		and W/C	113	
		4.2.1.4 Effect of SBR Latex Dosage	114	
	4.2.2	Compressive Strength	115	
		4.2.2.1 Effect of Cement Content and W/C	115	
		4.2.2.2 Effect of Crumb Rubber Size	117	
		4.2.2.3 Effect of Crumb Rubber Content		
		and W/C	118	
		4.2.2.4 Effect of SBR Latex Dosage	125	
	INCO 4.1	INCORPOR 4.1 Introd 4.2 Result 4.2.1	 INCORPORATING CRUMB RUBBER AND SBR LATEX 4.1 Introduction 4.2 Results and Discussion 4.2.1 Density 4.2.1.1 Effect of Cement Content and W/C 4.2.1.2 Effect of Crumb Rubber Size 4.2.1.3 Effect of Crumb Rubber Content and W/C 4.2.1.4 Effect of SBR Latex Dosage 4.2.2 Compressive Strength 4.2.2.1 Effect of Cement Content and W/C 4.2.2.2 Effect of Crumb Rubber Size 4.2.3 Effect of Crumb Rubber Size 4.2.3 Effect of Crumb Rubber Content and W/C 	

	4.2.3	Skid Resistance	129
		4.2.3.1 Effect of Cement Content and W/C	129
		4.2.3.2 Effect of Crumb Rubber Size	130
		4.2.3.3 Effect of Crumb Rubber Content	
		and W/C	131
		4.2.3.4 Effect of SBR Latex Dosage	132
4.3	Summ	nary	133
FEA	SIBILI	FY AND ENGINEERING PROPERTIES OF	
PILO	OT PLA	NT MANUFACTURED RCPB	135
5.1	Introd	luction	135
5.2	Result	ts and Discussion of Pilot Plant Manufactured	
	RCPE	3	136
	5.2.1	Fresh RCPB	136
	5.2.2	Surface Colour	137
	5.2.3	Density, Water Absorption and Voids	138
	5.2.4	Acoustic Properties	140
	5.2.5	Compressive Strength	141
	5.2.6	Compressive Strength and Abrasion	
		Resistance Relationship	147
	5.2.7	Splitting Tensile Strength	150
	5.2.8	Flexural Strength	152
	5.2.9	Splitting Tension-Compression, Flexural-	
		Compression, and Flexural-Splitting	
		Tension Relationship	154
	5.2.10	Skid Resistance	157
	5.2.11	Impact Resistance	158
5.3	Result	ts and Discussion of Manual-Cast Technique	159
	5.3.1	Compressive Strength	159
	5.3.2	Flexural Strength	162
	5.3.3	Skid Resistance	165

5

5.4	Resul	ts and Discussion of Non-Facing Layer 30-RCPB	166
	5.4.1	Dry Density, Compressive and	
		Flexural Strengths	166
	5.4.2	Acoustic Properties	168
	5.4.3	Abrasion Resistance	169
	5.4.4	Skid Resistance	170
5.5	Summ	nary	171
STR	UCTUR	AL PERFORMANCE OF RUBBERIZED	
CON	CRETH	E PAVING BLOCK PAVEMENT	175
6.1	Introd	luction	175
6.2	Resul	ts and Discussion of HALI Monitoring	176
	6.2.1	Transverse Rutting Profiles	176
	6.2.2	Mean Rut Depth in the Wheel Path	180
	6.2.3	Longitudinal Rut Depth for	
		Various Load Repetitions	181
	6.2.4	Three-Dimensional View of	
		Deformed Pavement	182
	6.2.5	Joint Width	184
6.3	Resul	ts and Discussion of Structure Perfamnce of	
	RCPE	3	184
	6.3.1	Transverse Rutting Profiles	186
	6.3.2	Mean Rut Depth in the Wheel Path	187
	6.3.3	Longitudinal Rut Depth	188
	6.3.4	Three-Dimensional View of	
		Deformed RCPB Pavement	190
	6.3.5	Joint Width	193
	6.3.6	Shear Resistance	195
	6.3.7	Skid Resistance	197
	6.3.8	Impact Resistance	199
6.4	Summ	nary	200

6

xiii

7	CON	CLUSI	ON AND FUTURE DIRECTIONS	203
	7.1	Introd	uction	203
	7.2	Concl	usion	204
		7.2.1	Part I- Laboratory Investigation of CPB	
			Incorporating Crumb Rubber and SBR Latex	204
		7.2.2	Part II- Feasibility of Pilot Plant	
			Manufactured and Engineering Properties	
			of RCPB	205
		7.2.3	Part III- Structural Performance of RCPB	
			Pavement	208
	7.3	Recor	nmendations for Future Research	211
REFERENC	CES			213

APPENDICES A	A٠	– B
---------------------	----	-----

222-233

LIST OF TABLES

TABLE NO.

TITLE

PAGE

2.1	Comparison of concrete block pavement and	
	other pavement types (Shackel, 1994)	31
2.2	Factors affecting the performance of concrete	
	block pavements	35
2.3	Typical maximum single axle loads (Shackel, 1994)	48
2.4	Standard axle loads (Shackel, 1994)	49
3.1	Chemical constituents and physical properties	61
	of OPC (Narayanan, 2002)	
3.2	Sieve analysis of sand	63
3.3	Sieve analysis of aggregate	64
3.4	Mix proportioning for Series I	67
3.5	Mix proportioning for Series II	67
3.6	Mix proportioning for Series III	68
3.7	Mix proportioning for Series IV	69
3.8	Physical and mechanical properties of fine and	
	coarse sand	75
3.9	Physical and mechanical properties of aggregate	75
3.10	Mix proportioning per m ³ for Part II	76
4.1	Paired t-test for SBR latex-RCPB	129
5.1	Properties of fresh RCPB	136
5.2	Number of drops for causing damage on a set of RCPB	159
5.3	Summary results of plant and manual-cast RCPB	164
5.4	30-RCPB test specimens with and without facing layer	167

6.1	Mean joint width for various load repetitions	184
6.2	Number of drops for causing damage on a set of RCPB	199

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Concrete paving block	21
2.2	During and after fabrication of CPB specimens	
	(Poon and Chan, 2006)	26
2.3	CPB making process by Sukontasukkul and	
	Chaikaew (2006)	27
2.4	Tray of CPB moving out of compaction machine	
	in factory (Holt and Raivio, 2005)	28
2.5	Principal elements of a concrete block pavement	29
2.6	CPB shape type	37
2.7	Common laying pattern	38
2.8	Use of herringbone pattern	39
2.9	Test setup (Panda and Ghosh, 2002b)	43
2.10	Layout of CPB units in test panels	45
2.11	Schematic diagram of compression test rig	45
2.12	Typical distribution of truck axle loads	49
2.13	Laboratory setup showing the testing apparatus	
	and the CPB laid in the herringbone pattern	52
2.14	Schematic of the RUB-StraP (Koch, 1999)	53
2.15	Not full scale drawing of test bed with designation	
	of point of origin and dimensions	53
3.1	Research flow chart	60
3.2	Crumb rubber	65
3.3	Gradation of crumb rubber, sand and aggregate	65

3.4	Manual concrete mixing in galvanize steel pan	70
3.5	Manual compaction applied to each layer of	
	concrete mixtures	70
3.6	Excess materials were removed from a steel mould	71
3.7	Flattening block surface	71
3.8	Demoulding of RCPB specimens from a steel mould	71
3.9	Natural dry curing inside laboratory	71
3.10	Compressive strength test	73
3.11	Tested RCPB specimens	73
3.12	Skid resistance test equipment	74
3.13	RCPB making process control flowchart	77
3.14	Pan mixer	78
3.15	Block making machine	78
3.16	Collected concrete mixtures for manual-cast RCPB	79
3.17	30-RCPB with and without facing layer	80
3.18	RCPB height control	80
3.19	Some of the rejected RCPB	80
3.20	RCPB sampling	81
3.21	Dimensions measurement	81
3.22	Curing in chambers	82
3.23	A RCPB lowerator	82
3.24	Three curing conditions	83
3.25	Finished RCPB checking	84
3.26	Rejected RCPB	84
3.27	Making a 'cube' of RCPB	84
3.28	Strapped and packed RCPB	84
3.29	Submersion RCPB in water	86
3.30	Boiling RCPB in water	86
3.31	Test set up for measuring sound absorption	
	coefficient	87
3.32	Coring cylinder specimen from RCPB	87
3.33	Compression testing machine	88
3.34	Splitting tensile test	90
3.35	Flexural strength test	91

3.36	Test set up for abrasion resistance	92
3.37	Abrasion resistance tested samples	92
3.38	Falling weight test on (a) a fix steel plate	
	(b) on two steel roller	94
3.39	Highway Accelerated Loading Instrument	95
3.40	Load cell and data logger	97
3.41	Location of rut depth permanent deformation	
	measurement points	102
3.42	Measurement of pavement model deformation	
	using the dial gauges	103
3.43	Layout detail of RCPB pavement model	106
3.44	Pull-out test set up	108
4.1	Density of Series I CPB	112
4.2	Density of Series II RCPB	113
4.3	Density of Series III RCPB	114
4.4	Density of Series IV SBR-latex RCPB	115
4.5	Compressive strength of Series I CPB with 12%	
	cement content	116
4.6	Compressive strength of Series I CPB with 15%	
	cement content	117
4.7	Compressive strength of Series II RCPB with	
	different size of crumb rubber	118
4.8	Compressive strength of Series III RCPB at 0.45 W/C	119
4.9	Compressive strength of Series III RCPB at 0.50 W/C	119
4.10	Compressive strength of Series III RCPB at 0.55 W/C	120
4.11	Compressive strength of Series III RCPB at 28 days	121
4.12	BEI of fracture of specimen	122
4.13	SEI of fracture of specimen	122
4.14	Relationship of 7-day strength reduction factor	
	versus crumb rubber content in the mix	124
4.15	Relationship of 28-day strength reduction factor	
	versus crumb rubber content in the mix	125
4.16	Compressive strength of Series IV SBR latex-	
	RCPB with 0 % rubber content	126

4.17	Compressive strength of Series IV SBR latex-	
	RCPB with 10 % rubber content	126
4.18	Compressive strength of Series IV SBR latex-	
	RCPB with 20 % rubber content	127
4.19	Compressive strength of Series IV SBR latex-	
	RCPB with 30 % rubber content	127
4.20	SEM observation of rubber-latex interface	
	(A) Rubber particle; (B) Fiber (Mag=250×)	128
4.21	SEM observation of rubber-latex interface	
	(A) Rubber particle; (B) Fiber (Mag=1,000×)	128
4.22	Skid resistance of Series I CPB specimens	130
4.23	Skid resistance of Series II RCPB specimens	131
4.24	Skid resistance of Series III RCPB specimens	132
4.25	Skid resistance of Series IV SBR latex-RCPB	
	Specimens	133
5.1	Cracks on 30-RCPB (a) side view (b) plan view	137
5.2	Four mixes RCPB specimens	138
5.3	Relationship between crumb rubber content and	
	water absorption	139
5.4	Relationship between crumb rubber content and	
	density	140
5.5	Sound absorption coefficients of the RCPB	141
5.6	Development of CCPB compressive strength	
	under different curing condition	142
5.7	Development of 10-RCPB compressive strength	
	under different curing condition	143
5.8	Observation of undisturbed facture surface resulting	
	from compression test (a) 10-RCPB and (b) 30-RCPB	144
5.9	Development of 20-RCPB compressive strength	
	under different curing condition	145
5.10	Development of 30-RCPB compressive strength	
	under different curing condition	145
5.11	Compression tested samples for CCPB and RCPB	146

5.12	Relationship between abrasion index and	
	compressive strength of CCPB samples	147
5.13	Relationship between abrasion index and	
	compressive strength of 10-RCPB samples	148
5.14	Relationship between abrasion index and	
	compressive strength of 20-RCPB samples	149
5.15	Relationship between abrasion index and	
	compressive strength of 30-RCPB samples	149
5.16	Long-term splitting tensile strength development	150
5.17	Splitting tension tested samples for (a) CCPB and	
	(b) 30-RCPB	151
5.18	Long-term flexural strength development	152
5.19	Modulus of elasticity versus modulus of rupture	153
5.20	Flexural tested samples for (a) CCPB and	
	(b) 10-RCPB	154
5.21	Relationship of long-term compressive strength	
	to flexural and splitting tensile strength	155
5.22	Long-term flexural strength versus splitting tensile	
	strength	157
5.23	Relationship between skid resistance and rubber	
	content under dried-surface and wet-surface	
	condition	158
5.24	28-day compressive strength of RCPB	160
5.25	Relationship between 28-day compressive strength	
	and unit weight	161
5.26	MOR for plant-cast and manual-cast RCPB at	
	different rubber content	162
5.27	Flexural strength responds for plant-cast RCPB	163
5.28	Flexural strength responds for manual-cast RCPB	163
5.29	Relationship between plant-cast and manual-cast	
	of 28-day MOE	164
5.30	Relationship between skid resistance and rubber	
	content	166
5.31	Flexural strength versus deflection	167

5.32	Sound absorption coefficients of 30-RCPB with	
	and without facing layer	169
5.33	Arasion index of the 30-RCPB with and without	
	facing layer	170
6.1	Plan view of test pavement	177
6.2	The development of the transverse deformation	
	profiles for different load repetitions	178
6.3	Schematic cross section of the test pavement	
	and off-centered/ asymmetric load applied on the	
	wheel path and adjusted blocks	179
6.4	Mean rut depth of test pavement up to 2500 load	
	repetitions	180
6.5	Typical longitudinal view of rut depth for various	
	load repetitions	181
6.6	Three-dimensional view of deformed pavement	
	after 50 load repetitions	183
6.7	Three-dimensional view of deformed pavement	
	after 2500 load repetitions	183
6.8	Layout detail of RCPB pavement model	187
6.9	Transverse rutting profiles after 50 and 10000	
	load repetitions	186
6.10	Mean rut depth of four test sections up to 10000	
	load repetitions	187
6.11	Typical longitudinal view of rut depth after	
	various load repetitions	189
6.12	Three-dimensional view of four sections	
	deformed RCPB pavement after 50 load repetitions	191
6.13	Three-dimensional view of four sections	
	deformed RCPB pavement after 10000 load repetitions	191
6.14	Three-dimensional profile and contour view of	
	single section deformed pavement after 10000	
	load repetitions (a) Section I (b) Section II	
	(c) Section III (d) Section IV	193

	٠	٠	٠
XX	1	1	1

6.15	Mean joint width at panels A, B, C and D for various	
	load repetitions	194
6.16	Effect of excessive deformation adjacent to untrafficked	1
	area after (a) 2500 (b) 10000 load repetitions	195
6.17	Pull-out test	196
6.18	Relationship between pull-out force and	
	displacement	196
6.19	Skid resistance before trafficking test and after	
	10000 load repetitions of trafficking test	198
6.20	Failure patterns of CCPB and RCPB	
	(a) plan view (b) side view	200

LIST OF SYMBOLS

AASHTO	-	American Association of State Highway and Transportation
		Officials
AEA	-	Air-entraining agent
APTF	-	Accelerated Pavement Test Facility
ARRB	-	Australian Road Research Board
ASTM	-	American Society for Testing and Materials
BEI	-	Backscattered electrons imaging
BPN	-	British Pendulum Number
BS	-	British Standard
CBR	-	California Bearing Ratio
ССРВ	-	Control concrete paving blocks
C&D	-	Construction and demolition
CPB	-	Concrete paving block
FWD	-	Falling weight deflectometer
HALI	-	Highway Accelerated Loading Instrument
HVS	-	Heavy Vehicle Simulator
ICT	-	Intensive compaction tester
MLS	-	Mobile Load Simulator
MOCRC	-	Magnesium oxychloride cement rubber concrete
MOE	-	Modulus of elasticity
MOR	-	Modulus of rupture
MW	-	Megawatt
NaOH	-	Sodium hydroxide
NUROLF	-	Newcastle University Rolling Load Facility
OPC	-	Ordinary Portland cement

PCRC	-	Portland cement rubber concrete
PVC	-	Poly(vinyl chloride)
RCPB	-	Rubberized concrete paving blocks
SBR	-	Styrene-butadiene rubber
SEI	-	Secondary electrons imaging
SEM	-	Scanning electron microscopy
TALC	-	Tyre-added latex concrete
UTM	-	Universiti Teknologi Malaysia
W/C	-	Water/cement ratios
А	-	Cross sectional area of the RCPB specimen
В	-	Average width of the sample
С	-	Average compressive strength
C_k	-	Characteristic compressive strength
C _p	-	Compressive strengths of plant-cast
C _m	-	Compressive strengths of manual-cast
D	-	Average thickness
Ε	-	Modulus of elasticity
F	-	Breaking load or maximum applied load
F_{C}	-	Flexural strengths of CCPB
F_R	-	Flexural strengths of RCPB
Ia	-	Abrasion index
k	-	Correction factor for the thickness
l,L	-	Span length
$\Delta \ell$	-	Average length
Ν	-	No. of ball-race revolutions
р	-	Penetration
Р	-	Maximum applied load or breaking load per unit length of the
		failure plane
R	-	Reduction factor
R^2	-	Correlation coefficient
S	-	Standard deviation of 5 paving units
S	-	Sample
S_c	-	Compressive strength of CCPB
S_r	-	Compressive strength of RCPB

- T Splitting tensile strength
- V Crumb rubber in volumetric ratio by total sand volume in the mix
- σ Modulus of rupture

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Design Details and Operating Manual of Highway Accelerated Loading Instrument (HALI)	222
В	List of Eleven Journal Articles and Proceeding Papers Written by the Candidate Based on the	
	Work Presented in this Thesis	231

CHAPTER 1

INTRODUCTION

1.1 Introduction

The use of small-element paving to create a hard surface for roads or pavements is an ancient tradition that can be traced back to the royal processional roads of ancient Babylon, continuing in Greek and Roman times (Lilley, 1991). Concrete paving block (CPB) continues this tradition and was first introduced in the Netherlands after the Second World War and spread quickly to countries in Europe. For the past 60 years, significant research activities for the development and refinement of CBP technique have been going on in many countries, including Australia, Canada, Germany, Israel, Japan, Netherlands, New Zealand, South Africa, the United Kingdom, and the United States.

The general worldwide trend towards beautification of certain city pavements, the rising cost of bitumen as a paving material, the rapid increase in construction and maintenance cost have encouraged designers to consider alternative paving material such as CPB. In addition, excellent engineering properties of CPB, ease of removal, reuse potential and ability to be utilized in all climate conditions are the main advantages of CPB to be used in a variety of commercial, municipal and industrial applications.

CPB are fully engineered products manufactured in the factory to give consistency and accuracy. This advantage is offset, in part, by the need to use sophisticated special-purpose CPB making machines. Such equipment, however, tends to produce CPB of appreciably higher quality than conventional rigid pavements with respect to density, strength and durability. As a result, subject to the selection of an appropriate mix design, CPB surfaces can offer superior levels of performance in harsh environment compared to conventional concrete and asphalt pavements.

1.2 Research Background

In developing countries, utilization of CPB as a paving material is widespread. Cement and aggregate, which are the most important constituents used in manufacturing CPB, are also a vital material for the construction industry. This inevitably led to much quarrying of natural materials used for the production of concrete. The government has also indicated a growing concern for protecting the environment and preserving natural resources (example, aggregate) by using alternative materials (example, recycled or waste materials). On the other hand, wise disposal of waste materials all around the world is being encouraged due to the crucial environment issues. Recently, there have been suggestions and successful applications of using local waste materials as a partial replacement for cement or aggregate in manufacturing CPB in some Asian countries.

In Hong Kong, the construction industry generates very large amount of solid wastes such as crushed clay brick, crushed ceramic tile, crushed waste grass, wood chips, etc. Numerous studies on applications of construction and demolition (C&D) wastes as fine and coarse aggregates material are available in the literature (Poon and Chan (2006, 2007); Poon and Cheung, 2007; Poon *et al.*, 2002; Lam *et al.*, 2007), which demonstrated the possibility of utilizing huge amounts of C&D waste in CPB. The use of recycled aggregates in CPB production has been successfully implemented and is gaining wider acceptance.

In recent years in Japan, the amount of coal ash produced by power plant reached about 27,000 tons daily. Karasawa (2003) have reported that fly ash can be used as a substitute for fine aggregate in the production of CPB. However, utilization of fly ash can be accepted only when it meets the production target value with fly ash replacement ratio of 25%.

Phinyocheep (1988) and Nutalaya (1994) cited a large body of literature on the applications of fly ash in CPB. It is estimated that about 45,000 tons of Mae-Moh fly ash lignite is consumed daily for the generation of a 2,025 MW power plant in Thailand. Apart from fly ash, peanut shell ash and rice husk ash can be used as partial replacement of cement in CPB production. Due to the burden of waste disposal and environmental effect, the idea to utilize this fly ash is raised in the production of low-cost CPB. This created employment opportunities and benefited the people who live in the vicinity of the power plant.

Nevertheless, among the waste materials, pneumatic tyre is one of the most common environmental issues in the contemporary world, which is not readily biodegradable. Each year, approximately 800 million new tyres are produced in every region of the world, in various sizes and types (Ulrich, 1998). The lifetime of some tyres are prolonged, but ultimately they, too, will be discarded as waste materials. Majority of such tyres eventually end up in the already congested landfill or will become mosquito breeding places and gives the worst effects when it is burnt. Recent statistics in Malaysia indicated more than 100% increase in the number of registered vehicles within ten years. The current thirteen million of vehicles are producing large number of scrap tyres. Therefore, the Department of Environmental has put a stop to the open burning and burying of waste tyres as they cause air pollution and land instability, respectively. Even though several agencies and municipal councils are involved in waste management, they often have no clear functions in relation to waste management. Therefore, as an engineer and researcher, there is a need to seek economic and environmental friendly methods to manage these tyres in civil engineering applications, such as CPB products.

Existing CPB is characterized as a composite material with high compressive strength, moderate tensile strength and with a low toughness. It is anticipated that an ideal concrete block pavement should have high tensile strength and high toughness. Therefore, minimum required strength and improved toughness of modified CPB has to be developed for trafficked pavement application. For concrete, it is found that the higher the strength, the lower the toughness. Therefore it is impossible to develop high strength and high toughness concrete without modifications. Laboratory tests have shown that the addition of waste tyre rubber in concrete increase toughness, impact resistance, and plastic deformation considerably, offering a great potential for it to be used in sound/crash barriers, retaining structures and pavement structures (Eldin and Senouci, 1993; Khatib and Bayomy, 1999; Goulias and Ali, 1998). However, the strength of concrete containing crumb rubber or rubberized concrete is expected to be lower than those of the ordinary concrete (Toutanji, 1996; Siddique and Naik, 2004; Li et al., 2004). The reason for the strength reduction could be attributed both to a reduction of quantity of the solid load carrying material and a lack of adhesion at the boundaries of the rubber aggregate, as soft rubber particles may behave as voids in the concrete matrix.

However, not much attention has been given to the potential use of rubber as concrete aggregate in pavement application, particularly for CPB. As previously mentioned, owing to the very high toughness of waste tyres, it is expected that adding crumb rubber into CPB mixture in this study can increase the toughness of CPB considerably. Furthermore, the environment benefits from the reduction of waste tyres disposal in landfills, in addition to natural materials in concrete being reserved. Therefore, this study aims at developing the potential of using crumb rubber as a partial sand replacement in manufacturing CPB. It is believe that by substituting sand with crumb rubber, concrete block pavement will be more durable, can absorb higher energy under impact and flexible, thus, providing softness to the surface.

1.3 Objectives

The overall objective of this study is to investigate the feasibility of incorporating crumb rubber into CPB as a partial replacement for natural sand in the concrete mix.

The specific objectives of this study are as follows:

- To look into the mechanical properties of CPB incorporating crumb rubber and styrene-butadiene rubber (SBR) latex;
- (ii) To assess the feasibility of pilot plant manufacture of rubberized concrete paving blocks (RCPB) based on formulations developed in laboratory trials;
- (iii) To study long-term engineering properties of pilot plant manufactured RCPB;
- (iv) To develop a laboratory scale accelerated loading test equipment;
- To investigate structural performance of RCPB pavement subjected to accelerated loading test.

In addition to investigating the use of rubber aggregate in concrete mix design and the engineering properties of concrete mixes, an important consideration has been the development of RCPB products which are feasible in terms of production and good in service performance.

1.4 Scope of Investigation

The scopes of work undertaken are divided into three major parts:

Part I – Laboratory investigation of CPB incorporating crumb rubber and SBR latex

In order to develop information about the mechanical properties of CPB incorporating crumb rubber and SBR latex, the following aspects were considered:

- (i) Mix design parameters:
 - Cement content and water/cement (W/C) ratios
 - Three different size of crumb rubber
 - Eight different percentage of crumb rubber replacement at 0.45, 0.50 and 0.55 W/C ratios
 - Four dosage of SBR latex admixture for 0%, 10%, 20% and 30% replacement of crumb rubber concrete mixtures
- (ii) Mechanical properties:
 - ➢ 7 and 28-day compressive strength
 - Unit weight
 - Skid resistance

Part II – Feasibility and engineering properties of pilot plant manufactured RCPB

Various tests were carried out to assess the feasibility of pilot plant production and to establish the long-term engineering properties of RCPB. The testing procedures are in accordance with BS 6717 (BSI, 2001), MA 20 (CMAA, 1996) and ASTM specifications to investigate the performance of RCPB against control blocks to look at:

- (i) Fresh properties:
 - Work dimensions
 - > Tolerances
- (ii) Visual properties:
 - > Appearance
 - ➢ Surface colour
- (iii) Hardened, acoustic, mechanical and durability properties:
 - > Unit weight
 - ➢ Water absorption
 - > Sound absorption
 - Scanning electron microscopy (SEM)
 - Long-term compressive strength under three curing conditions
 - Long-term flexural strength
 - Long-term splitting tensile strength
 - Long-term abrasion resistance
 - ➢ Impact resistance
 - Skid resistance

To assess the long-term development and performance of abrasion resistance, compression; splitting tension and flexural strengths, samples were tested at 1, 7, 28, 91, 182 and 364 days of age.

To ensure that RCPB pavement is good in service performance, Highway Accelerated Loading Instrument (HALI) was developed and a series of accelerated trafficking tests were conducted:

- (i) Development of HALI consists of
 - ➢ Design
 - ➢ Fabrication
 - Calibration
 - Monitoring of the equipment performance
- (ii) Investigation of RCPB structural performance based on
 - Longitudinal and transverse rutting profiles
 - Three-dimensional surface deformation
 - ➢ Open joint width
 - Skid resistance
 - Impact resistance
 - Shear resistance

1.5 Significance of the Research

- Utilising waste material and reducing the use of natural material in CPB.
- Developing an innovative RCPB product that has better engineering properties and comparable service performance in comparison with existing CPB.

- (iii) Highlighting plant production technique to reuse recycled wastes in large quantities and in a fast manner. Therefore, this work would be a useful reference for future researchers on the possibility of incorporating other types of waste materials in CPB.
- (iv) Contributing better understanding of long-term engineering properties of RCPB, which can be applied to other concrete applications in civil engineering.
- Providing low cost, operational guideline and simple accelerated loading facility for road authorities and highway research institutions.