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ABSTRACT

Redundant components are commonly used for solving Redundancy Allocation

Problems (RAP) and improving the reliability of complex systems. However, the use of such

a strategy to minimize development costs while maintaining high quality attributes for

building software architecture is a research challenge. The selection for an optimal

architecture to meet this challenge is an inherently complex task due to the high volume of

possible architectural candidates and the fundamental conflict between quality attributes.

Current software evaluation methods focus on predicting the quality attributes and selecting

Commercial-Off-the Shelf (COTS) components for COTS-Based applications rather than

utilizing additional architectural evaluation methods that could increase the opportunity for

obtaining a cost-effective solution for RAP. In this thesis, an architecture-based approach

called Cost-Discount and Build-or-Buy for RAP (CD/BoB-RAP) is introduced to support the

decision making for selecting the architecture with optimal components and level of

redundancy that satisfies the technical and financial preferences. This approach consists of

an optimization model that includes two architectural evaluation methods (CD-RAP and

BoB-RAP) and applies three variants of Particle Swarm Optimization (PSO) algorithms.

Statistical results showed a 74% reduction on the development cost using CD-RAP on an

embedded system case study. Moreover, the application of a maximum possible

improvement on the algorithms showed that Penalty Guided PSO (PG-PSO) had enhanced

the quality of obtained solutions by 70% to 84% in comparison to other algorithms. The

results of the CD-RAP and BoB-RAP were superior when compared to the results obtained

from similar approaches. The overall results of this research have proven the potential

benefits of the CD/BoB-RAP approach for software architecture evaluation, particularly, in

selecting software architecture for minimizing the development cost maintaining a highly

reliable system.



vii

ABSTRAK

Komponen lewah sering digunakan untuk menyelesaikan Masalah Peruntukan

Lewahan (MPL) dan memperbaiki keutuhan sistem yang kompleks. Walau bagaimanapun

penggunaan strategi ini untuk meminimumkan kos pembangunan dan mengekalkan ciri-ciri

kualiti yang tinggi dalam pembangunan seni bina perisian masih menjadi cabaran kepada

penyelidikan. Pemilihan seni bina yang optimum adalah satu tugas yang sukar oleh sebab

jumlah calon seni bina munasabah yang tinggi dan konflik antara sifat-sifat kualiti. Kaedah

penilaian perisian pada masa ini memberikan tumpuan kepada peramalan sifat-sifat kualiti

dan pemilihan komponen Tersedia Komersial (TK) bagi aplikasi berasaskan TK berbanding

dengan penggunaan kaedah penilaian seni bina tambahan yang boleh meningkatkan peluang

untuk mendapatkan penyelesaian dengan kos efektif bagi MPL. Dalam kajian ini pendekatan

berasaskan seni bina yang dikenali dengan Diskaun-Kos (DK) dan Beli-atau-Bina (BaB)

untuk MPL diperkenalkan untuk menyokong pengambilan keputusan semasa memilih seni

bina yang mempunyai bilangan komponen dan tahap lewahan optimum yang memenuhi

kehendak teknikal dan kewangan. Pendekatan ini terdiri daripada satu model

pengoptimuman yang mempunyai dua kaedah penilaian (DK-MPL dan BaB-MPL) dan

menggunakan tiga varian algoritma Pengoptimuman Kerumunan Zarah (PKZ). Keputusan

statistik menunjukkan pengurangan sebanyak 74% kos pembangunan menggunakan DK-

MPL dalam kajian kes sistem terbenam. Sementara itu penggunaan peningkatan maksimum

yang mungkin algoritma-algoritma menunjukkan bahawa Pengoptimuman Kerumunan Zarah

Berpandukan Denda (PKZ-BD) telah meningkatkan kualiti penyelesaian yang diperoleh

daripada 70% kepada 84% berbanding dengan algoritma lain. Keputusan bagi DK-MPL dan

BaB-MPL adalah lebih unggul berbanding dengan keputusan yang diperoleh dengan

pendekatan lain yang sama. Hasil keseluruhan kajian ini membuktikan potensi kelebihan

pendekatan DK/BaB-MPL bagi penilaian seni bina perisian, terutamanya dalam pemilihan

seni bina perisian untuk meminimumkan kos pembangunan yang dapat mengekalkan

keutuhan sistem yang tinggi.
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CHAPTER 1

INTRODUCTION

This chapter introduces the research work reported in this thesis. Several

important topics relevant to the research work are presented. First, backgrounds of

the study followed by the background of the problem are demonstrated. Next, the

problem statement, research objectives, and scope of study respectively are

described. Finally, the significance of the research is explained.

1.1 Background of Study

Component-Based Software Development (CBSD) paradigm is one of crucial

efforts made to improve the quality of software system. CBSD helps organizations to

simplify the development of large and complicated systems. Moreover, CBSD helps

to lower the development cost, delivers a shorter time to market the product, and

improves the quality of the system [1]. From CBSD point of view, applications are

accumulation of deployed software parts. These parts, which are known as

components, can be used and reused to develop uncounted numbers of applications.

Software applications are built by fitting more or less standardized software
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components into a single software application [2]. This means the components are

arranged together as black-box objects.

Although CBSD promises a faster time-to-market and increased productivity

[3], many risks such as failure to satisfy quality attributes have occurred if the

composition is not managed properly. The use of good-components to develop a

system does not guarantee a system with satisfaction quality attributes. Indeed, bad

quality components will not produce a high-quality product, and even good

components can damage a good product if the composition is not managed properly.

It is believed that the failure to satisfy quality attributes means, a financial loss,

increased expenses of hardware, higher cost of software development, and loss of

relationships with consumers. In the real world, such as the industrial automation

domain, this probability is unacceptable. Hence, additional measures, time, efforts,

and costs are required to minimize the risks.

Indeed, whenever quality issues are addressed at implementation or

integration time, correction of problems impacts on cost, schedule, and quality of the

software. For example, Hoch et al. [4] reported that, large Japanese car manufacturer

had to recall 160,000 vehicles due to software failure. Furthermore, the observation

reported in the same reference showed that about 25 percent of software problems

are related to software architecture, which can be detected at an earlier stage of

development life cycle. In fact the decisions made during architecture design have

significant implications for economic and quality goals. Examples of architecture-

level decisions include the selection of software and hardware components, their

replication, the mapping of software components to available hardware nodes, and

the overall system topology.

Architectural decisions have a great impact on the consequent quality of

software systems. As a result, it is important to evaluate how software architecture

meets its quality demands. Though much focus has been placed on modeling and

describing the software architecture as a design artifact, automation of architecture
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selection has not gained enough study. The selection of the architecture candidate for

the next step of a software product is an inherently complex task due to the high

volume of possible solutions and to the integral conflict between quality attributes.

Additionally, real software projects suffer ever more from limited budgets, and the

decisions taken by software developers are heavily affected by cost issues. Therefore,

selecting an appropriate optimization technique to solve the problem is essential to

nominate an optimal design.

The earliest level of software architecture approaches are used to define the

top hierarchical or modular components of the system and assess if they are

sufficient to represent the system [5]. The approaches draw out and analyze the

quality attributes. For example, an architectural approach is aimed at meeting

performance and reliability goals. Through its processes, the architectural approaches

identify the architectural risks, sensitivity points, and trade-off points. Actually,

obtaining a short list of appropriate architectural options from thousands of possible

solutions to do the trade-off is the most difficult task in architectural design

approaches.

On the other hand, the main goal of optimization is to find the best possible

solutions which could satisfy all objectives and software constraints. In general,

optimization techniques can be classified into Single Objective Optimization (SOO)

and Multi-Objective Optimization (MOO) [6, 7]. The main goal of SOO is to obtain

the best solution relating to the minimum or maximum value of a single objective

function (also known as cost function) and which joins all different objectives into a

single one. This type of optimization is useful as a tool, which provides decision

makers with insights into the nature of the problem. It is usually executed several

times rather than a single run in order to produce a set of Pareto solutions [8]. This

method has been implemented successfully using different optimization algorithms

in [9-11]. The penalty strategy is used to eliminate the inequalities in constraints and

formulate new objective operators, which can guarantee feasibility within a

reasonable execution time.
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This research is motivated by the author own experience as a software

engineer in Civil Aviation Authority (CAA)-Sudan. The author had been appointed

as a committee member to recommend solutions that improve and integrate all

software systems of the CAA. CAA has more than 27 departments vary in their

responsibilities but they are interrelating to each other. The possible ways to build

and integrate all systems include outsourcing, upgrading old systems, and in-house

system development. The task was complicated since there were too many possible

alternatives that had to be evaluated based on different criteria. An ad-hoc method

had been prepared to perform the task. Finally, the decision was made, the report

recommended few alternatives. Unfortunately, the financial and technical

preferences for the suggested solutions could not be satisfied together, for example

some of suggested solutions were beyond the budged. Therefore, none of suggested

solutions was applied by that time.

It is believed that such complicated problems should be automated and

optimized to evaluate all possible combinations in order to select an appropriate set

of solutions that satisfies the requirements within budget constraints. Inspired by this

problem and due to rising complexity challenging quality requirements and demands

to reduce the development cost, this study proposes an architectural evaluation

approach and optimization technique to consider the evaluation of all possible

solutions. The proposed approach aims to optimize the selection of architecture

design to solve Reliability Allocation Problem (RAP) in order to satisfy the

reliability and cost for developing component-based System Development (CBSD) at

early stage of development.

1.2 Reliability Redundancy Allocation Problem (RAP)

Software Architecture (SA) is important in order to evaluate the quality

attributes of applications. Reliability is one of the key quality features in a
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Component-Based System (CBS) [12]. Many software systems are distributed across

a network, comprehensively providing diverse kinds of services for their consumers.

These systems must be extremely reliable and provide services when required.

Reliability must be engineered into software from the beginning of its development.

The software architecture design phase is the first stage of software development in

which it is feasible to evaluate how well the quality requirements are being met.

Many architecture-based approaches have been proposed to handle reliability from

the early stage of design [13-16].

Three strategies have been proposed in literature to improve reliability of

complex systems, namely: selecting components with higher reliability; by using

additional components in subsystems; or by combining the two strategies. The first

strategy often does not reach a satisfactory improvement even if most current reliable

components are used to build the system. The second strategy is based on optimizing

redundancy levels in subsystems. Redundancy means appending extra computational

or component nodes (so-called redundancy allocation) [10]. However, redundancy

may lead to additional life-cycle costs, energy, and weight of the system; although

the reliability is improved. This problem is commonly known as “Redundancy

Allocation Problem (RAP)” [17]. The third strategy is feasible and often used to

provide optimal solutions. This strategy is based on selecting optimal components

and appropriate redundancy level for each subsystem to maximize system reliability

[14, 18]. Optimizing reliability and redundancy simultaneously is known as

Reliability Redundancy Allocation Problem (R-RAP) [14]. Early evaluation method

at architectural level is essential to solve such problem.

Redundancy allocation strategy is widely used as a design tactic to improve

reliability of system at the architecture level [19-21]. Such approaches are often used

in industry, where systems are developed using variant (yet functionally similar)

components in parallel. For instance, airplanes have primary electronic gyroscope

and secondary mechanical gyroscope working in parallel. Anti-Lock Brake System

(ABS) in automotive systems domain also uses redundant components; most new

automobiles have a redundant (spare) tires with different size and weight
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characteristics. Besides, retrieval information systems require higher availability and

good performance for its services, which, in turn, necessitates the use of redundant

components. These configurations should be better handled in the early stage of

development.

Analytical approaches, which take into account all architectural alternatives,

can support and speed up the whole stakeholder decision making process. The first

optimization techniques introduced in this area were published in [22, 23]. The both

methods were built based on the knapsack model, a classical model for cost

management used in integer-linear/non linear programming models. In [22] a variant

of the knapsack model was introduced to select software architecture that obtained

value with minimum cost, while Jung [23] has proposed a model for reliability

maximization under budget constraints. More applications are found in [9, 19, 24,

25]. All of the presented approaches are general methods and they mainly focus on

maintaining the reliability of components so as to increase the reliability of the whole

system.

Practically, the common way to solve RAP in industry is based on ad-hoc or

expert opinions, especially in the automotive domain. The major focus of recent

researches in the area of software evaluation is the development of approaches based

on heuristic/metaheuristic algorithms for solving RAP [26, 27]. For mixed-integer

reliability problems, the number of redundant components and the corresponding

component reliabilities are to be decided upon simultaneously so as to minimize the

system cost whereas the reliability would remain within the accepted levels. For

example, components used in the automotive domain are expensive and one of the

reasons for the high cost of electronics is the use of large numbers of Electric Control

Unit (ECU) [28]. Meedeniya et al. [29] have proposed a method by which to

evaluate architecture of an embedded system considering redundant components

within its subsystems. However, the approach did not provide a solution to reduce

the number of components or the development cost.
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The consideration of probable discounts to optimize the architecture could

minimize the development cost. Cost-discount methods using parameters of quantity

discount policies have been introduced in [30]. Few studies [9, 31] have proposed the

application of similar methods in the architecture optimization domain to benefit

from the probable discount offered by vendors in components’ prices.

Another possible way to reduce the development cost is by using mixed

components to compose the system, wherein architect has the capability to use

different types of components from different sources to compose the system. For

example, an approach based on “Build-or-Buy” strategy has been introduced in [32,

33]. This method allows the use of in-house developed and outsourced components

to build the system. Since this method is developed utilizing exact algorithms using

linear programming method, it has inherited limitations of linear programming on

representation of complex problems such as consideration of redundancy

components.

A considerable number of attempts to efficiently and effectively solve RAP

problems have been found in literature. Although these assets are valuable to date, it

appears that there is still room for improvement. Therefore, this thesis proposes an

approach which aims to reduce the development cost while keeping reliability within

an accepted level. The approach deals with an analytical model of software system,

in which applications are constructed from a glued set of components with well-

defined behaviors and interfaces. This model of software development is becoming

more powerful, and gaining growing confidence of large organizations regarding

out–sourcing and in-house development of software components, service–based

approaches, and the construction of architectures into which trusted and semi-trusted

components are assembled [27].

The approach proposed in this thesis is an architecture-based approach that

utilizes optimization techniques to support the selection of optimal design at the

architectural level based on a cost-discount model and a build-or-buy strategy. Three
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Particle Swarm Optimization (PSO) algorithms varying in their dimensionality and

objective functions are proposed to be applied in this study. These are, namely:

Single objective optimization (SOO-PSO); Weighted-Sum optimization method

(MO-WS_PSO); and Penalty Guided algorithm (PG-PSO) methods.

The results reported in the thesis were drawn from the application of the

approach to case studies from two different domains representing both the

Information System (IS) domain and the Embedded System (ES) domain.

Additionally, a numeric example is utilized for verification and to perform sensitivity

analysis for parameters of the “Build-or-Buy” strategy.

1.3 Problem Statement

SA, CBSD, and optimization techniques are separate but related topics in

software engineering research and practice [34]. In general, SA defines system

components, their co-operation and the basic structure and design. It is concerned

with the high-level organization and structure of systems in general. CBSD focuses

on the realization of systems through integration of pre-existing components, while

optimization techniques are used to search solution space for the best, or near best,

solution. However, several challenges must be handled in order to select an

architectural design that satisfies financial and technical preferences. These

challenges can be classified into three groups. These are, namely: challenges related

to SA, challenges relevant to the optimization process, and general challenges related

to the components and their interactions.

Architecture challenges include the challenge of adapting a single model for

multiple attributes. This issue has motivated researchers for various reasons: First,

most cases of real-world systems require the analysis of more than one quality
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attribute; second, it is useful to build the prediction model on one single model rather

than wasting effort in identifying several models; the built quality model must

consider the dependability relating to the remaining quality attributes when defining

a metric for a specific quality attribute. For example, timing behavior on a software

model might be required to predict reliability of the system [15, 35]. This is essential

to select an appropriate model, which can be adapted and applied on software

application in order to successfully evaluate the "goodness" of the architectural

candidates.

Another architecture challenge is the selection of an appropriate strategy to

perform the evolution. Two different techniques have been introduced in [36] to

control quality aspects. The first one is based on embedding the quality element into

the method; alternatively, another technique relies on extracting the method from the

quality features. Consequently, those quality attributes could be modularized

regardless of what combination of quality attributes would be used. Rational Unified

Process (RUP) [37] is an example for the first technique, while reasoning framework

[38] is an example of the second one. Non-experts can use the reasoning framework;

hence, it includes the mechanisms needed to use sound analytic theories to analyze

the behavior of a system with respect to some quality attributes.

Optimization challenges should be approached to enable architects to explore

design space and in order to find out an optimal design based on an evaluation

strategy. In fact, the number of different designs for a complicated system can be

very large indeed if not infinite. Even with detailed design, there are usually vast

numbers of possibilities, far too many to be considered and evaluated individually.

On the other hand, for most software designs, the optimization of one quality

attribute will result in a deterioration of other quality attributes. Therefore, an

efficient design decision strategy is required and it can have dramatic effects upon

the cost and quality of the system [3]. Such techniques should have the capability to:

analyze the impact of an individual component in the composite model; evaluate its

effect on overall behavior of the software system based on the required quality
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criteria and, finally, restructure and process the model over and over to try all

possible solutions until the requested improvement is achieved.

However, since employing any of the traditional analytical optimization

approaches might not be practicable in most complex cases, metaheuristics can be an

alternative solution as it is a stochastic-based search technique with a solid base in

artificial life, social psychology, as well as in engineering and computer science.

Additional examples of the important issues related to the optimization challenges

are; the transformation of architectural problems to optimization problems and the

selection of a programming method (Linear/ Non-linear and integer/mixed-integer

programming methods). Moreover, optimizing software architecture that has

conflicting objectives is the main challenge in any optimization process, thus the

careful selection of optimization type is essential to obtain solutions to suit the

problem.

General challenges as identified in this study are those challenges related to the

overall capabilities of the approach in context of components’ properties and their

interactions, namely; hybrid components, multi-instances, redundancy, cost

discounts, and additional attributes or constraints. Optimizing the software

architecture using only available and costly COTS components is risky; there is a

need to find out ways that can decrease development cost. One way to decrease the

development cost is to benefit from the discount that is probably offered by vendors

[16]. Another alternative is to produce in-house components and apply a “Build-or-

Buy” strategy [32, 33] to select the appropriate component for each subsystem. This

will impact on the cost, quality and the time to deliver the system. Other reasons to

produce in-house components are, namely: the component might not be as readily

available as a COTS component and the cost to search the component might be

higher than the price itself [39].

In fact, the involvement of cost discount and “Build-or-Buy” strategies in an

approach to optimize the architecture requires additional configuration to the.
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architecture of the system. Since several new variables and parameters should be

included, the great challenge is the formulation and transformation of new

parameters that are relevant to changing an architectural problem into an

optimization problem.

The current high interest in SA is mainly motivated by the possibility of

managing complex software components. The following research question is related

to SA and CBSE from one side and decision-making using optimization algorithms

from the other side. Mainly, this problem, like most practical optimization problems,

requires the coincident optimization of more than one objective function. Similar to

the traditional optimization problem that deals with the challenge to simultaneously

minimize risks and maximize benefits, facilitating the trade-off between the quality

attributes is essential to obtain a design that satisfies the required attributes.

Therefore, the main research question is: “How to develop an architecture-based

approach for optimizing the selection of architecture for component-based system in

order to support the development of reliable and cost-effective applications?”

The sub-questions of the main question are as follows:

(i) What are the state-of-the-art software architecture evaluation approaches

in supporting the development of reliable and cost-effective applications?

(ii) What is an effective evaluation approach to evaluate the reliability and

cost-effectiveness for architecture candidates of a component-based

system at architecture level?

(iii) How can effective evaluation strategies be developed to optimize the

software architecture for selecting reliable and cost-effective architecture?

(iv) How can an optimization algorithm be capable of searching design space

for optimal architecture based on the developed evaluation strategies?

(v) How can we evaluate the applicability and effectiveness of the proposed

approach?



1.4 Research Objectives

The objectives to answer the stated research questions and to achieve the

above goal are described below:

(i) To identify the problems in the state-of-the-art software architecture

evaluation approaches in supporting the optimization of software

architecture for developing reliable and cost-effective application.

(ii) To develop an effective architecture-based approach that integrates

necessary aspects and strategies to optimize software architecture of

component-based system for developing reliable and cost-effective

application.

(iii) To benchmark the proposed approach and evaluate its applicability in

developing a reliable and cost-effective application using the selected

case studies.

1.5 Scope of the Study

The scope of this study encompasses five facets, i.e. quality attributes that

have been handled, optimization types performed, the architectural style used to

represent system architecture, the designs and tools, and case study implementations

and their assumptions.

Quality attributes: The main software features handled by this study are software

reliability and cost. Reliability is defined as a probability of “failure-free” software

operation for a specified period of time in a specified environment [40]. The

common methods used to achieve reliable software systems are, namely; fault

prevention, fault tolerance, fault removal and fault/failure forecasting. The latter is

the main focus of this study. Some techniques used in fault/failure forecasting are,

namely; developing models, collecting data, calibrating models and reliability



prediction. The main technique used in this research is a reliability prediction model.

The cost is important in this study since it aims to produce cost-effective application.

Therefore, cost models to estimate the development costs are built based on the cost

of their components. In addition, response time, as one of the performance measures,

has been modeled based on interactions between components to investigate probable

trade-offs between reliability, response time and cost.

Dimensions of optimization: The study focuses on optimizing the architecture

problem using Single Objective Optimization algorithms (SOO) and Multi-Objective

Optimization algorithms (MOO). Multiple functions are aggregated into a scalar

function using the weighted sum method, and a penalty guided algorithm to reform

the MOO problem. All algorithms in this study were developed based on the general

algorithm of the Particle Swarm Optimization algorithm (PSO). The effectiveness of

the proposed algorithms was examined in terms of the quality of solution using

statistical tests and Maximum Possible Improvement (MPI) method.

Architecture representation: Software architecture of the sequential applications

can be modeled by: Discrete Time Markov Chain (DTMC), Continuous Time

Markov Chain (CTMC), Stochastic Petri Net (SPNs) and Semi-Markov Process

(SMP). The Serial Parallel system is ideal modeling for solving an RAP problem.

DTMC is commonly used to represent the serial-parallel system. DTMC and SMP

are used to represent the architecture of systems in this study.

The implementation and the tailored tool: The implementation of the approach on

the case studies and customization of parameters were developed and performed

using a tailored tool. The tool was designed using Borland Delphi 5 for the purpose

of experiments in order to repeat the executions while varying the parameters.

Case studies and their assumptions: The numerical case study is a simple one for

the purpose of examining the sensitivity of parameters relevant to the “Build-or-Buy”



strategy. The second case study, Anti-Lock Brake System (ABS), from embedded

system domain (ES), is used to validate the applicability of the approach for the ES

domain, as well as to evaluate the impact of using the cost-discount model to the

quality of the obtained solutions. The third case study is Web-Based Data Retrieval

System (WBDRS) from Information system domain, which is used to demonstrate

the applicability of the approach in IS domain. This case study is also used to

compare the proposed approach with similar approaches from literature.

The first case study is composed of a simple structure with numeric data

representing the parameters of software architecture. The simple structure is used to

simplify the analysis and to show reactions to changes in the parameters.

For the second case study, ABS, some of the parameters are associated with

each component (such as the cost of components), while other parameters need to be

estimated. Estimated time per visit, redundancy overheads, execution initiation

probability, and transfer probability are either estimated based on profiles of expert

knowledge or based on different operating profiles of results using sensitivity

analysis. The annotated parameters such as failure rates have been estimated using a

model based approach and sensitivity analysis, as applied in a previous work by

Meedeniya et al. [41]. The rest of the parameters can be calculated using the

estimated and given parameters such as Sojourn Time per Visit and expected number

of visits.

The WBDRS case study has been partly based on the monitoring of an

existing data retrieval system at University of L’Aquila, Italy. The data has been

taken from software artifacts of the same system. Cortellessa et al. [32] have applied

an approach similar to the proposed one and using this case study. In fact, due to the

incomplete documentation, an exploration technique has been applied by the same

authors to provide convinced values. For example, to identify the number of

invocations, the researchers have analyzed partial scenarios and compared the result

by monitoring the average number of interactions. For the purpose of comparing the



proposed approach with [32], a similar case study and the same data have been

utilized.

The proposed approach applied to optimize architecture of the selected case

study in order to evaluate its applicability and effectiveness. Quantitative evaluation

methods have been used for evaluation. Independent t-Test is used to evaluate the

efficiency of CD_RAP. Additionally, a model of comparison is used to qualitatively

evaluate and indicate the effectiveness of the approach in compared to well known

practice in literature. Moreover, Maximum Possible Improvement (MPI) method and

statistical tests have been used to compare between the proposed algorithms in order

to select best optimization dimensionality for the proposed approach. Statistical test

is used to statistically measure the quality of obtained solutions from based on the

selected algorithm and to ensure the robustness of the results.

1.6 Significance of the Study

Selecting the appropriate set of components and connectors to make the

system meeting functional and accommodate non-functional requirements remains a

hard task to be accomplished. In practice, most selection decisions are subject to

current joint ventures, commercial benefits, and successful vendor marketing.

Moreover, the competitiveness of business depends usually on very strict

development schedules. Traditional selection of components is time-consuming since

considerable time is needed to investigate and study the available components [39].

As stated before, real software projects suffer ever more from limited budgets, and

the decisions taken by software developers are heavily affected by cost issues.

Therefore, selecting an appropriate optimization technique to solve the problem is

essential to nominate optimal design.



There are many studies in literature associated with the evaluation of software

architecture. Architecture Tradeoff Analysis Method (ATAM) [42], which is a

common method in the software evaluation domain, provides a quantitative

framework by which to reason about software trade-offs at architecture level.

Further, the Architecture Tradeoff Analysis Method / Attribute-Based Architectural

Styles (ATAM/ABAS) [43] method and Cost Benefit Analysis Model (CBAM) [44]

have been proposed with ATAM to provide quantitative and qualitative reasons

about quality attributes. An approach guided by a quality attribute known as

Attribute-Driven Design (ADD) method [45] has been proposed to produce systems

with high quality. It is a systematic step-by-step method for designing the software

architecture of a software-intensive system. At each stage in the development, these

approaches use scenarios, tactics and architectural patterns to assess the satisfaction

of a set of quality attributes. However, the perspective of this study differs from

ATAMs and ADD. Although ADD is guided by quality attributes, there is no

solution for cases with no prescribed scenario or pattern. Additionally, ATAMs and

ADD are manual methods and based on experience, while this study is an automated

method based on optimization techniques to select an optimal design.

Many real-world decision-making problems use optimization techniques to

attain their goals [46]. These include, for example, minimizing time to deliver

product, maximizing reliability, minimizing deviations from desired levels,

minimizing costs etc. Although real-world software systems have increased in size

and complexity, the cost of application failures grows and hence business

performance increasingly deteriorates. Components used in the automotive domain

are expensive and one of the reasons for the high cost of electronics is the large

number of ECU used [28]. Thus, optimization of architecture design has become

crucial.

However, few efforts have been directed towards optimization of software

based on reliability-cost trade-offs to produce cost-effective applications. This

releases the need to expand prescribed relationships between architectural design

decisions and quality attributes under cost constraints, which in turn could conduct a



realistic evaluation and support automated architecture design [47]. In addition,

earlier fault corrections and precise predictions that needed to the consumers from

the system could be delivered. Consequently, there is a need for an architecture-

based approach that enables the selection of architectural design. The employment of

an optimization technique into such approaches will aid in simplifying evaluation of

software architecture, save software development cost and efforts, and it will play an

essential role in producing cost-effective applications.

1.7 Thesis Outlines

This thesis encompasses some aspects relevant to software architecture and

optimization techniques to support software architecture evaluation for solving RAP

problems. The Proposed approach in this thesis provides two different ways to

evaluate the software architecture based on one optimization model. The approach is

noted as (CD/BoB-RAP), which stands for Cost-Discount /Build-or-buy for RAP,

(CD/BoB-RAP). The thesis consists of nine major chapters, including the

introductory chapter which commences the report. The remainder of the thesis is

composed of eight chapters and an appendix followed by published papers related to

the topic.

Chapter 2 discusses the literature review of software architecture evaluation

and optimization particularly to support the software evaluation for the selection of

optimal architectural design. It opens with explanations of the basic concepts of

software architecture, component based development, and related problems such as

span of design space and Reliability Redundancy Allocation Problem. This is

followed by discussion on the main approaches for the evaluation of architecture,

which are grouped into three main categories, i.e. anti-pattern, rule-based, and

search-based approaches.



Chapter 3 aims to evaluate the current search-based approach for software

architecture optimization. It illustrates the proposed taxonomy for the software

architecture optimization to evaluate the previous studies and to put this study in

context. The main features of the taxonomy are based on features of component

interactions, software architecture and the optimization process. The chapter reports

on comparative evaluation for a number of optimization-based approaches to

architectural design selection. The evaluation conducted was based on an

optimization feature extracted from the taxonomy. In addition, some general features

proposed in this study have been used for the evaluations. The critical discussion and

summary of the evaluation of the comparison focus on the capabilities of the

proposed approach to effectively support the selection of optimal architectural

design. The evaluation results of general features are crucial to identify gaps in the

current works, while the results of evaluations represent the corner stone by which to

build a solution that fills the identified gaps.

Chapter 4 presents the research methodology established to handle this work.

The chapter includes research design, operational framework, and overview

concerning verification and evaluation of the proposed approach. The research

design is visualized as a flowchart to illustrate the plan and sequence steps to conduct

the research. However, the operational framework, which is built based on the

research questions and research objectives, describes the action plan by which to

perform the study. The chapter also describes the verification and evaluation

methods and the case studies used to evaluate the proposed approach.

Chapter 5 describes the CD/BoB-RAP approach, optimization algorithm, as

well as the varying optimization strategies used for the approach. First, the

optimization model and its main elements are outlined. The chapter then highlights

the architecture representation and architectural evaluation methods. These include

“Cost-Discount” and “Build-or-Buy” and the optimization process, as well as the

proposed algorithms for the approach to enhance the capabilities in selecting a

reliable and cost effective design.



Chapter 6 demonstrates the evaluation of the applicability of CD/BoB-RAP

to optimize the software architecture. The CD/BoB-RAP has been applied on Anti-

lock Brake System (ABS), a case study from the ES domain. The case study is

described and utilized for the evaluation of the approach in order to develop a cost-

effective application based on the Cost-Discount (CD) evaluation method. The

chapter reports on the comparison between the quality attributes of architecture

obtained when the approach is executed based on a simple optimization model and

performed based on the CD/BoB-RAP. The results are analyzed and the impact of

CD/BoB-RAP approach on the quality of the obtained solutions is discussed.

Chapter 7 reports the results and discussions of the application of CD/BoB-

RAP on a numerical case study to evaluate the sensitivity of parameters of Build-or-

Buy strategy to changes. The applicability of the CD/BoB-RAP then builds a cost

effective application from mixed components based on Build-or-Buy strategy. This

has been evaluated by applying the approach on a Web-based Data Retrieval System

(WBDRS) used on a retrieval system case study to evaluated its applicability in the

IS domain. The results of the evaluation have been shown and discussed.

Chapter 8 demonstrates evaluation of the algorithm and the selection of

optimization dimensions for the CD/BoB-RAP. In addition, the chapter presents the

process and discussions on comparing the CD/BoB-RAP to similar approaches in

order to show the effectiveness of the proposed approach.

Finally, Chapter 9 presents the thesis summary. In addition, it outlines the

achievements, contributions, future works, and related publications. The chapter ends

with the conclusion followed by reference to future works.
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