
OPTIMIZI NG TH E SELECT ION OF ARCHITECTURE FOR

COMPONENT-BASED SYSTEM

ADIL ALI AB D ELAZIZ SA ED

A the sis submitted in fulfilment of the

requirement for the awa rd of the degree of

Doctor of Ph ilosoph y (Co mp uter Science)

Faculty of Computing

Universiti Technolo gi Malaysia

MA Y 20 13

iv

To my beloved mother and soul of my father

v

ACKNOWLEDGEMENT

In the Name of Allah, Most Gracious, Most Merciful

All praise and thanks are due to Allah, and peace and blessings be upon his

messenger, Mohammed (peace be upon him).

I would like to express my heartfelt gratitude to my supervisor Assoc.

Professor Dr. Wan Mohd Nasir Wan Kadir who has guided me and without whose

guidance and advice this study would not have been possible. He has been

incredibly wise, helpful, understanding, and generous throughout the process. He

has truly been a mentor and I owe him my deepest thanks. I also wish to thank my

co-supervisor, Assoc. Professor Dr.Siti Zaiton Bt. Mohd Hashim for her help and

encouragement throughout this study. The International Doctoral Fellowship has

played an important role in this study, accordingly, many thanks from the depths of

my heart to UTM for granting me the IDF for four semesters.

I have made many friends during my time in UTM and I thank them for their

support and encouragement. A great deal of useful information pertaining to the

work was found via the World-Wide Web; I thank those who made their materials

available by means of this medium and those who kindly answered back to my roll-

calls of help sent over the World-Wide Web, among them staff of the postgraduate

office and the faculty for the use of facilities and Lab. I also would like to thank the

software engineering group members for their co-operation. Finally, I would like to

thank my wife and kids Ahd, Amro, Aubada, and Ola for their sacrifices, patience,

encouragement, support and understanding.

vi

ABSTRACT

Redundant components are commonly used for solving Redundancy Allocation

Problems (RAP) and improving the reliability of complex systems. However, the use of such

a strategy to minimize development costs while maintaining high quality attributes for

building software architecture is a research challenge. The selection for an optimal

architecture to meet this challenge is an inherently complex task due to the high volume of

possible architectural candidates and the fundamental conflict between quality attributes.

Current software evaluation methods focus on predicting the quality attributes and selecting

Commercial-Off-the Shelf (COTS) components for COTS-Based applications rather than

utilizing additional architectural evaluation methods that could increase the opportunity for

obtaining a cost-effective solution for RAP. In this thesis, an architecture-based approach

called Cost-Discount and Build-or-Buy for RAP (CD/BoB-RAP) is introduced to support the

decision making for selecting the architecture with optimal components and level of

redundancy that satisfies the technical and financial preferences. This approach consists of

an optimization model that includes two architectural evaluation methods (CD-RAP and

BoB-RAP) and applies three variants of Particle Swarm Optimization (PSO) algorithms.

Statistical results showed a 74% reduction on the development cost using CD-RAP on an

embedded system case study. Moreover, the application of a maximum possible

improvement on the algorithms showed that Penalty Guided PSO (PG-PSO) had enhanced

the quality of obtained solutions by 70% to 84% in comparison to other algorithms. The

results of the CD-RAP and BoB-RAP were superior when compared to the results obtained

from similar approaches. The overall results of this research have proven the potential

benefits of the CD/BoB-RAP approach for software architecture evaluation, particularly, in

selecting software architecture for minimizing the development cost maintaining a highly

reliable system.

vii

ABSTRAK

Komponen lewah sering digunakan untuk menyelesaikan Masalah Peruntukan

Lewahan (MPL) dan memperbaiki keutuhan sistem yang kompleks. Walau bagaimanapun

penggunaan strategi ini untuk meminimumkan kos pembangunan dan mengekalkan ciri-ciri

kualiti yang tinggi dalam pembangunan seni bina perisian masih menjadi cabaran kepada

penyelidikan. Pemilihan seni bina yang optimum adalah satu tugas yang sukar oleh sebab

jumlah calon seni bina munasabah yang tinggi dan konflik antara sifat-sifat kualiti. Kaedah

penilaian perisian pada masa ini memberikan tumpuan kepada peramalan sifat-sifat kualiti

dan pemilihan komponen Tersedia Komersial (TK) bagi aplikasi berasaskan TK berbanding

dengan penggunaan kaedah penilaian seni bina tambahan yang boleh meningkatkan peluang

untuk mendapatkan penyelesaian dengan kos efektif bagi MPL. Dalam kajian ini pendekatan

berasaskan seni bina yang dikenali dengan Diskaun-Kos (DK) dan Beli-atau-Bina (BaB)

untuk MPL diperkenalkan untuk menyokong pengambilan keputusan semasa memilih seni

bina yang mempunyai bilangan komponen dan tahap lewahan optimum yang memenuhi

kehendak teknikal dan kewangan. Pendekatan ini terdiri daripada satu model

pengoptimuman yang mempunyai dua kaedah penilaian (DK-MPL dan BaB-MPL) dan

menggunakan tiga varian algoritma Pengoptimuman Kerumunan Zarah (PKZ). Keputusan

statistik menunjukkan pengurangan sebanyak 74% kos pembangunan menggunakan DK-

MPL dalam kajian kes sistem terbenam. Sementara itu penggunaan peningkatan maksimum

yang mungkin algoritma-algoritma menunjukkan bahawa Pengoptimuman Kerumunan Zarah

Berpandukan Denda (PKZ-BD) telah meningkatkan kualiti penyelesaian yang diperoleh

daripada 70% kepada 84% berbanding dengan algoritma lain. Keputusan bagi DK-MPL dan

BaB-MPL adalah lebih unggul berbanding dengan keputusan yang diperoleh dengan

pendekatan lain yang sama. Hasil keseluruhan kajian ini membuktikan potensi kelebihan

pendekatan DK/BaB-MPL bagi penilaian seni bina perisian, terutamanya dalam pemilihan

seni bina perisian untuk meminimumkan kos pembangunan yang dapat mengekalkan

keutuhan sistem yang tinggi.

viii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xiii

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS/SYMBOLS xix

LIST OF APPENDICES xxi

1 INTRODUCTION 1

1.1 Background of Study 1

1.2 Reliability Redundancy Allocation Problem (RAP) 4

1.3 Problem Statement 8

1.4 Research Objectives 12

1.5 Scope of the Study 12

1.6 Significance of the Study 15

1.7 Thesis Outlines 17

ix

2 SOFTWARE ARCHITECTURE EVALUATION

FOR COMPONENT-BASED SYSTEM

20

2.1 Component Based System Development 20

2.1.1 Definitions of Software Component 21

2.2 Software Architectures 22

2.2.1 Definition of Software Architecture 22

2.2.2 Importance of Software Architecture 24

2.3 Reliability of Software System 25

2.3.1 Reliability Assessment 26

2.3.2 Architecture of Component-Based System 27

2.3.3 Component Selection for Optimal Software

Architecture

28

2.3.4 Design Space Exploration 28

2.4 RAP Strategies and Optimal Architecture Selection 29

2.4.1 Description of RAP strategy 30

2.4.2 Series-Parallel System for RAP Problem 31

2.4.3 Design Space Exploration for RAP 32

2.5 Evaluation of Architecture-Based Methods for

Optimal Selection

33

2.5.1 Anti-Patterns and Scenario-based Approaches 34

2.5.2 Rule-based Approaches 35

2.5.3 Search-Based Algorithm Method 35

2.5.4 Discussion 36

2.6 Summary 38

3 COMPARATIVE EVALUATION OF SEARCH-

BASED APPROACHES FOR SOFTWARE

ARCHITECTURE EVALUATION

39

3.1 Taxonomy of Search-Based Approaches for

Architecture Selection

40

3.1.1 Features of Components’ Interaction 46

x

3.1.2 Features of Software Architecture 46

3.1.3 Features of Optimization Process 47

3.2 Evaluation the Approaches Based on Features of

Component Interactions

48

3.2 1 Redundancy 48

3.2.2 Multi-instances 49

3.2.3 Cost Discount (CD) 50

3.2.4 Mixed Components and Build-or-Buy (BoB) 51

3.2.5 Performance 52

3.3 Evaluation of the Approaches Based on Features of

Software Architecture

53

3.3 1 Architecture Representation 54

3.3.2 Evaluation of Architecture 56

3.4 Evaluation the Approaches Based on Features of

Optimization Processes

61

3.4 1 Dimensionality of Optimization 61

3.4.2 Optimization Strategy 63

3.4 3 Mathematical Representation 64

3.4.4 Optimization Algorithm 66

3.5 Critical Discussion 69

3.6 Summary 82

4 RESEARCH METHODOLOGY 87

4.1 Research Design 88

4.2 Operational Framework 88

4.3 General Research Framework 90

4.4 Evaluation Methods 93

4.4.1 Proof-of-Concepts Case study 94

4.4.2 Maximum Possible Improvement 95

4.4.3 Statistical Evaluation 95

4.4.4 Sensitivity Analysis 96

4.4.5 Robustness Test 97

xi

4.5 Case Studies to Evaluate the Proposed Approach 98

4.5.1 Embedded System Case Study to Evaluate

Cost-Discount Feature using the Proposed

Approach

98

4.5.2 Numerical Case Study for Sensitivity

Analysis on Build-or-Buy Feature using the

Proposed Approach

99

4.5.3 Information System Case Study to Evaluate

the Build-or-Buy feature using the Proposed

Approach

100

4.5.4 Benchmark for Evaluation the Effectiveness

of the Proposed Approach

101

4.6 Verification 102

4.7 Summary 102

5 ARCHITECTURE-BASED APPROACH FOR

OPTIMAL SOFTWARE ARCHITECTURE

SELECTION (CD/BOB-RAP)

103

5.1 Overview of the CD/BoB-RAP Approach 104

5.2 The Optimization Model and Implementation Phases 104

5.2.1 Software Architecture Representation 106

5.2.2 Evaluation of Architecture 108

5.2.2.1 Cost-Discount Method for

Architecture Evaluation

111

5.2.2.2 Build-or-Buy Strategy for Architecture

Evaluation

115

5.2.3 Optimization Process 121

5.2.3.1 Dimension of Optimization 122

5.2.3.2 Mathematical Representation 123

5.2.3.3 Optimization Strategy 125

5.2.3.4 PSO Algorithm 125

5.2.4 Trade off on Pareto optimal Solutions 130

xii

5.3 Summary 131

6 APPLICABILITY EVALUATION OF THE

CD/BOB-RAP FOR EMBEDDED SYSTEM

CASE STUDY BASED ON COST-DISCOUNT

132

6.1 Introduction 133

6.2 Descriptions of Anti-Lock Brake System (ABS) 133

6.3 Parameters and Settings 136

6.3.1 PSO Parameters 136

6.3.2 ABS Parameters 137

6.4 Experiments Results 140

6.4.1 Setting the Number of Iterations and Size

of Population

140

6.4.2 Evaluating the Applicability of CD/BoB-

RAP on ABS

145

6.4.3 Evaluation of Cost-Discount features on

ABS

150

6.5 Summary 154

7 SENSITIVITY ANALYSIS OF CD/BOB-RAP

BASED ON BUILD-OR-BUYSTRATEGYAND

THE APPLICABILITY EVALUATION FOR

INFORMATION SYSTEM CASE STUDY

156

7.1 Introduction 157

7.2 Application of Sensitivity Analysis 158

7.2.1 Description of the Numerical Case Study 158

7.2.2 Parameters and settings 160

7.2.3 Results and Discussion 162

7.3 Evaluation the Applicability of CD/BoB-RAP

on Web-based Data Retrieval System (WDRS)

170

7.3.1 Description of the WBDRS 171

xiii

7.3.2 Parameters and Settings 172

7.3.3 Results and Discussion 174

7.4 Summary 178

8 COMPARISON OF THE CD/BoB-RAP

APPROACH WITH SIMILAR APPROACHES

179

8.1 Evaluation of the Algorithms 180

8.1.1 Statistical Evaluation of the PSO Algorithm 180

8.1.2 Measuring Maximum Possible Improvement

(MPI) for the PSO algorithms

181

8.1.3 Robustness Test 184

8.2 Comparison of the CD/BoB-RAP with Similar

Approaches

185

8.2.1 The Implementation and Discussion 186

8.3 Summary of Comparison 192

8.4 Summary 194

9 CONCLUSION AND FUTURE WORK 196

9.1 Thesis Summary and Achievements 196

9.2 Summary of the Main Contributions 201

9.3 Future Works

9.4 Related Publications

205

206

REFERENCES 208

Appendices A-C 225-237

xiv

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Evaluation of methods used to optimize the selection of

software architecture

37

3.1 Comparison of the optimization features for the

architecture-based approaches

42

3.2 Comparison of the features of component interactions for

some search-based approaches

53

3.3 State-based methods to evaluate reliability of software

architecture

59

3.4 Penalty guided PSO vs. Penalty guided AI for reliability

design problems

68

3.5 Comparison between reliability prediction models 71

3.6 Pros and cons of using metaheuristic techniques to solve

architecture problems

78

3.7 Comparison of SOO, MOO, and MOO transformed into

SOO

75

3.8 Summary evaluation for some approaches and the

expected features for the proposed approach

84

4.1 Operational Framework 89

6.1 The first set of ABC case study parameters 138

6.2 Second set of ABS case study parameters 139

6.3 The reliability and computational time resulting from

performing 5 runs using 8 iterations and population

number of 15 for each run

144

xv

6.4 Result of two close solutions 145

6.5 Resulting Reliability, Number of components and

Cost for Two Closed Alternatives

146

6.6 Details Comparison of two candidates 147

6.7 Reliability against Response Time 149

6.8 Two closest design options resulting from the

optimization of ABS design implementing PSO

single objective optimization with constraint (cost

is an objective function and reliability ≥ 0.99999).

151

6.9 Two closest candidates resulting from the

optimization of ABS design implementing the cost

with discount as an objective function and

reliability as constraint (reliability ≥ 0.99999).

152

6.10 Comparison between two cases, cost with and

without discount. The table shows maximum and

minimum values from each case

153

7.1 Preliminary parameters for COTS components 161

7.2 Preliminary parameters for in-house developed

components

161

7.3 Results of sensitivity analysis 164

7.4 An experimental result where DT = 100, Reliability

level= 0.9, and Cost =944.75

166

7.5 An experimental result where DT = 100, Reliability

level= 0.9, and Cost = 87

166

7.6 An experimental result where DT = 100, Reliability

level= 0.9, and Cost = 84.65

167

7.7 An experimental result where DT = 100, Reliability

level= 0.6, and Cost = 14.75

168

7.8 An experimental result where DT = 20, System R=

0.95, and Cost = 17

168

7.9 An experimental result where DT = 20, R= 0.95,

and Cost = 19

168

7.10 An experimental result where DT = 20, R= 0.95, 169

xvi

and Cost = 24

7.11 An experimental result where DT = 20, R= 0.95,

and Cost = 13.15

169

7.12 Parameters of COTS products available for the

WDRS system

173

7.13 Parameters for in-house developed components

available for the WDRS system

173

7.14 Result of applying BoB-RAP on WBDRS case

study: Reliability = 0.9006, Total cost= 51.594,

Delivery time= 12, Fitness function= 3.6851

174

7.15 Result of applying BoB-RAP on WBDRS case

study: Reliability = 0.90001, Total cost= 51.490,

Delivery time= 10, Fitness function= 3.12812

175

7.16 Result of applying BoB-RAP on WBDRS case

study: Reliability = 0.9003, Total cost= 51.506,

Delivery time= 10, Fitness function= 3.22027

175

7.17 Result of applying BoB-RAP on WBDRS case

study: Reliability = 0.900002, Total cost= 34.906,

Delivery time= 72, Fitness function= 3.22027

176

7.18 The results of five different solutions to investigate

over-provisioning for WBDRS

177

8.1 Comparison on the best proposed solutions

obtained using Paired-test and Wilcoxn’s signed-

ranks test

181

8.2 Comparison of the best proposed solutions obtained

using MPI

182

8.3 Results of robustness test of Penalty Guided PSO

Algorithm.

184

8.4 Comparison results of BoB-RAP&CD-RAP to

other approaches in term of the General features.

187

8.5 Result from the comparison model, step1,

Reliability = 0.9001, Total cost= 39.5

188

8.6 Result from the comparison model, step 2, 189

xvii

Reliability = 0.932301, Total cost= 40

8.7 Result from the comparison model, step 3,

Reliability = 0.900068, Total cost= 35.276

190

8.8 Result from the comparison model, step 4,

Reliability = 0.90031, Total cost= 14.901, Delivery

Time = 10

191

8.9 Result from the comparison model, step 5,

Reliability = 0.991364486, Total cost= 37.022,

Delivery Time = 10

192

xviii

LIST OF FIGURES

FIGURE NO TITLE PAGE

2.1 Dependability Attributes 26

2.2 An Example for Serial- Parallel System 31

3.1 Software architecture optimization researches- quality

attributes over degree of freedom

40

3.2 Taxonomy of Software Architecture Optimization 45

4.1 Research Design 92

5.1 Overview Process of CD/BoB-RAP approach 105

5.2 Parallel view point for the Subsystem-interaction

model

107

5.3 Serial-Parallel view of the system model 107

5.4 Absorbing DTMC architecture representation example 109

5.5 Optimization process using scalar function 123

5.6 Solution representation in the proposed algorithms 124

5.7 General PSO algorithm used for architecture

optimization

126

5.8 An evaluation algorithm which returns quantitative

value for the current particle

129

6.1 System Structure of Anti-lock Brake System (ABS) 135

6.2 The average of computational time for the whole

iterations and single iteration to optimize the

architecture of ABS, using 5,8,10, and 15 as

number of iterations respectively, and population

size of 10

141

xix

6.3 Maximizing reliability using population size of 10, and

8 iterations

142

6.4 Comparison of different population size 143

6.5 Trade-off between reliability and cost 148

6.6 Trade-off between reliability and response time 149

7.1 The architecture view of system composed of 3

subsystems with redundant components

159

7.2 Overview of Web-Based Data Retrieval System

(WBDRS)

171

xx

LIST OF ABBREVIATIONS/ SYMBOLS

ABAS - Attribute-Based Architectural Styles

ABS - Anti-Lock Brake System

ACO - Colony Algorithm

ADD - Attribute-Driven Design

ATAM - Architecture tradeoff analysis method

BCA - Bee colony algorithm

BoB-RAP - “Build-or-Buy” strategy to solve RAP problem

CBAM - Cost Benefit Analysis Model

CBAM - Cost Benefit Analysis Model

CBS - Component-Based Software

CBSD - Component-Based Software Development

CD-RAP - cost-discount model to solve RAP problem

COTS - Commercial-Off-the Shelf

CTMC - Continuous Time Markov Chain

DE - Differential Evaluation

DTMC - Discrete Time Markov Chain

EC - Evolutionary Computation

ECU - Electronic Control Unit

ES - Embedded System

GF - General Features

IAS - Immune Artificial System

IP - integer programming

IS - Information System

LQN - Linear Queuing model

MINLP - Mixed Integer Nonlinear Programming

xxi

MIP - mixed integer problem

MOO - Multi-objective Optimization

PG-PSO - Multi-Objective Penalty guided algorithm based on

Particle Swarm Optimization

MO-WS_PSO - Multi-Objective Weighted-Sum based on Particle Swarm

Optimization

MPI - Maximum Possible Improvement

NLIP - Non-linear integer programming

OF - Optimization Features

POC - Proof of Concept

RAP - Redundancy Allocation Problem

RIS - Information Retrieval System

RRAP - Reliability Redundancy Allocation Problem

RUP - Rational Unified Process

SA - System Architecture

SBSE - Search-Based Software Engineering

SMP - Semi-Markov Process

SOO - Single Objective Optimization

SOO-PSO - Single Objective Optimization based on Particle Swarm

Optimization

SPN - Stochastic Petri Net

SI - Swarm Intelligent

TS - Tabu Search

VNS - Variable Neighborhood Search

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Verification 225

A.1

A.2

Verification of the Cost-discount Model

Chart to show the different between the calculated

and system results

225

226

B Design of Anti-loch Brake System (ABS) 227

B.1 Sketch for the ABS and Brake System 227

B.2 Sketch for the ABS System 227

B.3 DTMC Architecture Representation of ABS system

for reliability

228

C The Tailored tool to optimize the software design at

architecture level

229

1

CHAPTER 1

INTRODUCTION

This chapter introduces the research work reported in this thesis. Several

important topics relevant to the research work are presented. First, backgrounds of

the study followed by the background of the problem are demonstrated. Next, the

problem statement, research objectives, and scope of study respectively are

described. Finally, the significance of the research is explained.

1.1 Background of Study

Component-Based Software Development (CBSD) paradigm is one of crucial

efforts made to improve the quality of software system. CBSD helps organizations to

simplify the development of large and complicated systems. Moreover, CBSD helps

to lower the development cost, delivers a shorter time to market the product, and

improves the quality of the system [1]. From CBSD point of view, applications are

accumulation of deployed software parts. These parts, which are known as

components, can be used and reused to develop uncounted numbers of applications.

Software applications are built by fitting more or less standardized software

2

components into a single software application [2]. This means the components are

arranged together as black-box objects.

Although CBSD promises a faster time-to-market and increased productivity

[3], many risks such as failure to satisfy quality attributes have occurred if the

composition is not managed properly. The use of good-components to develop a

system does not guarantee a system with satisfaction quality attributes. Indeed, bad

quality components will not produce a high-quality product, and even good

components can damage a good product if the composition is not managed properly.

It is believed that the failure to satisfy quality attributes means, a financial loss,

increased expenses of hardware, higher cost of software development, and loss of

relationships with consumers. In the real world, such as the industrial automation

domain, this probability is unacceptable. Hence, additional measures, time, efforts,

and costs are required to minimize the risks.

Indeed, whenever quality issues are addressed at implementation or

integration time, correction of problems impacts on cost, schedule, and quality of the

software. For example, Hoch et al. [4] reported that, large Japanese car manufacturer

had to recall 160,000 vehicles due to software failure. Furthermore, the observation

reported in the same reference showed that about 25 percent of software problems

are related to software architecture, which can be detected at an earlier stage of

development life cycle. In fact the decisions made during architecture design have

significant implications for economic and quality goals. Examples of architecture-

level decisions include the selection of software and hardware components, their

replication, the mapping of software components to available hardware nodes, and

the overall system topology.

Architectural decisions have a great impact on the consequent quality of

software systems. As a result, it is important to evaluate how software architecture

meets its quality demands. Though much focus has been placed on modeling and

describing the software architecture as a design artifact, automation of architecture

3

selection has not gained enough study. The selection of the architecture candidate for

the next step of a software product is an inherently complex task due to the high

volume of possible solutions and to the integral conflict between quality attributes.

Additionally, real software projects suffer ever more from limited budgets, and the

decisions taken by software developers are heavily affected by cost issues. Therefore,

selecting an appropriate optimization technique to solve the problem is essential to

nominate an optimal design.

The earliest level of software architecture approaches are used to define the

top hierarchical or modular components of the system and assess if they are

sufficient to represent the system [5]. The approaches draw out and analyze the

quality attributes. For example, an architectural approach is aimed at meeting

performance and reliability goals. Through its processes, the architectural approaches

identify the architectural risks, sensitivity points, and trade-off points. Actually,

obtaining a short list of appropriate architectural options from thousands of possible

solutions to do the trade-off is the most difficult task in architectural design

approaches.

On the other hand, the main goal of optimization is to find the best possible

solutions which could satisfy all objectives and software constraints. In general,

optimization techniques can be classified into Single Objective Optimization (SOO)

and Multi-Objective Optimization (MOO) [6, 7]. The main goal of SOO is to obtain

the best solution relating to the minimum or maximum value of a single objective

function (also known as cost function) and which joins all different objectives into a

single one. This type of optimization is useful as a tool, which provides decision

makers with insights into the nature of the problem. It is usually executed several

times rather than a single run in order to produce a set of Pareto solutions [8]. This

method has been implemented successfully using different optimization algorithms

in [9-11]. The penalty strategy is used to eliminate the inequalities in constraints and

formulate new objective operators, which can guarantee feasibility within a

reasonable execution time.

4

This research is motivated by the author own experience as a software

engineer in Civil Aviation Authority (CAA)-Sudan. The author had been appointed

as a committee member to recommend solutions that improve and integrate all

software systems of the CAA. CAA has more than 27 departments vary in their

responsibilities but they are interrelating to each other. The possible ways to build

and integrate all systems include outsourcing, upgrading old systems, and in-house

system development. The task was complicated since there were too many possible

alternatives that had to be evaluated based on different criteria. An ad-hoc method

had been prepared to perform the task. Finally, the decision was made, the report

recommended few alternatives. Unfortunately, the financial and technical

preferences for the suggested solutions could not be satisfied together, for example

some of suggested solutions were beyond the budged. Therefore, none of suggested

solutions was applied by that time.

It is believed that such complicated problems should be automated and

optimized to evaluate all possible combinations in order to select an appropriate set

of solutions that satisfies the requirements within budget constraints. Inspired by this

problem and due to rising complexity challenging quality requirements and demands

to reduce the development cost, this study proposes an architectural evaluation

approach and optimization technique to consider the evaluation of all possible

solutions. The proposed approach aims to optimize the selection of architecture

design to solve Reliability Allocation Problem (RAP) in order to satisfy the

reliability and cost for developing component-based System Development (CBSD) at

early stage of development.

1.2 Reliability Redundancy Allocation Problem (RAP)

Software Architecture (SA) is important in order to evaluate the quality

attributes of applications. Reliability is one of the key quality features in a

5

Component-Based System (CBS) [12]. Many software systems are distributed across

a network, comprehensively providing diverse kinds of services for their consumers.

These systems must be extremely reliable and provide services when required.

Reliability must be engineered into software from the beginning of its development.

The software architecture design phase is the first stage of software development in

which it is feasible to evaluate how well the quality requirements are being met.

Many architecture-based approaches have been proposed to handle reliability from

the early stage of design [13-16].

Three strategies have been proposed in literature to improve reliability of

complex systems, namely: selecting components with higher reliability; by using

additional components in subsystems; or by combining the two strategies. The first

strategy often does not reach a satisfactory improvement even if most current reliable

components are used to build the system. The second strategy is based on optimizing

redundancy levels in subsystems. Redundancy means appending extra computational

or component nodes (so-called redundancy allocation) [10]. However, redundancy

may lead to additional life-cycle costs, energy, and weight of the system; although

the reliability is improved. This problem is commonly known as “Redundancy

Allocation Problem (RAP)” [17]. The third strategy is feasible and often used to

provide optimal solutions. This strategy is based on selecting optimal components

and appropriate redundancy level for each subsystem to maximize system reliability

[14, 18]. Optimizing reliability and redundancy simultaneously is known as

Reliability Redundancy Allocation Problem (R-RAP) [14]. Early evaluation method

at architectural level is essential to solve such problem.

Redundancy allocation strategy is widely used as a design tactic to improve

reliability of system at the architecture level [19-21]. Such approaches are often used

in industry, where systems are developed using variant (yet functionally similar)

components in parallel. For instance, airplanes have primary electronic gyroscope

and secondary mechanical gyroscope working in parallel. Anti-Lock Brake System

(ABS) in automotive systems domain also uses redundant components; most new

automobiles have a redundant (spare) tires with different size and weight

6

characteristics. Besides, retrieval information systems require higher availability and

good performance for its services, which, in turn, necessitates the use of redundant

components. These configurations should be better handled in the early stage of

development.

Analytical approaches, which take into account all architectural alternatives,

can support and speed up the whole stakeholder decision making process. The first

optimization techniques introduced in this area were published in [22, 23]. The both

methods were built based on the knapsack model, a classical model for cost

management used in integer-linear/non linear programming models. In [22] a variant

of the knapsack model was introduced to select software architecture that obtained

value with minimum cost, while Jung [23] has proposed a model for reliability

maximization under budget constraints. More applications are found in [9, 19, 24,

25]. All of the presented approaches are general methods and they mainly focus on

maintaining the reliability of components so as to increase the reliability of the whole

system.

Practically, the common way to solve RAP in industry is based on ad-hoc or

expert opinions, especially in the automotive domain. The major focus of recent

researches in the area of software evaluation is the development of approaches based

on heuristic/metaheuristic algorithms for solving RAP [26, 27]. For mixed-integer

reliability problems, the number of redundant components and the corresponding

component reliabilities are to be decided upon simultaneously so as to minimize the

system cost whereas the reliability would remain within the accepted levels. For

example, components used in the automotive domain are expensive and one of the

reasons for the high cost of electronics is the use of large numbers of Electric Control

Unit (ECU) [28]. Meedeniya et al. [29] have proposed a method by which to

evaluate architecture of an embedded system considering redundant components

within its subsystems. However, the approach did not provide a solution to reduce

the number of components or the development cost.

7

The consideration of probable discounts to optimize the architecture could

minimize the development cost. Cost-discount methods using parameters of quantity

discount policies have been introduced in [30]. Few studies [9, 31] have proposed the

application of similar methods in the architecture optimization domain to benefit

from the probable discount offered by vendors in components’ prices.

Another possible way to reduce the development cost is by using mixed

components to compose the system, wherein architect has the capability to use

different types of components from different sources to compose the system. For

example, an approach based on “Build-or-Buy” strategy has been introduced in [32,

33]. This method allows the use of in-house developed and outsourced components

to build the system. Since this method is developed utilizing exact algorithms using

linear programming method, it has inherited limitations of linear programming on

representation of complex problems such as consideration of redundancy

components.

A considerable number of attempts to efficiently and effectively solve RAP

problems have been found in literature. Although these assets are valuable to date, it

appears that there is still room for improvement. Therefore, this thesis proposes an

approach which aims to reduce the development cost while keeping reliability within

an accepted level. The approach deals with an analytical model of software system,

in which applications are constructed from a glued set of components with well-

defined behaviors and interfaces. This model of software development is becoming

more powerful, and gaining growing confidence of large organizations regarding

out–sourcing and in-house development of software components, service–based

approaches, and the construction of architectures into which trusted and semi-trusted

components are assembled [27].

The approach proposed in this thesis is an architecture-based approach that

utilizes optimization techniques to support the selection of optimal design at the

architectural level based on a cost-discount model and a build-or-buy strategy. Three

8

Particle Swarm Optimization (PSO) algorithms varying in their dimensionality and

objective functions are proposed to be applied in this study. These are, namely:

Single objective optimization (SOO-PSO); Weighted-Sum optimization method

(MO-WS_PSO); and Penalty Guided algorithm (PG-PSO) methods.

The results reported in the thesis were drawn from the application of the

approach to case studies from two different domains representing both the

Information System (IS) domain and the Embedded System (ES) domain.

Additionally, a numeric example is utilized for verification and to perform sensitivity

analysis for parameters of the “Build-or-Buy” strategy.

1.3 Problem Statement

SA, CBSD, and optimization techniques are separate but related topics in

software engineering research and practice [34]. In general, SA defines system

components, their co-operation and the basic structure and design. It is concerned

with the high-level organization and structure of systems in general. CBSD focuses

on the realization of systems through integration of pre-existing components, while

optimization techniques are used to search solution space for the best, or near best,

solution. However, several challenges must be handled in order to select an

architectural design that satisfies financial and technical preferences. These

challenges can be classified into three groups. These are, namely: challenges related

to SA, challenges relevant to the optimization process, and general challenges related

to the components and their interactions.

Architecture challenges include the challenge of adapting a single model for

multiple attributes. This issue has motivated researchers for various reasons: First,

most cases of real-world systems require the analysis of more than one quality

9

attribute; second, it is useful to build the prediction model on one single model rather

than wasting effort in identifying several models; the built quality model must

consider the dependability relating to the remaining quality attributes when defining

a metric for a specific quality attribute. For example, timing behavior on a software

model might be required to predict reliability of the system [15, 35]. This is essential

to select an appropriate model, which can be adapted and applied on software

application in order to successfully evaluate the "goodness" of the architectural

candidates.

Another architecture challenge is the selection of an appropriate strategy to

perform the evolution. Two different techniques have been introduced in [36] to

control quality aspects. The first one is based on embedding the quality element into

the method; alternatively, another technique relies on extracting the method from the

quality features. Consequently, those quality attributes could be modularized

regardless of what combination of quality attributes would be used. Rational Unified

Process (RUP) [37] is an example for the first technique, while reasoning framework

[38] is an example of the second one. Non-experts can use the reasoning framework;

hence, it includes the mechanisms needed to use sound analytic theories to analyze

the behavior of a system with respect to some quality attributes.

Optimization challenges should be approached to enable architects to explore

design space and in order to find out an optimal design based on an evaluation

strategy. In fact, the number of different designs for a complicated system can be

very large indeed if not infinite. Even with detailed design, there are usually vast

numbers of possibilities, far too many to be considered and evaluated individually.

On the other hand, for most software designs, the optimization of one quality

attribute will result in a deterioration of other quality attributes. Therefore, an

efficient design decision strategy is required and it can have dramatic effects upon

the cost and quality of the system [3]. Such techniques should have the capability to:

analyze the impact of an individual component in the composite model; evaluate its

effect on overall behavior of the software system based on the required quality

10

criteria and, finally, restructure and process the model over and over to try all

possible solutions until the requested improvement is achieved.

However, since employing any of the traditional analytical optimization

approaches might not be practicable in most complex cases, metaheuristics can be an

alternative solution as it is a stochastic-based search technique with a solid base in

artificial life, social psychology, as well as in engineering and computer science.

Additional examples of the important issues related to the optimization challenges

are; the transformation of architectural problems to optimization problems and the

selection of a programming method (Linear/ Non-linear and integer/mixed-integer

programming methods). Moreover, optimizing software architecture that has

conflicting objectives is the main challenge in any optimization process, thus the

careful selection of optimization type is essential to obtain solutions to suit the

problem.

General challenges as identified in this study are those challenges related to the

overall capabilities of the approach in context of components’ properties and their

interactions, namely; hybrid components, multi-instances, redundancy, cost

discounts, and additional attributes or constraints. Optimizing the software

architecture using only available and costly COTS components is risky; there is a

need to find out ways that can decrease development cost. One way to decrease the

development cost is to benefit from the discount that is probably offered by vendors

[16]. Another alternative is to produce in-house components and apply a “Build-or-

Buy” strategy [32, 33] to select the appropriate component for each subsystem. This

will impact on the cost, quality and the time to deliver the system. Other reasons to

produce in-house components are, namely: the component might not be as readily

available as a COTS component and the cost to search the component might be

higher than the price itself [39].

In fact, the involvement of cost discount and “Build-or-Buy” strategies in an

approach to optimize the architecture requires additional configuration to the.

11

architecture of the system. Since several new variables and parameters should be

included, the great challenge is the formulation and transformation of new

parameters that are relevant to changing an architectural problem into an

optimization problem.

The current high interest in SA is mainly motivated by the possibility of

managing complex software components. The following research question is related

to SA and CBSE from one side and decision-making using optimization algorithms

from the other side. Mainly, this problem, like most practical optimization problems,

requires the coincident optimization of more than one objective function. Similar to

the traditional optimization problem that deals with the challenge to simultaneously

minimize risks and maximize benefits, facilitating the trade-off between the quality

attributes is essential to obtain a design that satisfies the required attributes.

Therefore, the main research question is: “How to develop an architecture-based

approach for optimizing the selection of architecture for component-based system in

order to support the development of reliable and cost-effective applications?”

The sub-questions of the main question are as follows:

(i) What are the state-of-the-art software architecture evaluation approaches

in supporting the development of reliable and cost-effective applications?

(ii) What is an effective evaluation approach to evaluate the reliability and

cost-effectiveness for architecture candidates of a component-based

system at architecture level?

(iii) How can effective evaluation strategies be developed to optimize the

software architecture for selecting reliable and cost-effective architecture?

(iv) How can an optimization algorithm be capable of searching design space

for optimal architecture based on the developed evaluation strategies?

(v) How can we evaluate the applicability and effectiveness of the proposed

approach?

1.4 Research Objectives

The objectives to answer the stated research questions and to achieve the

above goal are described below:

(i) To identify the problems in the state-of-the-art software architecture

evaluation approaches in supporting the optimization of software

architecture for developing reliable and cost-effective application.

(ii) To develop an effective architecture-based approach that integrates

necessary aspects and strategies to optimize software architecture of

component-based system for developing reliable and cost-effective

application.

(iii) To benchmark the proposed approach and evaluate its applicability in

developing a reliable and cost-effective application using the selected

case studies.

1.5 Scope of the Study

The scope of this study encompasses five facets, i.e. quality attributes that

have been handled, optimization types performed, the architectural style used to

represent system architecture, the designs and tools, and case study implementations

and their assumptions.

Quality attributes: The main software features handled by this study are software

reliability and cost. Reliability is defined as a probability of “failure-free” software

operation for a specified period of time in a specified environment [40]. The

common methods used to achieve reliable software systems are, namely; fault

prevention, fault tolerance, fault removal and fault/failure forecasting. The latter is

the main focus of this study. Some techniques used in fault/failure forecasting are,

namely; developing models, collecting data, calibrating models and reliability

prediction. The main technique used in this research is a reliability prediction model.

The cost is important in this study since it aims to produce cost-effective application.

Therefore, cost models to estimate the development costs are built based on the cost

of their components. In addition, response time, as one of the performance measures,

has been modeled based on interactions between components to investigate probable

trade-offs between reliability, response time and cost.

Dimensions of optimization: The study focuses on optimizing the architecture

problem using Single Objective Optimization algorithms (SOO) and Multi-Objective

Optimization algorithms (MOO). Multiple functions are aggregated into a scalar

function using the weighted sum method, and a penalty guided algorithm to reform

the MOO problem. All algorithms in this study were developed based on the general

algorithm of the Particle Swarm Optimization algorithm (PSO). The effectiveness of

the proposed algorithms was examined in terms of the quality of solution using

statistical tests and Maximum Possible Improvement (MPI) method.

Architecture representation: Software architecture of the sequential applications

can be modeled by: Discrete Time Markov Chain (DTMC), Continuous Time

Markov Chain (CTMC), Stochastic Petri Net (SPNs) and Semi-Markov Process

(SMP). The Serial Parallel system is ideal modeling for solving an RAP problem.

DTMC is commonly used to represent the serial-parallel system. DTMC and SMP

are used to represent the architecture of systems in this study.

The implementation and the tailored tool: The implementation of the approach on

the case studies and customization of parameters were developed and performed

using a tailored tool. The tool was designed using Borland Delphi 5 for the purpose

of experiments in order to repeat the executions while varying the parameters.

Case studies and their assumptions: The numerical case study is a simple one for

the purpose of examining the sensitivity of parameters relevant to the “Build-or-Buy”

strategy. The second case study, Anti-Lock Brake System (ABS), from embedded

system domain (ES), is used to validate the applicability of the approach for the ES

domain, as well as to evaluate the impact of using the cost-discount model to the

quality of the obtained solutions. The third case study is Web-Based Data Retrieval

System (WBDRS) from Information system domain, which is used to demonstrate

the applicability of the approach in IS domain. This case study is also used to

compare the proposed approach with similar approaches from literature.

The first case study is composed of a simple structure with numeric data

representing the parameters of software architecture. The simple structure is used to

simplify the analysis and to show reactions to changes in the parameters.

For the second case study, ABS, some of the parameters are associated with

each component (such as the cost of components), while other parameters need to be

estimated. Estimated time per visit, redundancy overheads, execution initiation

probability, and transfer probability are either estimated based on profiles of expert

knowledge or based on different operating profiles of results using sensitivity

analysis. The annotated parameters such as failure rates have been estimated using a

model based approach and sensitivity analysis, as applied in a previous work by

Meedeniya et al. [41]. The rest of the parameters can be calculated using the

estimated and given parameters such as Sojourn Time per Visit and expected number

of visits.

The WBDRS case study has been partly based on the monitoring of an

existing data retrieval system at University of L’Aquila, Italy. The data has been

taken from software artifacts of the same system. Cortellessa et al. [32] have applied

an approach similar to the proposed one and using this case study. In fact, due to the

incomplete documentation, an exploration technique has been applied by the same

authors to provide convinced values. For example, to identify the number of

invocations, the researchers have analyzed partial scenarios and compared the result

by monitoring the average number of interactions. For the purpose of comparing the

proposed approach with [32], a similar case study and the same data have been

utilized.

The proposed approach applied to optimize architecture of the selected case

study in order to evaluate its applicability and effectiveness. Quantitative evaluation

methods have been used for evaluation. Independent t-Test is used to evaluate the

efficiency of CD_RAP. Additionally, a model of comparison is used to qualitatively

evaluate and indicate the effectiveness of the approach in compared to well known

practice in literature. Moreover, Maximum Possible Improvement (MPI) method and

statistical tests have been used to compare between the proposed algorithms in order

to select best optimization dimensionality for the proposed approach. Statistical test

is used to statistically measure the quality of obtained solutions from based on the

selected algorithm and to ensure the robustness of the results.

1.6 Significance of the Study

Selecting the appropriate set of components and connectors to make the

system meeting functional and accommodate non-functional requirements remains a

hard task to be accomplished. In practice, most selection decisions are subject to

current joint ventures, commercial benefits, and successful vendor marketing.

Moreover, the competitiveness of business depends usually on very strict

development schedules. Traditional selection of components is time-consuming since

considerable time is needed to investigate and study the available components [39].

As stated before, real software projects suffer ever more from limited budgets, and

the decisions taken by software developers are heavily affected by cost issues.

Therefore, selecting an appropriate optimization technique to solve the problem is

essential to nominate optimal design.

There are many studies in literature associated with the evaluation of software

architecture. Architecture Tradeoff Analysis Method (ATAM) [42], which is a

common method in the software evaluation domain, provides a quantitative

framework by which to reason about software trade-offs at architecture level.

Further, the Architecture Tradeoff Analysis Method / Attribute-Based Architectural

Styles (ATAM/ABAS) [43] method and Cost Benefit Analysis Model (CBAM) [44]

have been proposed with ATAM to provide quantitative and qualitative reasons

about quality attributes. An approach guided by a quality attribute known as

Attribute-Driven Design (ADD) method [45] has been proposed to produce systems

with high quality. It is a systematic step-by-step method for designing the software

architecture of a software-intensive system. At each stage in the development, these

approaches use scenarios, tactics and architectural patterns to assess the satisfaction

of a set of quality attributes. However, the perspective of this study differs from

ATAMs and ADD. Although ADD is guided by quality attributes, there is no

solution for cases with no prescribed scenario or pattern. Additionally, ATAMs and

ADD are manual methods and based on experience, while this study is an automated

method based on optimization techniques to select an optimal design.

Many real-world decision-making problems use optimization techniques to

attain their goals [46]. These include, for example, minimizing time to deliver

product, maximizing reliability, minimizing deviations from desired levels,

minimizing costs etc. Although real-world software systems have increased in size

and complexity, the cost of application failures grows and hence business

performance increasingly deteriorates. Components used in the automotive domain

are expensive and one of the reasons for the high cost of electronics is the large

number of ECU used [28]. Thus, optimization of architecture design has become

crucial.

However, few efforts have been directed towards optimization of software

based on reliability-cost trade-offs to produce cost-effective applications. This

releases the need to expand prescribed relationships between architectural design

decisions and quality attributes under cost constraints, which in turn could conduct a

realistic evaluation and support automated architecture design [47]. In addition,

earlier fault corrections and precise predictions that needed to the consumers from

the system could be delivered. Consequently, there is a need for an architecture-

based approach that enables the selection of architectural design. The employment of

an optimization technique into such approaches will aid in simplifying evaluation of

software architecture, save software development cost and efforts, and it will play an

essential role in producing cost-effective applications.

1.7 Thesis Outlines

This thesis encompasses some aspects relevant to software architecture and

optimization techniques to support software architecture evaluation for solving RAP

problems. The Proposed approach in this thesis provides two different ways to

evaluate the software architecture based on one optimization model. The approach is

noted as (CD/BoB-RAP), which stands for Cost-Discount /Build-or-buy for RAP,

(CD/BoB-RAP). The thesis consists of nine major chapters, including the

introductory chapter which commences the report. The remainder of the thesis is

composed of eight chapters and an appendix followed by published papers related to

the topic.

Chapter 2 discusses the literature review of software architecture evaluation

and optimization particularly to support the software evaluation for the selection of

optimal architectural design. It opens with explanations of the basic concepts of

software architecture, component based development, and related problems such as

span of design space and Reliability Redundancy Allocation Problem. This is

followed by discussion on the main approaches for the evaluation of architecture,

which are grouped into three main categories, i.e. anti-pattern, rule-based, and

search-based approaches.

Chapter 3 aims to evaluate the current search-based approach for software

architecture optimization. It illustrates the proposed taxonomy for the software

architecture optimization to evaluate the previous studies and to put this study in

context. The main features of the taxonomy are based on features of component

interactions, software architecture and the optimization process. The chapter reports

on comparative evaluation for a number of optimization-based approaches to

architectural design selection. The evaluation conducted was based on an

optimization feature extracted from the taxonomy. In addition, some general features

proposed in this study have been used for the evaluations. The critical discussion and

summary of the evaluation of the comparison focus on the capabilities of the

proposed approach to effectively support the selection of optimal architectural

design. The evaluation results of general features are crucial to identify gaps in the

current works, while the results of evaluations represent the corner stone by which to

build a solution that fills the identified gaps.

Chapter 4 presents the research methodology established to handle this work.

The chapter includes research design, operational framework, and overview

concerning verification and evaluation of the proposed approach. The research

design is visualized as a flowchart to illustrate the plan and sequence steps to conduct

the research. However, the operational framework, which is built based on the

research questions and research objectives, describes the action plan by which to

perform the study. The chapter also describes the verification and evaluation

methods and the case studies used to evaluate the proposed approach.

Chapter 5 describes the CD/BoB-RAP approach, optimization algorithm, as

well as the varying optimization strategies used for the approach. First, the

optimization model and its main elements are outlined. The chapter then highlights

the architecture representation and architectural evaluation methods. These include

“Cost-Discount” and “Build-or-Buy” and the optimization process, as well as the

proposed algorithms for the approach to enhance the capabilities in selecting a

reliable and cost effective design.

Chapter 6 demonstrates the evaluation of the applicability of CD/BoB-RAP

to optimize the software architecture. The CD/BoB-RAP has been applied on Anti-

lock Brake System (ABS), a case study from the ES domain. The case study is

described and utilized for the evaluation of the approach in order to develop a cost-

effective application based on the Cost-Discount (CD) evaluation method. The

chapter reports on the comparison between the quality attributes of architecture

obtained when the approach is executed based on a simple optimization model and

performed based on the CD/BoB-RAP. The results are analyzed and the impact of

CD/BoB-RAP approach on the quality of the obtained solutions is discussed.

Chapter 7 reports the results and discussions of the application of CD/BoB-

RAP on a numerical case study to evaluate the sensitivity of parameters of Build-or-

Buy strategy to changes. The applicability of the CD/BoB-RAP then builds a cost

effective application from mixed components based on Build-or-Buy strategy. This

has been evaluated by applying the approach on a Web-based Data Retrieval System

(WBDRS) used on a retrieval system case study to evaluated its applicability in the

IS domain. The results of the evaluation have been shown and discussed.

Chapter 8 demonstrates evaluation of the algorithm and the selection of

optimization dimensions for the CD/BoB-RAP. In addition, the chapter presents the

process and discussions on comparing the CD/BoB-RAP to similar approaches in

order to show the effectiveness of the proposed approach.

Finally, Chapter 9 presents the thesis summary. In addition, it outlines the

achievements, contributions, future works, and related publications. The chapter ends

with the conclusion followed by reference to future works.

208

REFERENCES

1. Fukuzawa, K. and M. Saeki. Evaluating software architectures by coloured

petri nets. in Proceedings of the 14th international conference on Software

engineering and knowledge engineering. 2002: ACM.

2. Brun, Y., Smart redundancy for distributed computation. IEEE, 2011.

3. Voas, J., COTS software: the economical choice? Software, IEEE, 1998.

15(2): p. 16- 19

4. Hoch, D., Huhn,W., Naher, V., and A. Zielke The race to master automotive

embedded systems development. 2006, McKinsey Company, Automotive and

assembly sector business technology office: Germany.

5. Sharafi, S.M., G.A. Ghazvini, and S. Emadi. An analytical model for

performance evaluation of software architectural styles. in Software

Technology and Engineering (ICSTE), 2010 2nd International Conference

on. 2010.

6. Banks, A., J. Vincent, and C. Anyakoha, A review of particle swarm

optimization. Part II: hybridisation, combinatorial, multicriteria and

constrained optimization, and indicative applications. Natural Computing,

2008. 7(1): p. 109-124.

7. Sülflow, A., N. Drechsler, and R. Drechsler. Robust multi-objective

optimization in high dimensional spaces. 2007: Springer.

8. Cortellessa, V., F. Marinelli, and P. Potena, Automated selection of software

components based on cost/reliability tradeoff. Software Architecture, 2006: p.

66-81.

9. Hsieh, T.-J. and W.-C. Yeh, Penalty guided bees search for redundancy

allocation problems with a mix of components in series-parallel systems.

Computers & Operations Research, 2012. 39(11): p. 2688-2704.

209

10. Chen and TaCheng, Penalty Guided PSO for Reliability Design Problems,

PRICAI 2006: Trends in Artificial Intelligence, Q. Yang and G. Webb,

Editors. 2006, Springer Heidelberg,Berlin. p. 777-786.

11. Joines, J.A. and C.R. Houck. On the use of non-stationary penalty functions

to solve nonlinear constrained optimization problems with GA's. 1994.

12. Pelliccione, P, An architectural approach to the correct and automatic

assembly of evolving component-based systems. Journal of Systems and

Software, 2008. 81(12): p. 2237-2251.

13. Goševa-Popstojanova, K. and K.S. Trivedi, Architecture-based approach to

reliability assessment of software systems. Performance Evaluation, 2001.

45(2-3): p. 179-204.

14. Hikita, M., Nakagawa, Y., Harihisa, H., Reliability optimization of systems by

a surrogateconstraints algorithm. IEEE Transactions on Reliability, 1992. R-

41(3): p. 473-480.

15. Ralf Reussner, Judith Stafford , and C.A. Szyperski, Architecting Systems

with Trustworthy Components 04511 Abstracts Collection -- Architecting

Systems with Trustworthy Components, ed. D.S.P.R.a.J.S.a.C.A. Szyperski.

2006, Schloss Dagstuhl, Germany: Internationales Begegnungs- und

Forschungszentrum f{\"u}r Informatik (IBFI).

16. Lee, M.J.R.H.L., Improving Profitability with Quantity Discounts under

Fixed Demand. IIE Transactions 1985. 17(4): p. 388-395

17. Zia, L. and D.W. Coit, Redundancy Allocation for Series-Parallel Systems

Using a Column Generation Approach. Reliability, IEEE Transactions on,

2010. 59(4): p. 706-717.

18. Kuo, W. and V.R. Prasad, An annotated overview of system-reliability

optimization. Reliability, IEEE Transactions on, 2000. 49(2): p. 176-187.

19. Ouzineb, M., M. Nourelfath, and M. Gendreau, Tabu search for the

redundancy allocation problem of homogenous series–parallel multi-state

systems. Reliability Engineering & System Safety, 2008. 93(8): p. 1257-

1272.

20. Chen, T., You,And PengSheng, Immune algorithms-based approach for

redundant reliability problems with multiple component choices. Computers

in Industry, 2005. 56(2): p. 195-205.

210

21. Leandro dos Santos, C., An efficient particle swarm approach for mixed-

integer programming in reliability–redundancy optimization applications.

Reliability Engineering & System Safety, 2009. 94(4): p. 830-837.

22. Jung, H.W., C.S. Chung, and K.O. Lee. Selecting optimal COTS products

considering cost and failure rate. 1999: Citeseer.

23. Jung, H.-W. and B. Choi, Optimization models for quality and cost of

modular software systems. European Journal of Operational Research, 1999.

112(3): p. 613-619.

24. Yung-Chain Liang, Min-Hua Lo, and Yi-Ching Chen, Variable

Neighbourhood Search For Redundancy Allocation Problems. IMA Journal

of Management Mathematics, 2007. 18 p. 135−155.

25. Liang, Yun-Chia Chen, and Yi-Ching., Redundancy allocation of series-

parallel systems using a variable neighborhood search algorithm. Reliability

Engineering & System Safety, 2007. 92(3): p. 323-331.

26. Daniel Dominguez Gouv, D., Muniz., Gilson Pinto, Alberto Avritzer, Rosa

Maria Meri Le, Edmundo de Souza e Silva, Morganna Carmem Diniz, Luca

Berardinelli, Julius C.B. Leite, Daniel Mosse, Yuanfang Cai, Mike Dalton,

Lucia Kapova, And Anne Koziolek,. Experience building non-functional

requirement models of a complex industrial architecture, in Proceeding of the

second joint WOSP/SIPEW international conference on Performance

engineering. 2011, ACM: Karlsruhe, Germany. p. 43-54.

27. Baker, P., Harman, M., Steinhofel, K., And Skaliotis, A. Search Based

Approaches to Component Selection and Prioritization for the Next Release

Problem. in Software Maintenance, 2006. ICSM '06. 22nd IEEE International

Conference on. 2006.

28. Patil, S. and L. Kapaleshwari, Embedded Software - Issues and Challenges.

2009.

29. Indika Meedeniya, Aldeida Aleti, and B. Zimmerova, Redundancy Allocation

in Automotive Systems using Multi-objective Optimisation in Symposium on

Automotive/Avionics Systems Engineering SAASE. 2009.

30. Guidong, L. Coordinating Three-Level Supply Chain with Quantity Discount

Policies. in Management and Service Science (MASS), 2010 International

Conference on. 2010.

211

31. Ebrahimipour, V. and M. Sheikhalishahi. Application of multi-objective

particle swarm optimization to solve a fuzzy multi-objective reliability

redundancy allocation problem. in Systems Conference (SysCon), 2011 IEEE

International. 2011.

32. Cortellessa, V., F. Marinelli, and P. Potena, An optimization framework for

"build-or-buy" decisions in software architecture. Comput. Oper. Res., 2008.

35(10): p. 3090-3106.

33. Cortellessa V, Marinelli F, and P. P, Automated selection of software

components based on cost/reliability tradeoff. Software Architecture, 2006: p.

66-81.

34. Pande, J., On Some Critical Issues in Component Selection in Component

based Software Development. International Journal of Computer

Applications, 2012. 46(4): p. 44-50.

35. Hasselbring, W. and R. Reussner, Toward trustworthy software systems.

Computer, 2006. 39(4): p. 91-92.

36. Etessami, K., The ComFoRT Reasoning Framework, in Computer Aided

Verification. 2005, Springer Berlin / Heidelberg. p. 164-169.

37. Krutchen, P., The Rational Unified Process: An Introduction. 2003, 3rd

ed.Addison-Wesley: Boston.

38. Bass, L., Ivers, J.,Klein, M.H., and Merson, P.F., Reasoning frameworks.

2005, Software Engineering Institute Carnegie Mellon University.

39. Alves, C. and A. Finkelstein. Challenges in COTS decision-making: a goal-

driven requirements engineering perspective. 2002: ACM.

40. Lyu, M.R., Software Reliability Engineering: A Roadmap, in 2007 Future of

Software Engineering. 2007, IEEE Computer Society. p. 153-170.

41. Indika Meedeniya, B.B., Aldeida Aleti, and Lars Grunske, Reliability-driven

deployment optimization for embedded systems. Journal of Systems and

Software, 2011. 84(5): p. 835-846.

42. Goševa-Popstojanova, K. and K.S. Trivedi, Architecture-based approach to

reliability assessment of software systems. Performance Evaluation, 2001.

45(2): p. 179-204.

43. Goševa-Popstojanova, K. and S. Kamavaram. Uncertainty Analysis of

Software Reliability Based on Method of Moments. 2002.

212

44. Helander, M.E., M. Zhao, and N. Ohlsson, Planning models for software

reliability and cost. Software Engineering, IEEE Transactions on, 1998.

24(6): p. 420-434.

45. Bass, L., M. Klein, and F. Bachmann, Quality attribute design primitives and

the attribute driven design method. Software Product-Family Engineering,

2002: p. 323-328.

46. Sahoo, N.C., S. Ganguly, and D. Das, Multi-objective planning of electrical

distribution systems incorporating sectionalizing switches and tie-lines using

particle swarm optimization. Swarm and Evolutionary Computation, 2012.

3(0): p. 15-32.

47. Shaw, M. and P. Clements, The golden age of software architecture.

Software, IEEE, 2006. 23(2): p. 31-39.

48. Szyperski, C., D. Gruntz, and S. Murer, Component software: beyond object-

oriented programming. 2002: Addison-Wesley Professional.

49. Ritzsche, M.a.J.J., Putting performance engineering into model-driven

engineering: Model-driven performance engineering. Nashville, TN, United

states, Springer Verlag., 2008.

50. Zeng, L., Benatallah, B.,Ngu, A.H.H.,Dumas, M.,Kalagnanam, J., and Chang,

H., QoS-aware middleware for web services composition. Software

Engineering, IEEE Transactions on, 2004. 30(5): p. 311-327.

51. Becker, S., H. Koziolek., The Palladio component model for model-driven

performance prediction. Journal of Systems and Software, 2009. 82(1): 3-

22.localization in model transformation, Sofia, Bulgaria, INSTICC Press.

52. Diaz-Pace, A., Kim, H.,Bass, L.,Bianco, P., and Bachmann, F., Integrating

quality-attribute reasoning frameworks in the ArchE design assistant. Quality

of Software Architectures. Models and Architectures, 2008: p. 171-188.

53. Goseva-Popstojanova, K., A.P. Mathur, and K.S. Trivedi. Comparison of

architecture-based software reliability models. in Software Reliability

Engineering, 2001. ISSRE 2001. Proceedings. 12th International Symposium

on. 2001.

54. Pressman, R.S., Software Engineering - A Practitioner’s Approach 6th ed.

2004: McGraw Hill

55. Clements, P., Documenting software architectures: views and beyond. 2003:

IEEE.

213

56. Dueñas, J., W. de Oliveira, and J. de la Puente, A software architecture

evaluation model. Development and Evolution of Software Architectures for

Product Families, 1998: p. 148-157.

57. Kruchten, P., H. Obbink, and J. Stafford, The past, present, and future for

software architecture. Software, IEEE, 2006. 23(2): p. 22-30.

58. Avizienis, A., Basic concepts and taxonomy of dependable and secure

computing. Dependable and Secure Computing, IEEE Transactions on, 2004.

1(1): p. 11-33.

59. Reussner, R.H., H.W. Schmidt, and I.H. Poernomo, Reliability prediction for

component-based software architectures. Journal of Systems and Software,

2003. 66(3): p. 241-252.

60. Avizienis, A., Fundamental concepts of dependability. TECHNICAL

REPORT SERIES-UNIVERSITY OF NEWCASTLE UPON TYNE

COMPUTING SCIENCE, 2001.

61. Mari, M. and N. Eila. The impact of maintainability on component-based

software systems. 2003: IEEE.

62. Immonen, A. and E. Niemelä, Survey of reliability and availability prediction

methods from the viewpoint of software architecture. Software and Systems

Modeling, 2008. 7(1): p. 49-65.

63. Martens, A. and H. Koziolek, Automatic, Model-Based Software

Performance Improvement for Component-based Software Designs.

Electronic Notes in Theoretical Computer Science, 2009. 253(1): p. 77-93.

64. A .A. Abdelaziz, W MWN Kadir, Citizaiton Mohmd Hashim, Metaheuristic

Search Approach Based on In-house/Out-sourced Strategy to Solve

Redundancy Allocation Problem in Component-Based Software Systems

International journal of software engineering and its applications, 2012.

Vol.6(No.3, 2012).

65. Yeh, W.-C. and T.-J. Hsieh, Solving reliability redundancy allocation

problems using an artificial bee colony algorithm. Comput. Oper. Res., 2011.

38(11): p. 1465-1473.

66. Yeh, W.-C., A two-stage discrete particle swarm optimization for the

problem of multiple multi-level redundancy allocation in series systems.

Expert Systems with Applications, 2009. 36(5): p. 9192-9200.

214

67. Sabane, A. Improving system testability and testing with microarchitectures.

2010: IEEE.

68. Cortellessa, V. and L. Frittella, A framework for automated generation of

architectural feedback from software performance analysis, in Proceedings

of the 4th European performance engineering conference on Formal methods

and stochastic models for performance evaluation. 2007, Springer-Verlag:

Berlin, Germany. p. 171-185.

69. Rodrigues, G., D. Rosenblum, and S. Uchitel. Using scenarios to predict the

reliability of concurrent component-based software systems. 2005.

Edinburgh, United kingdom: Springer Verlag.

70. Xu, J., Rule-based automatic software performance diagnosis and

improvement, in Proceedings of the 7th international workshop on Software

and performance. 2008, ACM: Princeton, NJ, USA. p. 1-12.

71. Harman, M. and B.F. Jones, Search-based software engineering. Information

and Software Technology, 2001. 43(14): p. 833-839.

72. Aguilar-Ruiz, J.S.,, An evolutionary approach to estimating software

development projects. Information and Software Technology, 2001. 43(14):

p. 875-882.

73. Antoniol, G., M. Di Penta, and M. Harman. Search-based techniques applied

to optimization of project planning for a massive maintenance project. 2005:

IEEE.

74. Briand, L.C., J. Feng, and Y. Labiche. Using genetic algorithms and coupling

measures to devise optimal integration test orders. 2002: ACM.

75. Guo, Q., Computing unique input/output sequences using genetic algorithms.

Formal Approaches to Software Testing, 2004: p. 1098-1100.

76. McMinn, P, The species per path approach to SearchBased test data

generation. 2006: ACM.

77. Bouktif, S,.A novel approach to optimize clone refactoring activity. 2006:

ACM.

78. Fatiregun, D., M. Harman, and R.M. Hierons. Search-based amorphous

slicing. 2005: IEEE.

79. G. Canfora, M.D.P., R. Esposito, and M. L. Villani. , An approach for qoS-

aware service composition based on genetic algorithms. In H.-G. Beyer and

215

U.-M. O’Reilly, editors, Proc.of Genetic and Evolutionary Computation

Conference 2005, pages 1069–1075. ACM, , 2005.

80. Cohen, M., S.B. Kooi, and W. Srisa-an. Clustering the heap in multi-threaded

applications for improved garbage collection. 2006: ACM.

81. Bouktif, S., H. Sahraoui, and G. Antoniol, Simulated annealing for improving

software quality prediction, in Proceedings of the 8th annual conference on

Genetic and evolutionary computation. 2006, ACM: Seattle, Washington,

USA. p. 1893-1900.

82. Khoshgoftaar, T.M., Y. Liu, and N. Seliya, A multiobjective module-order

model for software quality enhancement. Evolutionary Computation, IEEE

Transactions on, 2004. 8(6): p. 593-608.

83. Praditwong, K., M. Harman, and Y. Xin, Software Module Clustering as a

Multi-Objective Search Problem. Software Engineering, IEEE Transactions

on, 2011. 37(2): p. 264-282.

84. Shannon, C.E., A mathematical theory of communication. ACM

SIGMOBILE Mobile Computing and Communications Review, 2001. 5(1):

p. 3-55.

85. CanforaHarman, G. and M. Di Penta. New frontiers of reverse engineering.

2007: IEEE Computer Society.

86. Cooper, K.D., P.J. Schielke, and D. Subramanian. Optimizing for reduced

code space using genetic algorithms. 1999: ACM.

87. Ruan, N. and X. Sun, An exact algorithm for cost minimization in series

reliability systems with multiple component choices. Applied Mathematics

and Computation, 2006. 181(1): p. 732-741.

88. David, Alice, and Ieee, Reliability Optimization of Series-Parallel Systems

Using a Genetic Algorithm. IEEE Transactions on Reliability, 1996. 45: p.

254--260.

89. Kulturel-Konak, S., A.E. Smith, and D.W. Coit, Efficiently solving the

redundancy allocation problem using tabu search. IIE transactions, 2003.

35(6): p. 515-526.

90. website. Swarm and Evolutionary Computation. 2011 [cited 2011 13-11-

2011]; Available from:

http://web.mysites.ntu.edu.sg/epnsugan/PublicSite/Shared%20Documents/Sw

arm%20and%20Evolutionary%20Computation_2.pdf.

216

91. Meedeniya, I. OptimizationSurvey. 2011 6 DECEMBER 2009, AT 17:34.

[cited 2011 20-11-2011]; Available from:

https://sdqweb.ipd.kit.edu/wiki/OptimizationSurvey.

92. Martens Anne, D.A., Heiko Koziolek, Raffaela Mirandola, and Ralf

Reussner, , A Hybrid Approach for Multi-attribute QoS Optimisation in

Component Based Software Systems, in Research into Practice – Reality and

Gaps, G. Heineman, J. Kofron, and F. Plasil, Editors. 2010, Springer Berlin /

Heidelberg. p. 84-101.

93. Noorshams, Q., A. Martens, and R. Reussner. Using quality of service bounds

for effective multi-objective software architecture optimization. 2011. Oslo,

Norway: Association for Computing Machinery, 2011.

94. Martens, A., F. Brosch, and R. Reussner, Optimising multiple quality criteria

of service-oriented software architectures, in Proceedings of the 1st

international workshop on Quality of service-oriented software systems.

2009, ACM: Amsterdam, The Netherlands. p. 25-32.

95. Ashrafi, N. and O. Berman, Optimization models for selection of programs,

considering cost and reliability. Reliability, IEEE Transactions on, 1992.

41(2): p. 281-287.

96. Taboada, H.A., J.F. Espiritu, and D.W. Coit, MOMS-GA: A Multi-Objective

Multi-State Genetic Algorithm for System Reliability Optimization Design

Problems. Reliability, IEEE Transactions on, 2008. 57(1): p. 182-191.

97. Wadekar, S.A. and S.S. Gokhale, Exploring Cost and Reliability Tradeoffs in

Architectural Alternatives Using a Genetic Algorithm, in IEEE Computer

Society, Proceedings of the 10th International Symposium on Software

Reliability Engineering. 1999.

98. Li, J.Z., Fast scalable optimization to configure service systems having cost

and quality of service constraints. 2009: ACM.

99. Zheng, T. and M. Woodside, Heuristic optimization of scheduling and

allocation for distributed systems with soft deadlines. Computer Performance

Evaluation. Modelling Techniques and Tools, 2003: p. 169-181.

100. El-Sayed, H., D. Cameron, and M. Woodside. Automation support for

software performance engineering. 2001: ACM.

101. Zeng, L., QoS-aware middleware for web services composition. Software

Engineering, IEEE Transactions on, 2004. 30(5): p. 311-327.

217

102. Cortellessa, Marinelli, and Potena, Automated selection of software

components based on cost/reliability tradeoff. Software Architecture, 2006: p.

66-81.

103. El-Sayed, H., D. Cameron, and M. Woodside. Automation support for

software performance engineering. in ACM SIGMETRICS Performance

Evaluation Review. 2001: ACM.

104. Lisnianski, A., Levitin, G.,Ben-Haim, H., and Elmakis, D., Power system

structure optimization subject to reliability constraints. Electric Power

Systems Research, 1996. 39(2): p. 145-152.

105. Debardelaben, J.A. and A.J. Gadient, Incorporating Cost Modeling in

Embedded-System Design. IEEE DESIGN & TEST OF COMPUTERS, 1997.

106. Barry, W.B., Chris, A.,A. Winsor Brown,Sunita Chulani, Bradford K. Clark,

Ellis Horowitz, Ray Madachy,Donald J. Reifer, and Bert Steece Software

Cost Estimation with COCOMO II. 2009: SPrentice Hall Press Upper Saddle

River, NJ, USA ©2009.

107. Helander, Zhao, and Ohlsson, Planning models for software reliability and

cost. Software Engineering, IEEE Transactions on, 1998. 24(6): p. 420-434.

108. WILLIAMS, D.R.P., Study of the Warranty Cost Model for Software

Reliability with an Imperfect Debugging Phenomenon. Turk J Elec Engin,

VOL.15, NO.3 , http://journals.tubitak.gov.tr/elektrik/issues/elk-07-15-3/elk-

15-3-5-0604-5.pdf 2007.

109. Gokhale, S.S. Cost constrained reliability maximization of software systems.

in Reliability and Maintainability, 2004 Annual Symposium - RAMS. 2004.

110. Aneja, Y.P., R. Chandrasekaran, and K.P.K. Nair, Minimal-cost system

reliability with discrete-choice sets for components. Reliability, IEEE

Transactions on, 2004. 53(1): p. 71-76.

111. Gokhale, S.S., Wong, W.E., Trivedi, K.S., and Horgan, JR. An analytical

approach to architecture-based software reliability prediction. 1998: IEEE.

112. Ramirez-Marquez, J.E. and D.W. Coit, A heuristic for solving the redundancy

allocation problem for multi-state series-parallel systems. Reliability

Engineering & System Safety, 2004. 83(3): p. 341-349.

113. Saed, A.A.A., W.M.W N., An automated support for evaluating alternative

design decisions. Journal of Theoretical and Applied Information

Technology, 2012. 36(2): p. 234-246.

218

114. Saed, A.A.A. and W.M.N.W. Kadir. Applying particle swarm optimization to

software performance prediction an introduction to the approach. 2011.

115. Fukuzawa, K. and M. Saeki. Evaluating software architectures by coloured

petri nets. 2002: ACM.

116. Sharafi, M., F. Shams Aliee, and A. Movaghar. A review on specifying

software architectures using extended automata-based models. 2007:

Springer.

117. Littlewood, B., Software reliability model for modular program structure.

IEEE Transactions on Reliability, 1979. 5(10): p. 241-246.

118. Asad, C.A., M.I. Ullah, and M.J.U. Rehman. An approach for software

reliability model selection. 2004: IEEE.

119. Xie, M. and C. Wohlin. An additive reliability model for the analysis of

modular software failure data. in Software Reliability Engineering, 1995.

Proceedings., Sixth International Symposium on. 1995.

120. Zeshan, F. and R. Mohamad. Software architecture reliability prediction

models: An overview. 2011: IEEE.

121. Trcka, N., Integrated model-driven design-space exploration for embedded

systems. 2011: IEEE.

122. Liang, Y.C. and M.H. Lo, Multi-objective redundancy allocation

optimization using a variable neighborhood search algorithm. Journal of

Heuristics, 2010. 16(3): p. 511-535.

123. Haverkort, B.R. and A.M.H. Meeuwissen, Sensitivity uncertainty analysis of

Markov-reward models. IEEE Transactions on Reliability, 1995. 44(1): p.

147-154.

124. Trivedi, K.S., Probability and statistics with reliability, queuing, and

computer science applications, 2nd Edition. 2001: John Wiley.

125. Bass, L., Reasoning frameworks. 2005.

126. Diaz-Pace, A., Integrating quality-attribute reasoning frameworks in the

ArchE design assistant. Quality of Software Architectures. Models and

Architectures, 2008: p. 171-188.

127. Gokhale, S.S. and K.S. Trivedi, Analytical models for architecture-based

software reliability prediction: A unification framework. IEEE Transactions

on Reliability, 2006. 55(4): p. 578-590.

219

128. Gokhale, S. and K.S. Trivedi. Structure–based software reliability prediction.

in In Proc.of Fifth Intl. Conference on Advanced Comput-ing (ADCOMP 97).

1997. Chennai,India.

129. Cheung, R.C., A User-Oriented Software Reliability Model. Software

Engineering, IEEE Transactions on, 1980. SE-6(2): p. 118-125.

130. Laprie, J.-C., DEPENDABILITY EVALUATION OF SOFTWARE SYSTEMS

IN OPERATION. IEEE Transactions on Software Engineering, 1984. SE-

10(6): p. 701-714.

131. Kubat, P., Assessing reliability of modular software. Operations Research

Letters, 1989. 8(1): p. 35-41.

132. Coit, D.W. and A.E. Smith, Redundancy allocation to maximize a lower

percentile of the system time-to-failure distribution. Reliability, IEEE

Transactions on, 1998. 47(1): p. 79-87.

133. Coit, D.W. and A.E. Smith, Solving the redundancy allocation problem using

a combined neural network/genetic algorithm approach. Computers &

Operations Research, 1996. 23(6): p. 515-526.

134. David W. Coit and A.E. Smith, Genetic algorithm to maximize a lower-bound

for system time-to-failure with uncertain component Weibull parameters.

Computers and Industrial Engineering, 2002. 41(4).

135. Coit, D.W. and A.E. Smith, Solving the redundancy allocation problem using

a combined neural network/genetic algorithm approach. Comput. Oper. Res.,

1996. 23(6): p. 515-526.

136. Tian, Z., G. Levitin, and M.J. Zuo, A joint reliability–redundancy

optimization approach for multi-state series–parallel systems. Reliability

Engineering & System Safety, 2009. 94(10): p. 1568-1576.

137. Nakagawa, Y. and S. Miyazaki, Surrogate Constraints Algorithm for

Reliability Optimization Problems with Two Constraints. Reliability, IEEE

Transactions on, 1981. R-30(2): p. 175-180.

138. Cao, L., J. Cao, and M. Li, Genetic algorithm utilized in cost-reduction

driven web service selection. Computational Intelligence and Security, 2005:

p. 679-686.

139. Bhunia, A., L. Sahoo, and D. Roy, Reliability stochastic optimization for a

series system with interval component reliability via genetic algorithm.

Applied Mathematics and Computation, 2010. 216(3): p. 929-939.

220

140. SAED, A.A.A., W. KADIR, and A. YOUSIF. A Prediction Approach to

Support Alternative Design Decision for Component-Based System

Development. in the 11th WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems (SEPADS'12). 2012.

141. Taboada, H.A., Practical solutions for multi-objective optimization: An

application to system reliability design problems. Reliability Engineering &

System Safety, 2007. 92(3): p. 314-322.

142. Breedam, A.V., Comparing descent heuristics and metaheuristics for the

vehicle routing problem. Computers & Operations Research, 2001.

28(4): p. 289-315.

143. Luenberger, D.G. and Y. Ye, Linear and nonlinear programming. Vol. 116.

2008: Springer Verlag.

144. Bussieck, M.R. and A. Pruessner, Mixed-integer nonlinear programming.

SIAG/OPT Newsletter: Views & News, 2003. 14(1): p. 19-22.

145. Postolache, R. Linear and Nonlinear Optimization Programming. 2007

[cited 2012 15-02-2012]; Available from:

http://www.capital.edu/uploadedFiles/Capital/Academics/Schools_and_Depa

rtments/Natural_Sciences,_Nursing_and_Health/Computational_Studies/Edu

cational_Materials/Finance_and_Economics/linear30085.pdf.

146. Holland, J.H., Adaptation in natural and artificial systems. 1975: University

of Michigan press.

147. Adil yousif, a.h.a., sulaiman mohd nor, adil ali abdelaziz Scheduling jobs on

grid computing using firefly algorithm. Journal of Theoretical and Applied

Information Technology , 14570 -JATIT, p 155 - 164 Vol 33. No. 2 2011.

148. Eberhart and S. Yuhui. Particle swarm optimization: developments,

applications and resources. in Evolutionary Computation, 2001. Proceedings

of the 2001 Congress on. 2001.

149. Eberhart, R.C. and Y. Shi. Comparing inertia weights and constriction

factors in particle swarm optimization. in Proceedings of the Congress on

Evolutionary Computation. 2000.

150. Shi, Y. and R.C. Eberhart. Parameter selection in particle swarm

optimization. in Proceedings of Evolutionary Programming VII (EP98).

1998.

221

151. Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in

Evolutionary Computation Proceedings, 1998. IEEE World Congress on

Computational Intelligence., The 1998 IEEE International Conference on.

1998.

152. Eberhart, R. and Y. Shi, Comparison between genetic algorithms and particle

swarm optimization Evolutionary Programming VII, V. Porto, Editors. 1998,

Springer Berlin / Heidelberg. p. 611-616.

153. Kennedy, J. and R.C. Eberhart. A discrete binary version of the particle

swarm algorithm. in Systems, Man, and Cybernetics, IEEE International

Conference on Computational Cybernetics and Simulation. 1997.

154. Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings,

IEEE International Conference on Neural Networks. 1995.

155. Liang, J.J., Qin, A. K.,Suganthan, P. N., and Baskar, S., Comprehensive

learning particle swarm optimizer for global optimization of multimodal

functions. IEEE Transactions on Evolutionary Computation, 2006. 10(3): p.

281-295.

156. Qasem, S.N. and S.M. Shamsuddin, Radial basis function network based on

time variant multi-objective particle swarm optimization for medical diseases

diagnosis. Applied Soft Computing, 2011. 11(1): p. 1427-1438.

157. ZHOU, C., Particle Swarm Optimization (PSO) Algorithm [J]. Application

Research of Computers, 2003. 12: p. 7-11.

158. Mostaghim, S. and J. Teich. Strategies for finding good local guides in multi-

objective particle swarm optimization (MOPSO). in Swarm Intelligence

Symposium, 2003. SIS '03. Proceedings of the 2003 IEEE. 2003.

159. Coello Coello, C.A. and M.S. Lechuga. MOPSO: a proposal for multiple

objective particle swarm optimization. in Evolutionary Computation, 2002.

CEC '02. Proceedings of the 2002 Congress on. 2002.

160. Carlisle, A. and G. Dozier, An Off-The-Shelf PSO. Proceedings of the Particle

Swarm Optimization Workshop, 2001: p. 1–6.

161. Kotinis, M., A particle swarm optimizer for constrained multi-objective

engineering design problems. Engineering Optimization, 2010. 42(10): p.

907-926.

222

162. delValle, V., Mohagheghi,Hernandez , and Harley, Particle Swarm

Optimization: Basic Concepts, Variants and Applications in Power Systems.

Evolutionary Computation, IEEE Transactions on, 2008. 12(2): p. 171-195.

163. Xiaohui, H. PSO Tutorial. 2006 [cited 2012 12-6-2012]; Available from:

http://www.swarmintelligence.org/tutorials.php.

164. Zhou, L. and J. Zheng, A New Immune Clone Algorithm to solve the

constrained optimization problems. WSEAS Transactions on Computers,

2011. 10(4): p. 105-114.

165. Harman, M., The Current State and Future of Search Based Software

Engineering, in 2007 Future of Software Engineering. 2007, IEEE Computer

Society. p. 342-357.

166. Miettinen, K., Nonlinear multiobjective optimization. Vol. 12. 1999:

Springer.

167. Ishibuchi, H., T. Doi, and Y. Nojima, Incorporation of scalarizing fitness

functions into evolutionary multiobjective optimization algorithms. Parallel

Problem Solving from Nature-PPSN IX, 2006: p. 493-502.

168. Talbi, E.-G., METAHEURISTICS FROM DESIGN TO IMPLEMENTATION.

2009, Hoboken, New Jersey: John Wiley & Sons, Inc., .

169. Karl O. Jones, G., and goire Boizant, Comparison of Firefly algorithm

optimisation, particle swarm optimisation and differential evolution, in

Proceedings of the 12th International Conference on Computer Systems and

Technologies. 2011, ACM: Vienna, Austria. p. 191-197.

170. Saed, A.A.A., W.M.N.W. Kadir, and S.Z.M. Hashim, Metaheuristic Search

Approach Based on In-house/Out-sourced Strategy to Solve Redundancy

Allocation Problem in Component-Based Software Systems. International

journal of software engineering and its applications, 2012. 6(3).

171. van den Bergh, F., An Analysis of Particle Swarm Optimizers., in Faculty of

Natural and Agricultural Science. 2001, University of Pretoria.

172. Zelkowitz, M.V. and D.R. Wallace, Experimental models for validating

technology. Computer, 1998. 31(5): p. 23-31.

173. Lázaro, M. and E. Marcos. Research in software engineering: Paradigms and

methods. 2005: Citeseer.

174. J. M. Van Den Akker, S.B., G. Diepen, and J. Versendaal. Determination of

the Next Release of a Software Product: an Approach using Integer Linear

223

Programming. in Proceeding of the 11th International Workshop on

Requirements Engineering: Foundation for Software Quality REFSQ’05.

2005.

175. Avizienis, A., Laprie, J.C.,Randell, B., and Landwehr, C., Basic concepts and

taxonomy of dependable and secure computing. Dependable and Secure

Computing, IEEE Transactions on, 2004. 1(1): p. 11-33.

176. McIlroy, M.D., Buxton, JM,Naur, P., and Randell, B. Mass-produced

software components. in Proceedings of the 1st International Conference on

Software Engineering, Garmisch Pattenkirchen, Germany. 1968: sn.

177. Hissam, kml., Enabling predictable assembly. Journal of Systems and

Software, 2003. 65(3): p. 185-198.

178. Avizienis, A., J.C. Laprie, and B. Randell, Fundamental concepts of

dependability. Technical Report Series-University Of Newcastle Upon Tyne

Computing Science, 2001.

179. Derrac, J., García, S.,Molina, D., and Herrera, F., A practical tutorial on the

use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm and Evolutionary

Computation, 2011. 1(1): p. 3-18.

180. Witkowski, T., A. Antczak, and P. Antczak, Comparison of Optimality and

Robustness between SA, TS and GRASP Metaheuristics in FJSP Problem.

Advanced Intelligent Computing Theories and Applications, 2010: p. 319-

328.

181. Burke, E., E.K. Burke, and G. Kendall, Search methodologies: introductory

tutorials in optimization and decision support techniques. 2005: Springer

Verlag.

182. Smith, C.U. and L.G. Williams. Building responsive and scalable web

applications. 2000: Computer Measurement Group; 1997.

183. Shatz, S.M., J.P. Wang, and M. Goto, Task allocation for maximizing

reliability of distributed computer systems. Computers, IEEE Transactions

on, 1992. 41(9): p. 1156-1168.

184. Meedeniya, B., Aleti, and Grunske, Architecture-Driven Reliability and

Energy Optimization for Complex Embedded Systems Research into Practice

– Reality and Gaps, G. Heineman, J. Kofron, and F. Plasil, Editors. 2010,

Springer Berlin / Heidelberg. p. 52-67.

224

185. Associations, T., Technician Guidelines for Antilock Braking Systems, V. The

Maintenance Council American Trucking Associations 2200 Mill Road

Alexandria, Editor. 1998, U.S. Department of Transportation Federal

Highway Administration.

186. Vibhu Saujanya Sharmaa and Kishor STrivedib, Quantifying

softwareperformance, reliability and security: An architecture-based

approach. Journal of Systems and Software (2007), 2006. 80(4): p. 493-509.

187. Grunske, L., Towards an integration of standard component-based safety

evaluation techniques with saveCCM. 2006.

188. kerholm , Johan Fredriksson, and K. Sandstr, Quality Attribute Support in a

Component Technology for Vehicular Software. Fourth Conference on

Software Engineering Research and Practice in Sweden, 2004.

189. Li, J.Z., Chinneck, J., Woodside, M., and Litoiu, M. Fast scalable

optimization to configure service systems having cost and quality of service

constraints. in Proceedings of the 6th international conference on Autonomic

computing. 2009: ACM.

190. Brun, Y., Smart redundancy for distributed computation. 2011: IEEE.

191. Sarmenta, L.F.G., Sabotage-tolerance mechanisms for volunteer computing

systems. Future Generation Computer Systems, 2002. 18(4): p. 561-572.

192. Sun-Devil-Auto. ABS Brakes. 2012 [cited 2012 15-12-2012]; Available

from: http://www.sundevilauto.com/auto-diagrams/abs-brakes.

