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ABSTRACT 
 
 
 
 

The government of Malaysia has been strongly encouraging local construction 
industry to utilize Industrialized Building System (IBS) to reduce dependence on 
foreign workers and improve site safety and construction duration. This study 
investigated the seismic performance of a locally developed precast concrete wall 
system by local system supplier, namely the HC Precast System (HCPS). The system 
used load-bearing precast infill panel which was connected to adjacent columns 
through shear keys and dowel bars protruded by both sides of the wall panel. This 
type of precast system is not currently covered by Eurocode 8. A full-scale single bay, 
double storey prototype structure consisted of HCPS was constructed and tested 
under lateral quasi-static loading at laboratory of Construction Research Institute of 
Malaysia (CREAM). Displacement-controlled cyclic loading of 0.05%, 0.20%, 
0.40%, 0.50% and 0.70% roof drift was applied to the prototype structure to obtain 
the force-displacement hysteresis loops. Observation from the quasi-static test 
revealed concentration of damage along the wall-to-column interface. Thus, a finite 
element modeling method was proposed to represent the nonlinearity of the interface 
element in the numerical model. Next, a 1:3 scaled down of the prototype HCPS was 
designed and constructed for shake table test. Besides scaling of the test specimen, 
characteristics of 8 selected ground motions were also scaled correspondingly 
according to similitude law including the time steps and peak acceleration values. 
The proposed FEM model was found to be in good agreement with both quasi-static 
and shake table tests. The verified FEM model was used to generate capacity curves 
of HCPS by pushover analysis with four different lateral loading configurations 
respectively. The characteristic of the capacity curves and obtained behaviour factor 
was compared to the Equal Displacement Rule (EDR) method recommended by 
Eurocode 8. Thus N2Disp, a method for engineers to estimate the nonlinear 
displacement of HCPS from linear analysis was proposed. Seismic response of 
HCPS under Malaysia earthquake loading was carried out with Modal Response 
Spectrum Analysis (MRSA) and pushover analysis with design ground 
acceleration   values of 0.05g, 0.075g and 0.1g. It was found that in all three    
levels, the performance of HCPS remained within Immediate Occupancy (I0) level. 
High damping rubber bearing (HDRB) was designed to provide seismic base 
isolation of HCPS at target period of 2.5s. The HDRB was designed, manufactured 
and tested at real size to obtain the dynamic property such as compressive and lateral 
stiffness as well as hysteresis damping ratio. The nonlinear base isolated model of 
HCPS was analyzed for 33 time histories representing a wide variety of epicenter 
distance, magnitude, soil classification and acceleration to velocity ⁄  ratio. It 
was revealed that while base isolation provided effective reduction in floor 
acceleration responses (up to 97%) in most time history cases, adverse results 
(amplification) were observed in ground acceleration having low ⁄  ratio and 
providing higher damping ratio (i.e. 24%  at the isolation system. 
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ABSTRAK 
 
 
 
 

Kerajaan Malaysia telah mulai menggalakkan pembinaan tempatan untuk 
menggunakan Industrialized Building System (IBS) untuk mengurangkan 
pergantungan terhadap tenaga buruh luar serta meningkatkan keselamatan dan juga 
masa pembinaan. Kajian ini menjurus kepada prestasi gempa bumi sistem dinding 
pra-tuang tempatan, HC Precast System (HCPS). Sistem tersebut terdiri daripada 
dinding pra-tuang menanggung beban yang dihubungkan kepada tiang bersebelahan 
melalui kekunci ricih dan tetulang tertonjol dari kedua-dua belah tepi dinding. Jenis 
struktur dinding ini masih belum dirangkumi oleh Eurocode 8 sehingga kini. Struktur 
prototaip HCPS dua tingkat dibina lalu diuji dengan pembebanan sisi quasi-static di 
Makmal Kerja Raya (CREAM). Pembebanan sisi dikenakan pada 0.05%, 0.20%, 
0.40%, 0.50% dan 0.70% anjakan bumbung untuk mendapatkan lingkaran histerisis 
daya-anjakan. Pemerhatian daripada ujian tersebut menunjukkan kerosakan tertumpu 
di sepanjang perantaraan tiang ke dinding. Justeru itu, model analisis unsur terhingga 
telah dicadangkan untuk mewakili sifat tidak lelurus unsur perantaraan tersebut. 
Seterusnya, saiz prototaip HCPS tersebut dikecilkan skalanya kepada 1:3 untuk ujian 
meja getar. Sifat-sifat 8 data gempa bumi yang telah dipilih turut diselaraskan demi 
memenuhi hukum similitude, termasuk skala masa dan pemecutan puncak. Model 
kaedah unsur terhingga yang dicadangkan telah menunjukkan hasil analisis yang 
memuaskan dengan data ujian quasi-static dan meja getar lalu digunakan untuk 
menghasilkan lengkung kapasiti HCPS melalui analisis pushover dengan empat 
pembebanan sisi yang berlainan. Sifat lengkung kapasiti dan faktor tingkah laku 
dibandingkan dengan kaedah Equal Displacement Rule (EDR) dalam Eurocode 8. 
Jadi, N2Disp, kaedah baru untuk anggaran anjakan tidak lelurus HCPS melalui 
analisis linear telah dicadangkan. Tindak balas seismik HCPS terhadap gempa bumi 
Malaysia dilakukan menggunakan Modal Response Spectrum Analysis (MRSA) dan 
pushover dengan nilai pemecutan rekabentuk    0.05g, 0.075g dan 0.1g. Kajian 
menunjukkan dalam ketiga-tiga nilai , HCPS masih berada dalam status Immediate 
Occupancy (IO). Galas getah berendaman tinggi (HDRB) telah direncana untuk 
memberi pemencilan seismik HCPS pada tempoh getar 2.5 s. HDRB telah direncana, 
dihasilkan dan diuji pada skala penuh untuk mendapatkan sifat dinamik seperti 
kekakuan tegak dan ufuk. Analisis unsur terhingga tidak lelurus bagi model HCPS 
dengan HDRB dilakukan dengan 33 rekod gempa bumi yang merangkumi pelbagai 
jarak pusat gempa, magnitud, klasifikasi tanah dan nisbah pemecutan terhadap halaju 
(a/v). Hasil analisis menunjukkan bahawa walaupun tindak balas pemecutan di 
bumbung bangunan telah dikurangkan sebanyak 97% dengan menggunakan HDRB, 
namun peningkatan telah diperhatikan dalam rekod gempa bumi yang mempunyai 
nisbah a/v yang rendah. Adalah diperhatikan bahawa dengan memberikan nilai 
rendaman yang tinggi (i.e. 24%) pada sistem pemencilan seismik, tindak balas 
yang diperolehi tidaklah selalunya memberikan kesan yang positif.   
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 General 
 
 
Cost of construction in the Asian countries throughout 2011 has been 

observed to increase tremendously as compared to the Western countries, and it is 

expected to escalate over the next few years. Globally, this will sooner or later affect 

the booming of construction prices over the world (Sugandy, 2012). Table 1.1 ranks 

the countries position in descending orders on rising construction cost. The annually 

published International Construction Cost Comparison report found that shortage in 

skilled labours is the main root causing such a high construction cost. Contractors 

around the world are in difficulty in getting affordable and adequate skilled workers 

for their jobs. In Southeast Asia alone, there are 10 countries which are listed in the 

top 50 in the global rankings on rising construction cost. To add matter worse, most 

of these nations such as Japan, Thailand, Vietnam, etc. are located in the seismic 

regions. Reducing construction cost through compromising structural materials and 

techniques needs to be engineered. 

 
 
In response to such high increment of construction cost, the government of 

Malaysia have been strongly encouraging fellow builders to utilize Industrialized 

Building System (IBS) as dominant components especially in large constructions. In 

Malaysia, the local government had long ago foreseen the needs of transforming the 

conventional cast-in-situ construction practices which are being widely practiced in 

the current construction sector into the technique of IBS. Besides reduction in 

construction material wastage, requiring less volume of building materials, creating 
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cleaner, safer, more organized construction site and shortening project completion 

time, one of the main reasons in which the government concerns the most is the 

utilization of IBS construction method will reduce greatly the reliance of the 

construction sector in employment of foreign-unskilled workers. Currently, billions 

of Ringgit Malaysia is flowing out of the country due to the heavy employment of 

foreign workers especially in the construction sector (CIDB, 2003a). The registered 

foreign workers occupied 75 % of total labours available in the construction industry 

as of 2003. Henceforth, the government has targeted to reduce the dependence of the 

construction sector in employment of unskilled-foreign workers to only 15 percent 

by the year 2009.  

 
 

Table 1.1: Rising of construction cost particularly in Southeast Asia countries 

2011 2010 

Asia ranking Global ranking Country Country 

1 4 Japan Japan 

2 19 Hong Kong Hong Kong 

2 19 Singapore Singapore 

4 24 South Korea South Korea 

5 31 Macau Thailand 

6 40 Thailand China 

7 47 China Malaysia 

8 49 Malaysia Taiwan 

8 49 Philippines India 

8 49 Vietnam Sri Lanka 

11 52 Indonesia  

12 54 Taiwan  

13 55 India  

13 55 Sri Lanka  

 
 

The term ‘Industrialized Building System’ (IBS) refers to a construction 

process of a building or other structure where its structural components are either 

wholly or partly being prefabricated as well as manufactured off-site for assembling 

and installation at building sites. Prefabricated steel formwork systems (e.g. 
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permanent metal decks and tunnel forms), steel structural systems such as hot-roll 

manufactured steel beams, columns or trusses and precast concrete elements are 

among some of the popular IBS products. Although steel structures are relatively 

lighter in mass, it also possesses higher overall cost. Hence, expensive metal 

cladding systems are often required in order to enhance durability and meeting 

certain architectural demands. Precast concrete systems, on the other hand seems to 

be more economic, practical and durable, especially with the prices of steel which 

fluctuates according to supply and demand. 

 
 

The utilizations of precast concrete as construction method had been widely 

practiced by many countries such as the Western Europe, Britain, California and 

Turkey. Taking Turkey as an example, most of the industrial structures and facilities 

were precast frame buildings since the introduction of precast concrete construction 

methods to the country in the 60s (Posada and Woods, 2002). Unfortunately, despite 

the advantages reflected in its construction procedures and processes, many of the 

precast structures collapsed during series of earthquakes in Turkey throughout the 

year of 1999. Apart from Turkey, some other examples which include the completed 

precast concrete structures are the Olympic Stadium (Li et al, 1998) in San Pedro 

Sula, Honduras which was completed in November 1997, and the B.C. Rail Yard 

Control Tower (Gerald, 1998) in British Columbia, completed in February 1995. 

 
 
The introductory of precast concrete structural systems has, over the years, 

shown advantages in concrete structure constructions such as improved quality 

control, easier management of construction schedule, efficient use of materials and 

project cost reduction (Megally et al, 2002). The conventional wet concrete 

construction techniques or some called it the cast in-situ construction methods, which 

relatively requires more construction space at sites, high dependence in employment 

of unskilled-foreign workers, longer pending time for concrete curing and hardening 

process, and poorer quality control had seems to be replaced at a slower rate, but at a 

wide scale by precast concrete structural systems. However in the following 

discussion it was found that this was not the case in Malaysia.  
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1.2 Problem Background 
 
 
The problem background that leads to the motivation of this study can be 

categorized into three different parts as shown in Figure 1.1. Firstly, the current 

status of precast construction in Malaysia was studied. Then, the awareness of 

seismicity in the country was reported. Together, these two factors would determine 

the importance to investigate and improve the seismic performance of locally 

developed precast concrete structural system and thus, the problem statement of this 

study is formulated.  

 
 

 
Figure 1.1 Formulation of problem statement through related problem background 

 
 
 
 
1.2.1 Precast Construction in Malaysia 
 
 
 Despite the effort of the Construction Industry Development Board (CIDB) 

under the Construction Industry Master Plan 2006-2015 (CIMP 2006-2015), as well 

as the 2008 law enforcement from government to make it compulsory for large 

government projects to utilize at least 70 % of IBS product, its level of acceptance 

was still reportedly low (Hassim et al, 2009). Although many large and important 

projects in Malaysia such as the Petronas Twin Towers, one of the tallest buildings in 

Problem Statement

Seismic performance 
and mitigation of local 
developed precast 

product

Seismicity in Malaysia
Current standing of precast 
construction in the country
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the world, Kuala Lumpur Tower, and Kuala Lumpur International Airport (KLIA) 

were constructed using the IBS method by most of the world class Malaysian 

developers, IBS is still not the primary construction method over the conventional 

cast-in-situ system especially in residential housing area projects.  

 
 
 A survey conducted by the Construction Industry Development Board (CIDB) 

in 2003 had revealed that the usage level of IBS in the construction sector was as low 

as only 15 percent (CIDB, 2003b). Therefore, to enhance the competitiveness of 

local construction industry in the international level, the government had issued 

Treasury Circulars (Surat Pekeliling Perbendaharaan) at the end of year 2008. The 

official letter had made it compulsory for large government construction projects to 

use at least 70 percent IBS components with effect from the year 2010 onwards.   

 
 

 With this new regulation from the government, it will soon be the epoch of 

IBS technique deployment in the construction sector in Malaysia, overriding the 

conventional cast-in-situ methods. As most of the large and important projects are 

government based, so either willing or not, the players in the construction sector will 

eventually heed to this call in order to qualify themselves to participate in the bidding 

of public projects. As a result, it becomes significant and obvious that there are vital 

needs for the development of researches regarding the IBS techniques to value-add 

the 2020 vision of the government. However, as the market is currently competitive 

in the nation and there is no unique precast technology owned by local manufacturers, 

most of them required heavy subsidy from government to keep the business running 

(CIDB, 2011) which would not be beneficial to both parties in the long run. 

 
 

Hence, it has become important for the private industry to initiate relevant 

researches regarding prospective precast system that best suits the needs of local 

industry. Among them is the HC Precast System (Figure 1.2(b)). The system, having 

its patent granted in 2011 or in short HCPS comprises load-bearing precast concrete 

wall panels that are connected only to the supporting cast-in-place column at both 

ends. This terminology will be used throughout this entire thesis. The wall panels 

eliminated the necessity of having brick wall and beam element. There is no 

horizontal connectivity provided between the top and bottom wall to restrain it from 
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sliding against each other. Due to the relatively humid and wet tropical climate of the 

region, wet interface provides a better water resilient capability for precast structures 

in the country (Hamid, 2009). The proposed precast concrete wall structure is 

replacing the existing cantilever wall system (Figure 1.2(a)). The cantilever wall 

system was normally made of hollow-core wall sections. The wall panels on top 

were connected to the bottom wall through insertion of heavier reinforcement and 

concreting at site. This cantilever wall system has been said to become unpopular 

among builders in recent years due to involvement of relatively heavier site works to 

fill in the hollow-core sections between the walls (Elliot, 2002). 

 
 

(a)                                                                  (b) 

Figure 1.2 (a) Cantilever wall system and (b) HC precast wall system (HCPS) 

 
 
 The precast wall panels are connected to the supporting columns located at 

both ends through series of in-built shear keys and also dowel bars (Figure 1.3) 

protruded alongside the vertical edges of the wall panels. Wet joints would then be 

cast at site, forming the columns which also at the same time served as vertical 

connections that held the wall in place (Figure 1.4). The key innovative component 

of HCPS was that the wall panels were disconnected along their horizontal 

connection which made the site work easier and faster. The amount of steel works 

required at site was also reduced significantly. These two factors were the main 

reasons causing the conventional cantilever precast wall system to lose its popularity 
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over the years. Detail of the construction and assembly process of HCPS can be 

found later in Chapter 4. 

 
 

 
Figure 1.3 Shear keys and dowel bars alongside vertical edges of wall panel 

 
 

 
Figure 1.4 Wet joint casting at site forming columns as well as vertical connections 

 
 

History and development of shear key connection in precast wall could be 

traced back to as early as in the 80s’ studied by Chakrabati (1988). In BS8110:1997-

Part 1 (British Standards Institution, 1997), a small portion of design specifications 
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of castellated joints or shear keys was included. The precast construction industry has 

then shifted to dry connection method such as unbonded post-tensioned walls 

(Kurama, 2005). The main reason was the requirement of timber formwork usage 

during casting of wet joint which would be costly as most timber formwork had 

limited reusable time span. Until recently in the year 2007 when HC Precast System 

had patented a type of modular mould (Figure 1.5) that is reusable for shear key 

casting plus the key feature of extremely effective water-proofing by HCPS, the 

system had been implemented in constructing more than a thousand units of 

residential housing as well as commercial buildings over the country. Detail of 

invention of the reusable modular mould can be found in Tiong et al (2011). 

 
 

Nevertheless, the system is not designed for seismic resistant. As Malaysia is 

now moving forward in formulating local seismic design guidelines based on 

Eurocode 8 (CEN, 2003), it has become a necessity for the system to be analyzed 

accordingly in terms of seismicity effects. 

 
 

 
Figure 1.5 Innovated modular moulds for wet-joint grouting at site 
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1.2.2 Seismicity in Malaysia 

 
 

Currently, the common design and construction practices in Malaysia have 

often ignored and neglected the consideration of seismic effects towards the stability 

of structures especially in the implementation of lower cost projects such as 

residential estates, erection of relatively lower buildings, and etc. as the history of 

earthquakes in the country have not been intense. Needless to say, the constructed 

precast concrete buildings or structures were never tested to resist earthquake 

loadings. The conventional reinforced concrete structures also faced detailing 

problem when it comes to seismic design. Very often, reinforcement congestion 

occurred at joints which caused impracticality of the design practice. Nevertheless in 

actual fact, the country may not be as earthquake-free as majority of its public 

regarded.  

 
 
Despite the geographical location of Malaysia at a stable part of the Eurasian 

Plate, the existence of three major earthquake faults with a distance of a few hundred 

kilometers away from the country had often caused tremors to be felt in some of the 

places especially by the residents of tall buildings in Peninsular Malaysia. These 

three earthquake faults are the Sumatran Subduction Zone, the Sumatran Strike Slip 

Fault with both of them respectively measured about 600 km and 400 km away from 

Peninsular Malaysia, and another slip fault near to Tawau, at the eastern district of 

Sabah state. Over the years, the Meteorological Department of Malaysia (Jabatan 

Meteorologi Malaysia) has recorded numerous earthquake events with a wide range 

of intensities. Table 1.2 reflects the list of recorded past earthquake events reported 

in Malaysia obtained from the Meteorological Department of Malaysia. 
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Table 1.2: Recorded past earthquake events in Malaysia up to September 2007 

State 
Event 

Frequencies 
Earthquake Maximum Intensity 

Observed (based on Modified Mercalli 
Scale) 

Peninsular Malaysia (Events from 1909 till September 2007) 
Johor 27 VI 
Kedah 13 V 
Kelantan 3 IV 
Malacca 15 V 
Negeri Sembilan 7 V 
Pahang 7 III 
Penang 36 VI 
Perak 22 VI 
Perlis 2 IV 
Selangor (incl. KL) 46 VI 
Terengganu 1 IV 
Sabah (Events from 1923 till September 2007) 
Sabah 27 VII 
Sarawak (Events from 1923 till September 2007) 
Sarawak 5 V 

 
 

The state of Sabah has experienced the strongest earthquake intensity of MMI 

Scale VII when compared to the other remaining states of the country as it is located 

relatively near to an active earthquake fault. According to an earthquake report from 

USGS, a 10 km deep earthquake having the Magnitude of 4.9 Richter Scale occurred 

on Sunday, 18th May 2008 in Sabah region. The epicenter as shown in Figure 1.6 was 

45 km from Tawau and 145 km away from Sandakan. In the Peninsular Malaysia, 

the nearest active earthquake faults are located a few hundred kilometres away. 

According to Balendra (1993), the low frequency seismic waves generated by the 

Sumatran earthquakes are capable to propagate and travel very long distances before 

reaching the Singapore-Malaysia region due to the nature of the long period waves 

which is more vigorous to energy dissipation while the high frequency waves are 

dissipated rapidly during proliferations. This mechanism, shown in Figure 1.7 is 

identified as far-field effects of earthquakes. The arrival of the amplified waves as 

they travel upward though the relatively softer soil near the earth surface causes 

resonance in buildings and the movements of the buildings shaking could be felt by 

the residents (Balendra and Li, 2008). This is the main reason for residents 

particularly in higher buildings to experience minor tremors over the years. 
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At the time of this thesis writing, the Technical Committee (TC) formed by 

the Institute of Engineers of Malaysia (IEM) is looking into the proposal of national 

annex for Eurucode 8 (EC8) in Malaysia. One of the major decisions would be 

deciding on the ground acceleration for Malaysia. Currently, there are three 

different  levels to be considered, 0.05 g, 0.075 g and 0.1 g. Therefore when the 

map is officially released, the impact on HCPS needs to be investigated to avoid 

large amount of retrofitting work in the future. 

 
 

 
Figure 1.6 Location of epicenter of the 18th May 2008 earthquake in Sabah Region 

 
 

 
Figure 1.7 The far-field effects of earthquakes (Balendra and Li, 2008) 
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1.2.3 Seismic Performance and Mitigation of HCPS  
 
 
 The main concern of the manufacturer of HCPS and the industry would be 

how the precast system would behave due to ground acceleration, and the effect of 

future implementation of Eurocode 8 (EC8) design code in the country onto the 

system. The precast concrete structure is only as strong as its weakest link or element 

when it comes to deal with seismic responses. In the conventional cast-in-situ 

construction, the structural continuity is inbuilt and will mechanically follows as the 

construction proceeds. Dissimilar to the conventional monolithic concrete structures, 

the site erection works of precast concrete structures involves of assembling, 

connecting and jointing numerous pieces of discontinued and discrete precast 

concrete panels to form the whole building structural components. The interfaces 

connecting the precast concrete elements together will determine the overall 

performance and stiffness of the precast concrete systems.  

 
 

Under earthquake loading, the connection or joint of precast elements will be 

the most critical area to resist the lateral seismic reaction forces (Dowrick, 1987; 

Xiao et al, 2013 and Babu et al, 2013). The behaviour and characteristics of precast 

joint under seismic effects are rather complex and must be seriously accounted for in 

the design stage (Lu et al, 2012). This is where the critical problem arises. A good 

design must not only be able to withstand the required loadings, but must also be 

practical and possible to construct. In addition to that, it has been shown by Bljuger 

(1988) that for protruded reinforcing bars or dowel reaction, the difference between a 

single bar and a U-shaped bar is not significant. This makes proper reinforcement of 

such dowel connection to be perfectly rigid difficult to construct and not fully 

established.  

 
 

Most people have the common misconception that precast concrete structures 

are incapable to provide adequate seismic resistance until recent improvements in 

research development have introduced efficient precast structural systems that are 

capable of maintaining structural integrity under cyclic loading, among which are the 

hybrid post-tensioned frame and unbonded, post-tension jointed precast walls 

(Priestley et al, 1999). Therefore, it became questionable whether the non-earthquake 
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designed HCPS is able to withstand earthquake loading, and to make matter worse 

when the EC8 for Malaysia is released by IEM Technical Committee in the near 

future, will HCPS be deemed satisfactory or if there are any changes required to the 

original system? 

 
 

The conventional seismic resistance design approach posed a challenge for 

designers to obtain a balance between minimizing both floor accelerations and 

interstory drifts at the same time in the designed structures (Mayes and Naeim, 2001). 

It is understood that excessive interstory drifts can be eliminated by constructing a 

stiffer building. However, a stiffer building, which is now becoming less flexible, 

will cause high floor accelerations. On the contrary, a flexible structure, though it 

will lead to lower floor accelerations causes large interstory drifts. Both of these two 

factors cause greater force demand from either the building structural component or 

its contents within (Figure 1.8). The presence of wall in HCPS has increased the 

overall lateral stiffness of the structure as compared to a bare frame system. As it 

would be revealed in the later part of this study particularly in Chapter 6 that the 

acceleration responses of HCPS were significantly higher than the ground 

acceleration due to such attribute and the other half of this study is focused on using 

locally produced high damping rubber bearing (HDRB) as base isolation system for 

seismic mitigation of HCPS. 

 
 

 
Figure 1.8 (a) Large interstory drift and disruption to a fixed base building contents 

and (b) Mitigation of seismic force by base isolation system (Mayes and Naeim, 

2001) 
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Earthquake itself does not kill. It is the structure that collapse costs the lives 

of many. The earthquake forces are generated within the structural system of a 

particular building due to the inertia of the structure when it responded to the ground 

dynamic motion. In other words, the heavy mass of the building which reacts in the 

opposite direction from the ground movement causes effective base shear as the 

restraining force transmitted from the ground to the top of structure. With such 

understanding of earthquake force transmission, separating the structure from ground 

could be an alternative to minimize such inertia response due to ground movement, 

which is termed as seismic base isolation. Thus, seismic base isolation had been 

proposed, studied and investigated by numerous researchers all over the world over 

the past decades as an alternative to the conventional ductility design concept. 

Although the earliest recorded history of seismic base isolation was as early as 1909, 

the growth of its application was not too apparent only until early 1980’s with the 

development of multilayered elastomeric rubber bearing base isolators (Naeim and 

Kelly, 1999). 

 
 

There are varieties of devices available for seismic isolation of structures 

such as rollers, friction slip plates, sleeved piles and rocking foundations. 

Nevertheless, an elastomeric rubber bearing appears to be one of the most practical 

and widely used seismic base isolation systems (Forni, 2010; Warn and Ryan, 2012). 

A typical elastomeric rubber bearing, or sometimes termed as high damping rubber 

bearing (HDRB) or laminated rubber bearing is shown in Figure 1.9. 

 
 

  
Figure 1.9 High damping rubber bearing (HDRB) showing internal layers 
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The simple basic concept for seismic base isolation is just to decouple the 

superstructure from the horizontal loading of ground motion as shown in Figure 1.10. 

This is achieved through introducing an interface with relatively low horizontal 

stiffness between the foundation and the base of the superstructure. This interfacing 

element is the so-called base isolation system. The main purpose of the isolation 

system is to increase the natural period of a rigid structure as a rigid structure usually 

possesses very short first mode period. Thus, it creates a structure with very much 

lower fundamental frequency compared to its fixed-base frequency and also the 

predominant frequencies of the ground motion. 

 
 

 
Figure 1.10 Structural response of (a) fixed base and (b) base isolated structure 

 
 

The main principle of seismic isolation is to prolong the period of the isolated 

structure. Logically, it works effectively for short structures as their period is usually 

very small, typically less than 1 second. Meanwhile, the natural period increases with 

increment of the structure’s height. For very tall structure where the natural period is 

long enough to attract low earthquake forces, seismic isolation is considered 

redundant. 

 
 

The second school of thought regarding seismic base isolation is the 

reduction of seismic force demand through providing additional damping capability 

of the vibrating system, besides prolonging the fundamental period. In linear 
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equivalent static analysis of base isolation system using the constant velocity 

approach, the reduction of spectra acceleration (Fig 1.11(a)) and displacement 

(Figure 1.11(b)) is apparent when damping ratio increases. In countries like Japan, 

China and Turkey, the earthquake engineering committee required at least 24% 

damping ratio to be used in base isolation system. According to EN15129 (CEN, 

2007), elastomeric rubber bearing possessing damping ratio above 6 % is deemed as 

HDRB, and typical damping of HDRB is in the range of 8 to 12 percent depending 

on the shear modulus of rubber compound used. This leads to development of lead 

rubber bearing and other mechanical damping devices to go along with HDRB. This 

not only causes very expensive base isolation system but to some extend 

compromising the durability and strength of rubber compound by altering the 

vulcanization process to increase damping value which is widely practiced in Japan.  

 
 

 
Figure 1.11 Damping ratio effect on spectra (a) acceleration and (b) displacement 

 
 
 
 
1.3 Problem Statement 

 
 
HCPS is considerably a new structural configuration having its patent granted 

in the United States and Malaysia in the year 2011. The system is not covered in the 

EC8 currently. Although the design and analytical tools for normal precast infill 

panels were not new (Rath, 1977; Bljuger, 1988; Elliot, 2002; and Mainstone, 1972), 

the configuration of HCPS is different from conventional infill structure and 

therefore, the performance of such system is not established yet particularly in terms 

of earthquake loading. Thus, a reliable tool or model to analyse the structure is not 

available especially in the nonlinear response region. This leads to questionable 
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performance of the system when EC8 is implemented in Malaysia in the near future. 

With the national annex of EC8 for Malaysia to be released soon, would HCPS be 

deemed satisfactory for the country due to seismic design provision or retrofitting 

work is needed? 

 
 

Secondly, the structural vulnerability of HCPS under dynamic loading such 

as earthquake remained unknown as mentioned earlier that the system was not 

covered by EC8. The only known fact according to EC8 was that HCPS belonged to 

the DCL category. However, information regarding the resistance of the HCPS 

structural system to earthquake ground excitations was unavailable. 

 
  
Thirdly, the presence of wall panels would logically increase the stiffness of 

HCPS in its lateral direction, causing the structure to possess shorter predominant 

period. The rule of thumb in seismic behaviour is stiffer structure attracts higher 

floor acceleration. Therefore, the second part of this study also included application 

of base isolation system using elastomeric rubber bearings to investigate its 

efficiency in reducing floor accelerations. Since HCPS would be used ideally for 

low-rise residential housing or commercial shop-houses which would be relatively 

lighter compared to most base isolated structures such as towers, hospital buildings, 

and bridges which were heavier in mass, the capability of the base isolator to meet 

required lateral displacement became questionable (Naeim and Kelly, 1999). In other 

words, the HDRB becomes unstable when the imposed vertical load gets smaller if 

the designed lateral displacement remains the same. Investigation was also carried 

out to examine the rationale behind choosing higher damping ratio of 24% in the 

design of base isolation system for HCPS as compared to the typical damping ratio 

obtained from natural HDRB.  

 
 
 
 
1.4 Research Aim and Objectives 

 
 
This study is aimed to promote and enhance the usage of locally developed 

HCPS as alternative for fast as well as economic building system to both local 
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industry and abroad, including earthquake prone regions. The main objectives of the 

research will be as follow: 

 
 

a. To obtain capacity curve of HCPS from hysteresis behaviour in order to 

evaluate the behaviour factor of the system for seismic design 

b. To investigate structural vulnerability of HCPS in terms of roof 

acceleration and drift demands under earthquake loading 

c. To study reduction of base shear and acceleration response of base 

isolated HCPS by normal HDRB and also HDRB with different damping 

ratios 

 
 
 
 
1.5 Scopes of Work and Research Boundaries 

 
 
The present investigation comprises 50 percent laboratory as well as 

experimental studies and the other 50 percent includes finite element analysis and 

results interpretation. The research scopes cover the following areas, fields and tasks: 

 
 
a. Performing laboratory test of large-scale HCPS under lateral-cyclic 

loading at CREAM’s laboratory 

b. Performing scaled-down shake table test of HCPS using recorded ground 

motion data obtained from Pacific Earthquake Engineering Research 

Center (PEER) ground motion database (PEER, 2010) 

c. Proposing finite element model of HCPS for both lateral-cyclic loading 

condition and ground excitations 

d. Verification and calibration of the proposed finite element model with 

laboratory results 

e. Obtaining global capacity curve of HCPS through pushover analysis with 

various lateral loading patterns as recommended in Eurocode 8 

f. Investigating the performance point of HCPS under local seismicity of 

Malaysia 

g. Designing and manufacturing of high damping rubber bearings (HDRB) 
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to elongate the fundamental period of base isolated HCPS to 2.5 s 

h. Performing laboratory test of the HDRB to obtain hysteresis loops of 

force-deformation to be used in nonlinear time-history analysis of base 

isolated HCPS with 33 earthquake records 

i. Feasibility of applying proposed base isolation as seismic mitigation of 

HCPS would be investigated 

 
 

The framework of this study would be conducted within the following 

boundary and limitations: 

 
 
a. It is worth to mention that this study focused only on HCPS as one of the 

possible types among many other components of IBS.  

b. The prototype HCPS was designed accordance to BS8110: 1997 

following standard consultant practice and vetted by qualified industry 

experts which was also later checked by the author according to Eurocode 

2 (CEN, 2002) 

c. To keep the structural geometry unchanged throughout the study, the 

number of stories of HCPS was kept to be not more than two stories 

which would otherwise required larger column sections to be used. 

d. This study classified the strong ground motion data into three intensity 

groups of low, normal and high based on the PGA/PGV ratio of the time 

history (Zhu et al, 1988; NBCC, 1985; Elnashai and Mcclure, 1996). 

e. The laboratory shake table test was performed only with fixed-base HCPS 

in order to verify the proposed finite element model (FEM) of the 

connection system, while the isolation system test was only performed by 

individually testing the elastomeric rubber bearing due to the well-

established modelling technique for the base isolation component in 

SAP2000 (CSI, 2010; Naeim and Kelly 1999).  

f. The thickness of HCPS was kept at 150 mm, which was used in 

construction of most residential housing and shop houses within the 

country. 

g. It is worth mentioning that while it is in the scope of this study to perform 

investigation on the established current construction sequence of HCPS in 
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terms of its performance under seismic loading, the study does not cover 

the optimization of its structural system design contained in the Damage 

Avoidance or Capacity Design for the system. Improving the connection 

detail of the precast wall system (HCPS) is not within the scope of this 

study. 

 
 
 
1.6 Research Significance 

 
 
Significance of the study is achieved by meeting all the listed research 

objectives listed earlier. Thus, the performance of HCPS subjected to seismic 

loadings either through dynamic or quasi-static excitation is established. In addition 

to that, the effectiveness of mitigating earthquake effect particularly in reducing floor 

acceleration through HDRB as base isolation is also ascertained. Detail discussion 

and findings can be found in relevant chapters contained within this thesis.  

 
 
 
1.7 Thesis Layout 

 
 
This thesis report is divided into eight main chapters, with each chapter 

having their respective major topics. Chapter 1 covers the introduction of the thesis. 

Chapter 2 presents literature review in several aspects related to this study including 

brief history of past researches, followed by the state-of-the-art works done by other 

authors. In Chapter 3, theories concerning the background of relevant subject matters 

such as dynamic performance of precast wall and base isolated system, laboratory 

test procedures as well as code requirement on modelling of precast wall and base 

isolation. The methodology of this study will be reported in Chapter 4. Chapter 5 

presents the verification of finite element modelling used in this study through 

laboratory lateral cyclic loading test of 2-storey full scale HCPS prototype and shake 

table test of 1:3 scaled down model from the prototype building. Subsequent chapter 

covers the seismic performance of fixed base HCPS. The behaviour of seismically 

base isolated HCPS will be presented in Chapter 7. The final chapter, Chapter 8 

comprises summary, conclusions and recommendations for future work. 
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