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ABSTRACT 

 

Contamination of groundwater due to leachate percolating through landfill liner is 

a potential hazard to human health and the environment. Effective mitigation approaches 

and imperative research on alternative liner materials could reduce contamination. In this 

study, an investigation on the potential of kaolin premixed with pulverized palm oil fuel 

ash (PPOFA) as an alternative mineral liner material is proposed. The investigation was 

carried out in two stages. Initially, physico-chemical and mechanical characterizations 

were performed on these materials separately. Then, PPOFA was mixed in stages of 0, 

10, 20, and 30 percent by dry mass of the kaolin and were compacted using Standard 

Proctor. Result from the compaction test showed that 15 percent of PPOFA was found to 

be the optimum dose for the formulated liner matrix. In the second stage, material 

characterizations were repeated on the formulated liner matrix followed by performance 

criteria tests. These tests included heavy metal removal efficiency, chemical sorption, 

leaching, hydraulic conductivity and column tests. The criteria examined were compared 

with the standards and previous related research. All the tests were conducted without pH 

adjustment and were duplicated. Based on sorption tests, Freundlich and Langmuir 

isotherm models were developed and validated using linear regression and correlation 

coefficient R. The performance tests recorded high metal ion removal efficiencies of 59 to 

99 percent at solution equilibrium pH ranging from 7.64 to 3.00. Freundlich sorption 

capacities ranged from 0.2063 to 25.64, while the Langmuir monolayer sorption capacity, 
  ranged from 22.3714 to 52.6316 mgg-1. Besides that, the modelled Freundlich (qeFred) 

and Langmuir (qeLang) isotherm were relatively well fitted to the experimental (qexpt), with 

correlation coefficients (R) greater than 0.84. Leaching occurred at very low 

concentrations ranging from 0.003 to 0.19 mgL-1 and hydraulic conductivity tests 

obtained values ranging from 3.14 to 3.66 10-6 cms-1. Finally, the column test showed 

that the hydrodynamic dispersion coefficients ( *

LD ) and retardation factors ( dR ) ranged 

between 1.16  10-3 to 1.1110-5 cm2s-1 and 17 to 337 respectively. The proposed kaolin-

PPOFA liner matrix has been proven to be a promising alternative liner material in 

ameliorating groundwater contamination from the leachate generated in the landfill. 
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ABSTRAK 

 

Pencemaran air bumi yang disebabkan oleh penelusan air larut lesap melalui 

pelapik tapak pelupusan adalah berpotensi membahayakan manusia dan alam sekitar. 

Pendekatan pencegahan yang berkesan dan penyelidikan yang imperatif mengenai bahan-

bahan pelapik ini dapat mengurangkan pencemaran. Menerusi kajian ini, satu penyiasatan 

telah dicadangkan ke atas potensi campuran kaolin dengan serbuk abu bahan bakar kelapa 

sawit (PPOFA) sebagai alternatif kepada bahan mineral pelapik. Penyelidikan ini telah 

dijalankan dalam dua peringkat. Pada mulanya, pencirian kimia-fizikal dan mekanikal 

telah dilakukan ke atas bahan-bahan ini secara berasingan. Kemudian, bahan PPOFA 

telah dicampurkan pada tahap 0, 10, 20, 30 peratus jisim kering kaolin dan dipadatkan 

menggunakan kaedah Piawaian Proctor. Melalui ujian pemadatan, PPOFA 15 peratus 

merupakan dos optimum untuk matriks pelapik yang telah diformulasikan. Pada peringkat 

kedua, pencirian bahan telah diulangi pada matriks pelapik yang diformulasikan diikuti 

dengan ujian prestasi kriteria. Ujian-ujian ini termasuklah kecekapan penyingkiran logam 

berat, penyerapan kimia, larut lesap, kekonduksian hidraul dan ujian turus. Kriteria yang 

dianalisa telah dibandingkan dengan piawaian dan penyelidikan sebelumnya yang 

berkaitan. Kesemua ujian telah diulang sebanyak dua kali tanpa mengubah nilai pH. 

Berdasarkan ujian penyerapan, model lengkung sesuhu Freundlich dan Langmuir telah 

dihasilkan dan disahkan menggunakan kaedah regresi lelurus dan pekali korelasi R. 

Prestasi ujian merekodkan nilai kecekapan penyingkiran ion logam yang tinggi daripada 

59 hingga 99 peratus pada keseimbangan pH larutan antara 7.64 hingga 3.00. Kapasiti 

erapan Freundlich bernilai antara 0.2063 hingga 25.64, manakala nilai kapasiti erapan 

ekalapisan Langmuir, β adalah antara 22.3714 hingga 52.6316 mgg-1. Di samping itu, 

model lengkung sesuhu Freundlich (qeFred) dan Langmuir (qeLang) yang dihasilkan 

memberi nilai yang menghampiri nilai eksperimen (qexpt), dengan pekali korelasi (R) lebih 

besar daripada 0.84. Larutlesapan berlaku pada kepekatan yang sangat rendah iaitu antara 

0.003 hingga 0.19 mgL-1 dan ujian kekonduksian hidraul memberi nilai antara 3.14 

hingga 3.66 10-6 cms-1. Akhir sekali, ujian turus menunjukkan nilai pekali serakan 

hidrodinamik (D L
*) dan faktor perencatan (Rd) yang masing-masing bernilai antara     

1.16 10-3 ke 1.11   10-5 cm2s-1 dan 17 ke 337. Matriks pelapik kaolin-PPOFA yang 

dicadangkan telah dibuktikan sebagai alternatif bahan pelapik yang berpotensi dalam 

membendung pencemaran air bumi dari proses larut lesap yang dihasilkan di tapak 

pelupusan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of the Problem  
 

 

In recent years the acceleration in urbanization of many countries worldwide has 

led to interest in various fields of research.  One area is in the solid waste management 

(SWM) ( Foo et al., 2013; Karagiannidis et al., 2010; Chen et al., 2010; Guo et al., 2010).  

Solid wastes are generally being generated by human activities.  These wastes may be 

classified as municipal wastes from commercial and residential sources; hazardous wastes 

from hospitals and radioactive plants; as well as agricultural and industrial wastes.  Colossal 

part of these wastes ends up in landfills as they are characterized by their unhygienic nature.  

Thus, solid wastes are generally unacceptable to the society. 

 

Usually, open dumping or unlined landfilling of generated solid wastes is 

characterized by uncontrolled and heterogeneous disposal.  Though waste dumping is 

regarded cheap to manage, it is highly pervasive and environmentally unacceptable to the 

teaming society.  It has also been recognized as one of the contributing factors to unhealthy 

environment.  Hence, open dumping could be classified as unsuitable technique militating 

against the yearnings and aspirations for green and sustainable environment.  As such, 

nowadays unlined landfilling is being replaced by sanitary landfill.  The sanitary landfilling 

of solid waste may be categorized as land disposal technique, and is commonly known as   



2 

 

“engineered sanitary” landfill systems  (Ayomoh, et al., 2008; Manfredi and Christensen, 

2009; Abu Amr et al., 2012 ). 

 

Even though engineered landfilling approach has been reported as inappropriate 

(Chang et al., 2009), to date the technique still represents one of the primary component in 

integrated and sustainable waste management techniques (Galante et al., 2010; Perkoulidis 

et al., 2010; Agamuthu and Fauziah 2010).  The prime objective of incorporating 

engineered landfill in integrated waste management system is to significantly limit the 

dangerous health impact from the generated wastes on the society.  More to this is that it 

enhances sustainable and eco-friendly environment (Rajesh and Viswanadham, 2011).  

 

Generally, disposed solid wastes in landfill undergo both biological and chemical 

degradation.  Both processes take place in the presence of water percolated through solid 

waste deposited.  The final aqueous-waste effluent discharged is referred to as leachates.  

Although engineered landfill techniques have tremendously reduced the paranoid of 

groundwater contamination from the generated leachates ( Benbelkacem et al.,2010; Foo 

et al., 2013), the formation and management of the aqueous contaminant still pose major 

problem, thus demand great attention (Mendoza and Izquierdo, 2008; Kim et al., 2009; 

Umar et al., 2010).  For instance, leachate is prone to be a veritable source of non-

biodegradable and toxic heavy metals ions disposition.  Heavy metals, such as zinc (Zn), 

lead (Pb), cadmium (Cd), Nickel (Ni), Mercury (Hg) and copper (Cu) constitute part of 

these contaminant solutes.  As such, they are considered toxic to human health and the 

environment at large (Chalermyanont et al., 2009; Zhang et al., 2013; Silva et al., 2013).  

 

Judging from the characteristics and age of the waste materials deposited in 

landfills, chemical ionization of heavy metals may as well be characterized by different 

level of toxicity (Östman, 2008; Zhang et al., 2013).  Also, some portion of the toxic 

aqueous pollutants may escape transfer to treatment plant and be transported through the 

liner located somewhere within the shallow unsaturated zone of the subsoil (Zhang et al., 

2012).  Thereafter, the liquid waste may get in contact with the surrounding environments 

and renders it contaminated.  Principally the surrounding environments include the valuable 

but infinite groundwater resource.  Research has shown that leachate is liable to adversely 
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transform the environment through the creation of imbalance and inhabitable ecosystem 

(Foo and Hameed, 2009; Silva et al., 2013). 

  

 Besides, further decomposition of some chemical compounds present in the 

leachate may contribute significantly to the emission of obnoxious odor from within the 

landfill site.  If uncontrolled, such emission may render the surrounding air polluted.  The 

release of heat trapping greenhouse gases (GHG) such as carbon dioxide (CO2) and 

methane (CH4) are also witnessed (Zhang et al., 2013; Ahmari and Zhang, 2013).  Other 

non-environmentally friendly gaseous emissions such as ammonia (NH4), nitrous oxide 

(N2O) and hydrofluorocarbons (HFCs) are also released from the fill.  As obtainable in 

groundwater pollution, the consequential effects of air pollution include adverse human 

health related implications such as cancer and air borne diseases.  From the aforementioned, 

further research specifically on sustainable earthen landfill liner material is eminent.  With 

this the adverse environmental impacts of the liquefied waste could be effectively 

ameliorated and at the same time ensure that the liner keep serving as functional integral 

part of solid waste management system.   

 

The present situation in landfill liner material research shows that there are 

concerted efforts specifically geared toward the use of minerals as sustainable landfill liner 

material (Musso et al., 2010; Koutsopoulou et al., 2010; Quaghebeur et al., 2013).  

Generally, landfill liners constructed from the use of only one material such as soil is not 

suitable for use as solid waste repository.  It may often not meet the regulatory performance 

requirement of hydraulic conductivity and related contaminants attenuation 

(Chalermyanont et al., 2009).  Hence, soil liners are predominantly design of compacted 

composite clay material and formed the lower integral part which directly overlies the 

natural geologic structure (Fall et al., 2009; Guyonnet et al., 2009; Silva and Almanza, 

2009; Lange et al., 2010).  

  

More specific, Fall et al. (2009) have shown great interest in the use of minerals as 

landfill liner material.  They took the advantage of the strong negatively charged surface 

energy carried by soil particles.  Hence, reactive mineral liner materials are used as trapping 

mechanism of the positively charged solute components of the contaminants.  Usually, 

these solutes are often trapped and immobilized while migrating through the pore spaces of 
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the hydrated compacted clay liner (CCL) (Chalermyanont et al., 2009; Silva and Almanza, 

2009; Koutsopoulou et al., 2010).  The end result was the effective reduction and mitigation 

of groundwater pollution due to toxic heavy metal ions leached from the solid waste 

disposed in landfills.  

  

Furtherance to the use of CCL, innovative researches are being carried out on the 

potential and viability of amending clayey soils with waste materials.  The matrixes formed 

are often used as an alternative composite mineral liner material.  These waste materials 

include ashes from incinerator plants (Travar et al., 2009) as well as bottom and fly ashes 

produced as by-product from the burning of coal in power generating plants (Nhan et al., 

1997; Kayabalı and Bulus, 2000; Sivapullaiah and Baig, 2011)  Other materials used as 

amending agent include secondary waste (Ganjian et al., 2004) and natural clay-shredded 

tyre mixtures (Al-tabbaa and Aravinthan, 1998; Cokca and Yilmaz, 2004)  One promising 

area of application of solid waste as alternative composite mineral liner material which at 

present lacks attention is in the incorporation of palm oil fuel ash (POFA) as additive 

material.  POFA is a renewable bio-residue ash and is derived from palm oil milling 

industry.  Judging from its physico-chemical properties and previous applications, POFA 

may be used as a potential cementitious and bio-sorbent additive in earthen sanitary landfill 

liner.   

 

Large quantity of POFA waste generations are witnessed in rapidly developing 

countries like Malaysia, Indonesia, Thailand and Nigeria where varieties of  oil palm trees 

species are being cultivated as cash crops (Subramaniam et al., 2008; Yin et al., 2008; Foo 

and Hameed, 2009; Patthanaissaranukool et al., 2013; Ohimain and Izah, 2014)  The 

powdery form of the ash as pulverized palm oil fuel ash (PPOFA) alone has been used as 

bio-sorbent in waste water treatment.  The works of Zainudin et al. (2005) and Foo and 

Hameed (2009) are of particular interest in the area of study.  Furthermore, the chemical 

compositions of POFA have shown that it may be used as supplementary cementitious 

material in concrete (Abdul Awal et al., 2011; Ismail et al., 2011; Kroehong et al., 2011;  

Jaturapitakkul et al., 2011; Aldahdooh et al., 2013;Yusuf et al., 2014; Aldahdooh et al., 

2014) .  Recently Amat et al. (2013) mixed raw  POFA with gypsum and clay as binder to 

produce fire resistive panels used for internal partitions in buildings.  As such, POFA may 

be incorporated into earthen landfill liner material for dual purposes of pozzolanic and 
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cementitious material.  The new composite material may be used as an alternative and 

sustainable landfill liner material. 

 

However, extensive practical experiences with the application of industrial 

generated ash-wastes have confirmed the leaching of toxic heavy metals (Asl et al., 2013; 

Çoruh et al., 2013; Abdel Rahman et al., 2013; Yao et al., 2013; Houben et al., 2013)  Thus, 

the presence and leachability of toxic heavy metals from the use of POFA as earthen landfill 

liner material should not be ignored.   

 

The uniqueness of this innovative research is that it has significantly contributed in 

moving to a new frontier the boundary of knowledge connected to the valuable use of 

POFA.  As such, the research has changed the paradigms in the use of the agro-based waste 

to a new resource, by premixing kaolin with the PPOFA and use as an alternative composite 

landfill liner material.  The research has critically examined the physical, chemical, and 

mechanical properties of each material component and the formulated composite kaolin-

PPOFA liner material.  The performance of the formulated mineral liner was examined in 

terms of its removal efficiency and sorption capacity of four selected heavy metal ions in 

single-elemental species (Zn2+, Pb2+, Cd2+, and Cu2+); the leachability of the selected heavy 

metals; and the hydraulic conductivity.  Finally the transient contaminant transport 

performance of the aqueous solution formed with respective to each of the single-metal 

ions was examined. 

 

1.2 Statement of the Problem 

 

Recent studies have shown that municipal solid waste, industrial wastes, hospital 

wastes and other waste types pose major threat to the  environment and globally constitute 

great challenges (Liamsanguan et al., 2008; Zhen-shan et al., 2009; Ngoc and  Schnitzer, 

2009; Karagiannidis et al., 2010; Zaman, 2014; Farooqui, 2014; Aslani and Wong, 2014).  

For instance, in Malaysia about 28,500 tonnes of municipal solid waste (MSW) have been 

reported to have been directly disposed of into various landfills on daily bases (Agamuthu 

and Fauziah, 2011).  The authors reported that most of the landfills in Malaysia contaminate 
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the environment with the generated leachates as well as free emission of noxious landfill 

gases to surroundings.   Similarly, a survey by Karagiannidis et al. (2010) revealed that on 

yearly bases in Greece, a significant part of the over 14,000 tonnes of infectious solid 

hospital waste generated are been mismanaged through dumping into household open-

disposal sites and landfills after sterilization.  In the recent years, China has been reported 

as the largest developing country in the world.  The Landfill disposal technique has being 

the dominant disposal method for MSW generated in the country.  Interestingly, as at 2006, 

China has 342 cost-effective municipal solid waste landfill sites which functionally accept 

heterogeneous wastes without requirement for separation (Chen et al., 2010).  

 

Due to its economic advantages and contributions toward the achievement of green 

and sustainable environment, sanitary landfilling of solid wastes continue to be the most  

economically viable and final solid waste disposal method (Chen et al., 2010; Perkoulidis 

et al, 2010; Di Maria et al., 2013; Yang et al., 2013).  However, waste containment in 

landfill sites enhances the concentrations of different dissolved and suspended pollutants 

as well as non-bio-degradable heavy metal ions leached from hydrated disposed wastes.  

The leachate formed is injurious to the public health and the environment at large.  Landfill 

leachate as contaminated liquid effluent may percolate through liner material after the 

decomposition of deposited wastes.  The liquid has been recognized as one of the most 

critical and detrimental issue in landfill operation (Ziyang et al., 2009; Zhan et al., 2013; 

Li et al., 2013; Gallego et al., 2014).  

 

Despite the reliance of many communities on groundwater as main source of 

portable water and for culinary consumptions, the level of pervasiveness of its 

contamination and threat to the public health due to the varieties of toxic heavy metals ions 

is becoming unbearable (Chalermyanont et al., 2009).  Some of the common toxic heavy 

metals largely present in the leachate include, but not limited to lead (Pb), cadmium (Cd), 

copper (Cu), zinc (Zn), iron (Fe), nickel (Ni), and mercury (Hg).  Consequently, many 

people have suffered great deal from carcinogenic and water borne ailment in connection 

with the consumption of leachate contaminated water (Zhang et al., 2009;  Nadaroglu et 

al., 2010; Naser, 2013; Devic et al., 2013).  
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More so, leachate contaminated groundwater has led to the imbalance in eco-system 

(Foo and Hameed, 2009).  In addition, the liquid contaminant has contributed significantly 

to ozone layer depletion and greenhouse gas effect through the release of the heat trapping 

greenhouse gases (GHG) such as carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O) (Oonk et al., 2013; Ahmari and Zhang, 2013).  Other non-environmentally friendly 

gaseous emissions as ammonia NH4 and hydrofluorocarbons (HFCs) are also released to the 

surrounding environment.  Accordingly, the installation of engineered and sustainable 

landfill liner is imperative since it constitutes one of the most important sub-system in the 

modern integrated and holistic solid waste management system  (Edil, 2003; Demesouka et 

al., 2013; Di Maria et al., 2013).  

  

The performance of engineered compacted clay liner has been evaluated 

hydraulically and most importantly on the basis of attenuation of various toxic chemical 

species (Fall et al., 2009; Sunil et al., 2009; Koutsopoulou et al., 2010; Hamdi and Srasra, 

2013; Zhan et al., 2013).  Also, the sustainability in geo-liner material formulation will 

necessitate the introduction and use of locally available solid waste material as additional 

but relatively cheap and reactive cementitious material.  Base on the foregoing, the research 

explored the potential of compacted kaolin modified with pre-determined dry mass of 

PPOFA (organic ash) as an alternative and sustainable landfill liner material.  

 

The industrial kaolin used as the main landfill mineral liner was procured in 

Malaysia.  Kaolin is one of the sizeable natural resources deposit in Malaysia (Ariffin et al., 

2008).  It has been reported that Malaysia has some 112 million tonnes of kaolin reserves 

located in some of the states (Lee and Teoh, 1992).  Thus, indicate high natural deposit 

coupled with active mining activity (Liew et al., 2012; and Ismail et al., 2013).  It has also 

been reported that the surface chemistry of kaolinitic clay is less chemically reactive 

(Vizcayno et al. 2009).  The soil may then be classified as unfavourable for use solely as 

earthen landfill liner.  Despite this, existing literatures have shown that researches have 

focused on the use of kaolin as geo-liner (Srivastava et al., 2005 and Mockovčiaková et al., 

2008).  Thus, this research explored the advantage of the inherent chemical compositions of 

PPOFA and was used in enhancing the less reactive kaolin as alternative composite landfill 

liner material. 
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1.3 Aim and Objectives of the Research 

 

The aim of this research is to experimentally study the potential of kaolin admixed 

with PPOFA as CCL.  The specific objectives of the study are: 

 

i. To establish the physical, chemical and mechanical characteristics of the industrial 

white kaolin, PPOFA and the formulated composite landfill liner material. 

ii. To determine the attenuation efficiency and sorption capacity of four randomly 

selected single-element species (Pb, Cd, Zn, and Cu) sorbed onto the formulated 

mineral liner material via batch adsorption equilibrium test (BAET) and validate the 

experimental results with the Freundlich and Langmuir model and respective 

sorption isotherm curves. 

iii. To determine the leachability of the industrial white kaolin, PPOFA and the 

formulated composite landfill liner material via batch leaching procedure (BLP). 

iv. To determine the hydraulic performance of the compacted kaolin-PPOFA mineral 

liner material and compare with existing criteria for clay liner.  

v. To determine the diffusion-retardation transport parameters governing the migration 

of the aqueous solutions of the four single-element species when permeated through 

the compacted column of the kaolin-PPOFA liner material. 

 

1.4 Scope of the Research 

 

The research was limited to laboratory based experiments, using the treated POFA 

as admixture to the kaolin.  Both materials were obtained within Johor State of Malaysia.  

Initially the raw POFA was beneficiated by sieving and later subjected to two stages of 

milling process (i.e., hammer and ball milling).  The industrial white kaolin was used as 

received with no further treatment.  The simulated composite mineral liner material was 

formulated by introducing 375 g of the PPOFA to 2500 g dry mass of the industrial kaolin.  

Series of preliminary tests were conducted to establish the physical, chemical, and 

mechanical properties of the two basic component materials and their mixture as the 

composite liner material.  The microstructural analyses conducted include the mass loss on 
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ignition (LOI) analysis at predefined furnace temperature of 440  25 oC and surface 

scanned morphology analysis using Energy Dispersive X-Ray Analyzer (EDX).  Other 

microstructural analyses performed are the elemental and chemical compositions 

determined via Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometer as well as 

the mineralogical composition which was determined via Brucker D8 Advanced X-Ray 

Diffractometer (XRD).  The pH and the electrical conductance (EC) of the suspended solids 

of the three classes of materials were also determined. 

 

The performance of the composite kaolin-PPOFA matrix as mineral liner was 

examined from the following criteria: 

 

i. Metal sorption efficiency 

ii. Adsorption capacity 

iii. Metal leachability 

iv. Hydraulic conductivity  

v. Diffusion-retardation parameters. 

 

Four different toxic heavy metal ion solutions which formed part of those commonly 

found in landfill leachates and are of significant interest to the environment (i.e., Zn, Pb, Cd 

and Cu), were prepared as single-metal solution.  Subsequently, the respective solutions at 

varying concentrations were engaged in the determination of the sorption efficiency and 

capacity of the liner material using the BAET isotherm analysis.  The initial concentration 

(Co) of the four heavy metals used for the metal retention efficiency and isotherm sorption 

tests ranged from 10 mgL-1 to 120 mgL-1.  The presence and leachability of the four heavy 

metals in the kaolin, PPOFA, and the formulated liner material were examined through the 

BLP leaching test.    

 

The falling head hydraulic conductivity test was conducted on series of compacted 

liner specimens prepared from the kaolin-PPOFA matrixes.  For the test, eight specimens 

were prepared and compacted in respective transparent Perspex columns; where de-aired 

distilled (DI) water was used as the permeant.  The completion of the hydraulic conductivity 

test was immediately followed by the column diffusion-retardation tests.  The column test 

was performed with the influent concentration (Cinf) of each metal compound maintained at 
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0.0001M.  The generated series of data from the test categories were analyzed and results 

obtained were compared with existing related literatures.  In particular, performance of the 

formulated kaolin-PPOFA matrix as composite liner was as well compared with standard 

performance criteria for earthen liner material.  

 



REFRENCES 

 

Abdel Rahman, R. O., Zin El Abidin, D. H., and Abou-Shady, H. (2013). Assessment of 

strontium immobilization in cement–bentonite matrices. Chemical Engineering 

Journal. 228, 772–780. 

Abdul, A., Abdul, H., Azmi, M., Johari, M., Shah, K., and Nordin, M. (2010). Ammoniacal 

nitrogen and COD removal from semi-aerobic landfill leachate using a composite 

adsorbent : Fixed bed column adsorption performance, 175, 960–964. 

Abdul Awal, A. S. M. A., and Hussin, M. W. (2011). Effect of Palm Oil Fuel Ash in 

Controlling Heat of Hydration of Concrete.  Procedia Engineering. 14, 2650–2657. 

Abichou, T., Barlaz, M. a, Green, R., and Hater, G. (2013). Liquid balance monitoring 

inside conventional, Retrofit, and bio-reactor landfill cells. Waste management (New 

York, N.Y.). 33(10), 2006–14.  

Abu Amr, S. S., and Aziz, H. A. (2012). New treatment of stabilized leachate by 

ozone/Fenton in the advanced oxidation process. Waste management (New York, 

N.Y.). 32(9), 1693–8. 

Agamuthu, P. and Fauziah, S.H. (2011). Challenges and Issues in moving towards 

sustainable landfilling in a transition country-Malaysia. Waste Management and 

Research. 

Ahmad, B.K.,Taha, M.R., and Kassim, A.K. (2011). Electrokinetic treatment on a tropical 

residual soil. Proceedings of the Institution of Civil Engineers. 164 (GI1), 3-13. 

Ahmari, S., and Zhang, L. (2013). Utilization of cement kiln dust (CKD) to enhance mine 

tailings-based geopolymer bricks. Construction and Building Materials. 40, 1002–

1011.  

Ahn, H.-S., and Jo, H. Y. (2009). Influence of exchangeable cations on hydraulic 

conductivity of compacted bentonite. Applied Clay Science. 44(1-2), 144–150. 

Akroyd, T.N.W. (1957).  Laboratory Testing in Soil Engineering. Old Church Street, 

London, S.W.3.  

Albrecht, B.A., and Benson, C.H. (2001). Effect of Desiccation on Compacted Natural 

Clays. Journal of Geotechnical and Geoenvironmental Engineering. 127(1), 67-75. 

Al-tabbaa, A., and Aravinthan, T. (1998). Natural clay-shredded tire mixtures as landfill 

barrier materials, 18, 9–16. 

Aldahdooh, M., Muhamad Bunnori, N., and Megat Johari, M. (2013). Development of 

green ultra-high performance fiber reinforced concrete containing ultrafine palm oil 

fuel ash. Construction and Building Materials. 48, 379–389.  

Aldahdooh, M., Muhamad Bunnori, N., and Megat Johari, M. (2014). Influence of palm oil 

fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high 

performance fiber reinforced cementitious composites. Materials & Design. 54, 694–

701. 



228 
 

Amat, R. C., Ibrahim, N. M., Rahim, N. L., Tajudin, N. S. B. A., and Ahmad, K. R. (2013). 

Fire Resistance of Biomass Ash Panels used for Internal Partitions in Buildings. 

Procedia Engineering. 53, 52–57.  

Amorós, J. L., Beltrán, V., Sanz, V., and Jarque, J. C. (2010). Electrokinetic and 

rheological properties of highly concentrated kaolin dispersions: Influence of particle 

volume fraction and dispersant concentration.  Applied Clay Science. 49  (1-2), 33–43. 

Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., and Diamadopoulos, E. (2011). 

Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of 

the role of operating parameters by factorial design. Waste management (New York, 

N.Y.), 31(8). 1833–40.  

Arias, F., and Sen, T. K. (2009). Removal of zinc metal ion (Zn2+) from its aqueous 

solution by kaolin clay mineral: A kinetic and equilibrium study. Colloids and 

Surfaces A: Physicochemical and Engineering Aspects. 348(1-3), 100 –108. 

Ariffin, K.S., Rahaman, H.A., Hussin, H., Hadi, K.A.A (2008). The genesis and 

characteristics of primary kaolinitic clay occurrence in Bukit Lampas, Simpang Pulai, 

Ipoh. Bulletin of Geological Society of Malaysia. 54, 9-16. 

Asl, S. H., Ahmadi, M., Ghiasvand, M., Tardast, A., and Katal, R. (2013). Artificial neural 

network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution 

by zeolite prepared from raw fly ash (ZFA). Journal of Industrial and Engineering 

Chemistry. 19(3), 1044–1055.  

Aslani, A., and Wong, K.F. V. (2014). Analysis of renewable energy development to 

power generation in the United States. Renewable Energy. 63, 153–161.  

ASTM, C618-08. (2008). Standard Specification Test Method for coal fly ash and raw or 

calcined    natural pozzola for use as a mineral admixture in concrete. ASTM 

International. 

ASTM, D 421/422. (2012). Standard Specification Test Method for Particle-Size Analysis. 

ASTM, E 2090-12 (2012). Standard Specification Test Method for Optical and Scanning  

Electron Microscopy. 

Ayomoh, M. K. O., Oke, S. A., Adedeji, W. O., and Charles-owaba, O. E. (2008). An 

approach to tackling the environmental and health impacts of municipal solid waste 

disposal in developing countries. Journal of Environmental Management. 88, 108–

114. 

Badogiannis, E., and Tsivilis, S. (2009). Exploitation of poor Greek kaolins: Durability of 

metakaolin concrete. Cement and Concrete Composites. 31(2), 128–133. 

Bame, I. B., Hughes, J. C., Titshall, L. W., and Buckley, C. (2013). Leachate 

characteristics as influenced by application of anaerobic baffled reactor effluent to 

three soils: a soil column study. Chemosphere. 93(9), 2171–2179. 

Barroso, M., Touzefoltz, N., Vonmaubeuge, K., and Pierson, P. (2006). Laboratory 

investigation of flow rate through composite liners consisting of a geomembrane, a 

GCL and a soil liner. Geotextiles and Geomembranes. 24(3), 139–155. 

Benbelkacem, H., Bayard, R., Abdelhay, A., Zhang, Y., and Gourdon, R. (2010). Effect of 

leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. 

Bioresource technology. 101(14), 5206–12.  

Benson, C. H., and Trast, J. M. (1995). Hydraulic conductivity of thirteen compacted clays. 

Clays and Clay Minerals. 43(6), 669-681. 

Bertolino, L. C., Rossi, A. M., Scorzelli, R. B., and Torem, M. L. (2010). Influence of iron 

on kaolin whiteness: An electron paramagnetic resonance study. Applied Clay Science, 

49(3), 170–175.  

Billo, E.J. (2001).  Excell for Chemists, A Comprehensive Guide.   (2nd ed.). USA: John 

Wiley & Sons, Inc.    



229 
 

Billong, N., Melo, U. C., Louvet, F., and Njopwouo, D. (2008).  Properties of compressed 

lateritic soil stabilized with a burnt clay – lime binder : Effect of mixture components. 

Construction and Building Materials. 8–11. 

Bouazza, A., Zornberg, J., McCartney, J. S., and Singh, R. M. (2013). Unsaturated 

geotechnics applied to geoenvironmental engineering problems involving 

geosynthetics. Engineering Geology. (0), 1-11. 

Brady, N.C., and Weil, R.R. (2004). Elements of the nature and properties of soils. (2nd 

ed.) Prentice Hall. 

British Standards BS 812: Part 2 (1996). Tests for geotechnical properties of aggregates. 

Brunauer, S. (1945). The Adsorption of Gases and Vapors. University Press, Oxford. 

BSI (British Standard Institution) BS 1377: 3: (1990). Chemical and electro-chemical 

tests. BSI, Milton Keyness. 

BSI (British Standards Institution) BS 1377: 4: (1990). Compaction-related tests. BSI, 

Milton Keyness. 

BSI (British Standards Institution) BS 1377: 2: (1998). Classification tests. BSI, Milton 

Keyness. 

BSI (British Standards Institution) BS 5930: (1999). Code of Practice for Site 

Investigations.  

BSI, London. Chalermyanont, T., and Arrykul, S. (2005). Compacted sand-bentonite 

mixtures for hydraulic containment liners. Songklanakarin Journal of Science and 

Technology.  27(2), 313-323. 

Chalermyanont, T., Arrykul, S., and Charoenthaisong, N. (2008). Transport of heavy 

metals and chemical compatibility of hydraulic conductivity of a compacted sand-

bentonite mixture. Songklanakarin Journal of Science and Technology. 30 (2), 269-

276. 

Chalermyanont, T., Arrykul, S., and Charoenthaisong, N. (2009). Potential use of lateritic 

and marine clay soils as landfill liners to retain heavy metals. Waste Management. 

29(1), 117–127.  

Chandara, C., Sakai, E., Azizli, K. A. M., Ahmad, Z. A., and Hashim, S. F. S. (2010). The 

effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing 

superplasticizer. Construction and Building Materials. 24(9), 1590–1593.  

Chandara, C., Azizi, K. A. M., M., Ahmad, Z. A., Fuad, S., and Hashim, S. (2011). 

Analysis of Mineralogical Component of Palm Oil Fuel Ash with or without 

Unburned Carbon.  Advanced Materials Research. 173, 7–11.  

Chandara, C., Mohd Azizli, K. A., Ahmad, Z. A., Saiyid Hashim, S. F., and Sakai, E. 

(2012). Heat of hydration of blended cement containing treated ground palm oil fuel 

ash. Construction and Building Materials. 27(1), 78–81. 

Chandrasekhar, S., and Ramaswamy, S. (2002). Influence of mineral impurities on the 

properties of kaolin and its thermally treated products. Applied Clay Science. 21(3-4), 

133–142.  

Chang, C., Wang, C., Mui, D. T., Cheng, M., and Chiang, H. (2009). Characteristics of 

elements in waste ashes from a solid waste incinerator in Taiwan, 165, 766–773. 

Chang, N.-B., Parvathinathan, G., and Breeden, J. B. (2008). Combining GIS with fuzzy 

multicriteria decision-making for landfill siting in a fast-growing urban region. 

Journal of environmental management. 87(1), 139–53. 

Charfi, A., Dhouib Sahnoun, R., and Bouaziz, J. (2013). Characterization and mechanical 

properties of phosphate-kaolin clay. Powder Technology. 235, 633–639. 

Chen, X., Geng, Y., and Fujita, T. (2010). An overview of municipal solid waste 

management in China. Waste Management. 30(4), 716–724.  



230 
 

Chindaprasirt, P., Chotetanorm, C., and Rukzon, S. (2011). Use of Palm Oil Fuel Ash to 

Improve Chloride and Corrosion Resistance of High-Strength and High-Workability 

Concrete. Journal of materials in Civil Engineering. 499-503. 

Claret, F., Tournassat, C., Crouzet, C., Gaucher, E. C., Schäfer, T., Braibant, G., and 

Guyonnet, D. (2011). Metal speciation in landfill leachates with a focus on the 

influence of organic matter. Waste management (New York, N.Y.). 31(9-10), 2036–45.  

 Chong, M.F., Lee, K.P., Chieng, H. J., and Ramli, I.S.B. (2009). Removal of boron from 

ceramic industry wastewater by adsorption-flocculation mechanism using palm oil 

mill boiler (POMB) bottom ash and polymer. Water Reseach. 43, 3326-3334. 

Chusilp, N., Jaturapitakkul, C., and Kiattikomol, K. (2009).  Effects of LOI of ground 

bagasse ash on the compressive strength and sulfate resistance of mortars. 

Construction and Building Materials.  23(12), 3523–3531. 

Coccia, C. J. R., Gupta, R., Morris, J., and McCartney, J. S. (2013). Municipal solid waste 

landfills as geothermal heat sources. Renewable and Sustainable Energy Reviews. 19, 

463–474.  

Coduto, D. P. (2007). Geotechnical Engineering Principles and Practices. Pearson 

Education, Inc. New Delhi, India.  

Cokca, E., and Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner 

material. Waste management (New York, N.Y.). 24(2), 153–64.  

Coles, C., and Yong, R. (2002). Aspects of kaolinite characterization and retention of Pb 

and Cd. Applied Clay Science. 22(1-2), 39–45. 

Colombo, C., Sellitto, V. M., Palumbo, G., Di Iorio, E., Terribile, F., and Schulze, D. G. 

(2014). Clay formation and pedogenetic processes in tephra-derived soils and buried 

soils from Central-Southern Apennines (Italy). Geoderma. 213, 346–356. 

Craig, R.F. (2004). Soil Mechanics. Spon Press, Taylor and Francis Group. London and 

New York. 

Çoruh, S., Elevli, S., Ergun, O. N., and Demir, G. (2013). Assessment of leaching 

characteristics of heavy metals from industrial leach waste. International Journal of 

Mineral Processing. 123, 165–171. 

Darshini, D., Dwivedi, P., and Glenk, K. (2013). Capturing stakeholders´ views on oil 

palm-based biofuel and biomass utilisation in Malaysia. Energy Policy. 62, 1128–

1137.  

Daniel, D.E., and Benson, C.H. (1990). Water Content - Density Creteria for Compacted 

soil Liners.  Journal of Geotechnical Engineering. ASCE. 116(12), 21-39.  

David, E.D. (1993).  Clay liners. Geotechnical Practice for Waste Disposal. (ed. by David, 

E. Daniel) Chapman and Hall, London, UK. 137-163. 

Declan, O., and Paul, Q. (2003). Geotechnical Engineering and Environmental Aspects of 

Clay Liners for Landfill Projects. Fehily Timoney  and Co., and Irish Geotechnical 

Services Ltd. 

Demesouka, O. E., Vavatsikos, P., and Anagnostopoulos, K. P. (2013). Suitability analysis 

for siting MSW landfills and its multicriteria spatial decision support system: method, 

implementation and case study. Waste management (New York, N.Y.). 33(5), 1190–

206. 

De Weerdt, K., Kjellsen, K. O., Sellevold, E., and Justnes, H. (2011). Synergy between fly 

ash and limestone powder in ternary cements. Cement and Concrete Composites. 

33(1), 30–38. 

Devic, G., Djordjevic, D., and Sakan, S. (2013). Natural and anthropogenic factors 

affecting the groundwater quality in Serbia. The Science of the total environment. 

468-469C, 933–942. 



231 
 

Di Maria, F., Sordi, A., and Micale, C. (2013). Experimental and life cycle assessment 

analysis of gas emission from mechanically-biologically pretreated waste in a landfill 

with energy recovery. Waste management (New York, N.Y.). 33(11), 2557–2567.  

Divya, P. V., Viswanadham, B. V. S., and  Gourc, J. P. (2012). Influence of geomembrane 

on the deformation behaviour of clay-based landfill covers. Geotextiles and 

Geomembranes. 34, 158–171. 

Dominijanni, A., and Manassero, M. (2012). Modelling the swelling and osmotic 

properties of clay soils. Part II: The physical approach. International Journal of 

Engineering Science. 51, 51–73. 

Dwivedy, M., and Mittal, R. K. (2013). Willingness of residents to participate in e-waste 

recycling in India. Environmental Development. 6, 48–68.  

Edil, T. B. (2003). A review of aqueous-phase VOC transport in modern landfill liners, 23, 

561–571.  

Ekosse, G.-I. E. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy 

and utilization. Applied Clay Science. 50(2), 212–236. 

El-Sabbagh, S. H., Ahmed, N. M., and Ward, A. (2012). Effect of kaolin–metal oxides 

core–shell pigments on the properties of styrene–butadiene rubber composites. 

Materials and Design, 40, 343–355. 

Elshorbagy, W. A., and Mohamed, A. M. O. (2000). Evaluation of using municipal solid 

waste compost in landfill closure caps in arid areas, 20. 

Eren, E. (2009). Removal of lead ions by Unye ( Turkey ) bentonite in iron and magnesium 

oxide-coated forms. Journal of Hazardous Materials. 165(3), 63–70. 

Fall, M., Célestin, J. C., and Han, F. S. (2009). Suitability of bentonite-paste tailings 

mixtures as engineering barrier material for mine waste containment facilities. 

Minerals Engineering. 22(9-10), 840–848. 

Farooqui, S. Z. (2014). Prospects of renewables penetration in the energy mix of Pakistan. 

Renewable and Sustainable Energy Reviews. 29, 693–700.  

Foo, K. Y., and Hameed, B. H. (2009). Value-added utilization of oil palm ash : A superior 

recycling of the industrial agricultural waste. Journal of Hazardous Materials. 172, 

523–531. 

Foo, K Y, Lee, L. K., and Hameed, B. H. (2013a). Preparation of banana frond activated 

carbon by microwave induced activation for the removal of boron and total iron from 

landfill leachate. Chemical Engineering Journal. 223, 604–610. 

Foo, K.Y., Lee, L. K., and Hameed, B. H. (2013b). Batch adsorption of semi-aerobic 

landfill leachate by granular activated carbon prepared by microwave heating. 

Chemical Engineering Journal, 222, 259–264.  

Galante, G., Aiello, G., Enea, M., and Panascia, E. (2010). A multi-objective approach to 

solid waste management. Waste Management. 1–9. 

Gallego, E., Perales, J. F., Roca, F. J., and Guardino, X. (2014). Surface emission 

determination of volatile organic compounds (VOC) from a closed industrial waste 

landfill using a self-designed static flux chamber. Science of The Total Environment, 

470-471, 587–599. 

Gálvez, A., Giusti, L., Zamorano, M., and Ramos-Ridao, a F. (2009). Stability and 

efficiency of biofilms for landfill leachate treatment. Bioresource Technology. 

100(20), 4895–4898.  

Gambhir, M.L. (2004). Concrete Technology.  (3rd ed.). New Delhi, India: Tata McGraw-

Hill Pub. Comp., Ltd. 

Gámiz, E., Párraga, J., Sánchez-Marañón, M., Melgosa, M., Fernández-González, M. V., 

and Delgado, R. (2011). Is the Pharmacopoeia test a good estimator of the organic 

impurities in kaolin. Applied Clay Science. 51(4), 431–437.  



232 
 

Ganjian, E., Claisse, P., Tyrer, M., and Atkinson, A. (2004). Preliminary investigations 

into the use of secondary waste minerals as a novel cementitious landfill liner. 18, 

689–699. 

Garaj-Vrhovac, V., Oreščanin, V., Gajski, G., Gerić, M., Ruk, D., Kollar, R., Cvjetko, P. 

(2013). Toxicological characterization of the landfill leachate prior/after chemical and 

electrochemical treatment: A study on human and plant cells. Chemosphere, 93(6), 

939–45.  

Gidigasu, M.D. (1976). Laterite Soil Engineering: Pedogenesis and Engineering 

Principles Developments in Geotechnical Engineering. Elservier, Amsterdam, the 

Netherlands. 

Gilat, A. (2008). Matlab an introduction with applications. (3rd ed.). United State of 

America: John Wiley and Sons, Inc. 

Gomez, K.A., and Gomez, A.A. (1984). Statistical Procecedures for Agricultural 

research. (2nd ed.).  New York :John Wiley and Sons, Inc.  

Grabowska-Olszewska, B. (2003). Modelling physical properties of mixtures of clays: 

example of a two-component mixture of kaolinite and montmorillonite. Applied Clay 

Science.  22(5), 251–259. 

Guerra, D. J. L., and da Silva, R. A. R. (2013). Kinetic and thermodynamic studies of 

Brazilian illite–kaolinite in natural and intercalated forms as adsorbents to removal of 

Zn2+ from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers. 

1–7.   

Guo, X., Xiang, D., Duan, G., and Mou, P. (2010). A review of mechanochemistry 

applications in waste management. Waste Management. 30(1), 4–10.  

Guyonnet, D.,Touze-Foltz, N., Norotte, V., Pothier, C., Didier, G., Gailhanou, H., and 

Blanc, P. (2009). Performance-based indicators for controlling geosynthetic clay 

liners in landfill applications. Geotextiles and Geomembranes. 27(5), 321–331. 

Hamdi, N., and Srasra, E. (2013). Hydraulic conductivity study of compacted clay soils 

used as landfill liners for an acidic waste. Waste management (New York, N.Y.). 33(1), 

60–66.  

Hameed, B.H., Ahmad,A.A., and Aziz,N. (2007). Isothermal, kinetics and thermodynamics 

of acid dye adsorption on activated palm ash. Chemical Enginering Journal. 133, 

195-203. 

Hasan, M., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of reactive dye onto 

cross-linked chitosan / oil palm ash composite beads. Chemical Engineering Journal. 

136, 164–172.  

Head, K. H. (1994).  Manual of Soil Laboratory Testing. (2nd ed.). Vol. 2,New York, 

Toronto: John Wiley & Sons, Inc.  

Herrmann, I., Svensson, M., Ecke, H., Kumpiene, J., Maurice, C., Andreas, L., and 

Lagerkvist, A. (2009). Hydraulic conductivity of fly ash-sewage sludge mixes for use 

in landfill cover liners. Water Research. 43, 3541-3547.  

Hillel, D., (1998). Environmental Soil Physics. San Diego, California: Academic Press. 

Houben, D., Evrard, L., and Sonnet, P. (2013). Mobility, bioavailability and pH-dependent 

leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. 

Chemosphere. 92(11), 1450–1457. 

Hrad, M., Huber-Humer, M., Wimmer, B., and Reichenauer, T. G. (2012). Design of top 

covers supporting aerobic in situ stabilization of old landfills--an experimental 

simulation in lysimeters. Waste management (New York, N.Y.). 32(12), 2324–35. 

Huerta Buitrago, B., Ferrer Muñoz, P., Ribé, V., Larsson, M., Engwall, M., 

Wojciechowska, E., and Waara, S. (2013). Hazard assessment of sediments from a 



233 
 

wetland system for treatment of landfill leachate using bioassays. Ecotoxicology and 

environmental safety. 97, 255–262.  

Husain, Z., Zainac, Z., and Abdullah, Z. (2002). Briquetting of palm and shell from the 

processing of palm nuts to palm oil. Biomass and Bioenergy. 22, 505–509. 

Hussin, M.W., Muthusamy, K., and Zakaria, F. (2011). Effect of Mixing Constituent 

toward Engineering Properties of POFA Cement-Based Aerated Concrete. Journal of 

Materials in Civil Engineering. 22 (4), 287-295. 

Hyun, S., Kang, D. H., Kim, J., Kim, M., and Kim, D.-Y. (2011). Adsorptive removal of 

aqueous fluoride by liner minerals from SPL-landfill leachate during the seepage 

process. Desalination. 276(1-3), 347–351.  

Ismail, M., ElGelany Ismail, M., and Muhammad, B. (2011). Influence of elevated 

temperatures on physical and compressive strength properties of concrete containing 

palm oil fuel ash. Construction and Building Materials. 25(5), 2358–2364. 

Ibrahim, M. A., Göransson, G., Kaczala, F., Hogland, W., and Marques, M. (2013). 

Characterization of municipal solid waste temporary storage sites: Risks posed to 

surrounding areas as a consequence of fire incidents. Waste management (New York, 

N.Y.). 33(11). 2296–306. 

Ilyushechkin, A. Y., Roberts, D. G., and Harris, D. J. (2014). Characteristics of solid by-

products from entrained flow gasification of Australian coals. Fuel Processing 

Technology. 118, 98–109. 

Ismail, M., ElGelany Ismail, M., and Muhammad, B. (2011). Influence of elevated 

temperatures on physical and compressive strength properties of concrete containing 

palm oil fuel ash. Construction and Building Materials. 25(5), 2358–2364.  

Ismail, M., Yusuf, T. O., Noruzman, A. H., and Hassan, I. O. (2013). Early Strength 

Characteristics of Palm Oil Fuel Ash and Metakaolin blended Geopolymer Mortar.  

Advanced Materials Research.  693, 1045–1048. 

Jamil, T. S., Ibrahim, H. S., Abd El-Maksoud, I. H., and El-Wakeel, S. T. (2010). 

Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. 

Optimum conditions. Desalination. 258(1-3), 34–40. 

Jaturapitakkul, C., Tangpagasit, J., Songmue, S., and Kiattikomol, K. (2011). Filler effect 

and pozzolanic reaction of ground palm oil fuel ash. Construction and Building 

Materials. 25(11), 4287–4293. 

Jiao, F., Ninomiya, Y., Zhang, L., Yamada, N., Sato, A., and Dong, Z. (2013). Effect of 

coal blending on the leaching characteristics of arsenic in fly ash from fluidized bed 

coal combustion. Fuel Processing Technology. 106, 769–775.  

Jin, J., Li, X., Chi, Y., and Yan, J. (2010). Heavy metals stabilization in medical waste 

incinerator fly ash using alkaline assisted supercritical water technology. Waste 

Management and Research : The Journal of the International Solid Wastes and Public 

Cleansing Association. ISWA, 28(12), 1133–1142. 

 Jo, H., Benson, C., Shackelford, D., Lee, J. and Edil, T. (2005). Long-trem hydraulic 

conductivity of a Geosynthetic Clay Liner permeated with inorganic salt solutions.  

Journal of Geotechnical and Geoenvironmental Engineering. 

Kaliyan, N., and Vance Morey, R. (2009). Factors affecting strength and durability of 

densified biomass products. Biomass and Bioenergy. 33(3), 337–359.  

Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation o 

clay liners. Engineering Geology. 87, 220-229.  

Karagiannidis, A., Papageorgiou, A., Perkoulidis, G., Sanida, G., and Samaras, P. (2010). 

A multi-criteria assessment of scenarios on thermal processing of infectious hospital 

wastes : A case study for Central Macedonia. Waste Management. 30(2), 251–262.  



234 
 

Katsumi, T., Benson, C. H., Foose, G. J., and Kamon, M. (2001). Performance-based 

design of landfill liners. Engineering Geology.  60, 139–148. 

Kaya, A., and Durukan, S. (2004). Utilization of bentonite-embedded zeolite as clay liner. 

Applied Clay Science. 25, 83–91.  

Kayabalı, K., and Bulus, G. (2000). The usability of bottom ash as an engineering material 

when amended with different matrices. Engineering Geology. 56, 293–303. 

Kim, H. J., Endo, D., Sato, M., Matsuo, T., and Matsuto, T. (2009). Estimation of water 

movement in a closed landfill based on tracer tests in gas vents and changes in 

leachate quality. Waste Management. 29(8), 2308–2315. 

Kim, H., and Kim, T. (2002). Measurement of hardness on traditional ceramics. Journal of 

the European Ceramic Society. 22(9-10), 1437–1445.  

Kolaříková, I., Švandová, J., Přikryl, R., and Vinšová, H. (2010). Applied Clay Science 

Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment. Applied 

Clay Science. 47(1-2), 10–15. 

Koutsopoulou, E., Papoulis, D., Tsolis-katagas, P., and Kornaros, M. (2010). Minerals 

used in sanitary landfills for the retention of organic and inorganic pollutants. Applied 

Clay Science. 49(4), 372–382.  

Kroehong, W., Sinsiri, T., and Jaturapitakkul, C. (2011). Effect of Palm Oil Fuel Ash 

Fineness on Packing Effect and Pozzolanic Reaction of Blended Cement Paste. 

Procedia Engineering. 14, 361–369. 

Kwame Efavi, J., Damoah, L., Yaw Bensah, D., Dodoo Arhin, D., and Tetteh, D. (2012). 

Development of porous ceramic bodies from kaolin deposits for industrial 

applications. Applied Clay Science. 65-66, 31–36. 

Laner, D., Crest, M., Scharff, H., Morris, J. W. F., and Barlaz, M. (2012). A review of 

approaches for the long-term management of municipal solid waste landfills. Waste 

management (New York, N.Y.). 32(3), 498–512.  

Lange, K., Rowe, R. K., and Jamieson, H. (2010). Geotextiles and Geomembranes The 

potential role of geosynthetic clay liners in mine water treatment systems. Geotextiles 

and Geomembranes. 28(2), 199–205.  

Larsen, R. W. (2009).  Engineering with Excel. (3rd ed.). Upper Saddle River, New Jersey: 

Pearson Education, Inc. 

Li, M., Sun, C., Gau, S., and Chuang, C. (2010). Effects of wet ball milling on lead 

stabilization and particle size variation in municipal solid waste incinerator fly ash. 

Journal of Hazardous Materials. 174, 586–591. 

Li, Y., Li, J., Chen, S., and Diao, W. (2012). Establishing indices for groundwater 

contamination risk assessment in the vicinity of hazardous waste landfills in China. 

Environmental pollution (Barking, Essex : 1987). 165, 77–90. 

Li, Y., Li, J., and Deng, C. (2013). Occurrence, characteristics and leakage of 

polybrominated diphenyl ethers in leachate from municipal solid waste landfills in 

China. Environmental pollution (Barking, Essex : 1987). 184C, 94–100. 

Li, Z., Lu, H., Ren, L., and He, L. (2013). Experimental and modeling approaches for food 

waste composting: A review. Chemosphere. 93(7), 1247–57.   

Liamsanguan, C., and Gheewala, S. H. (2008). The holistic impact of integrated solid 

waste management on greenhouse gas emissions in Phuket, 16, 1865–1871. 

Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., 

Khairul Nizar, I., and Ruzaidi, C. M. (2012). Optimization of solids-to-liquid and 

alkali activator ratios of calcined kaolin geopolymeric powder. Construction and 

Building Materials. 37, 440–451.  

Lothenbach, B., Scrivener, K., and Hooton, R. D. (2011). Supplementary cementitious 

materials. Cement and Concrete Research.  41(12), 1244–1256.  



235 
 

Malaysian Environmental Quality ( Control of Pollution from Solid Waste Transfer Station 

and Landfill) Regulation 2009, Second Schedule ( Regulation 113). 

Manfredi, S., and Christensen, T. H. (2009). Environmental assessment of solid waste 

landfilling technologies by means of LCA-modeling. Waste Management. 29(1), 32–

43. 

Marshall, R. E., and Farahbakhsh, K. (2013). Systems approaches to integrated solid waste 

management in developing countries. Waste management (New York, N.Y.). 33(4), 

988–1003. 

Maulini-Duran, C., Artola, A., Font, X., and Sánchez, A. (2013). A systematic study of the 

gaseous emissions from biosolids composting: Raw sludge versus anaerobically 

digested sludge. Bioresource technology. 147, 43–51. 

Mehmood, M. K., Adetutu, E., Nedwell, D. B., and Ball, S. (2009). In situ microbial 

treatment of landfill leachate using aerated lagoons. Bioresource technology. 100(10), 

2741–2744. 

Mendes, M. J., Touze-Foltz, N., Gardoni, M., Ahari, M., and Mazeas, L. (2013). 

Quantification of diffusion of phenolic compounds in virgin GCL and in GCL after 

contact with a synthetic leachate. Geotextiles and Geomembranes. 38, 16–25. 

Mendoza, F. J. C., and Izquierdo, A. G. (2008). Design of a model to assess the 

environmental risk of leachate dams, 28, 2122–2133. 

Misra, V., and Pandey, S. D. (2005). Hazardous waste, impact on health and environment 

for development of better waste management strategies in future in India. 

Environment international, 31(3), 417–31.  

Mitchell, J. K., and Soga, K. (2005). Fundamentals of Soil Behavior. (3rd ed.). Hoboken, 

New Jersey: John Wiley & Sons, Inc., USA.   

Mockovčiaková, a., Iveta, Š., Jiří, Š., and Ivana, K. (2008). Characterization of changes of 

low and high defect kaolinite after bioleaching. Applied Clay Science. 39(3-4), 202–

207.  

Mohammedzein, Y. E. A., Al-Rawas, A. A., and Al-Aghbari, M. Y. (2005). Assessment of 

crushed shales for use as compacted landfill liners. Engineering Geology. 80, 271-

281.  

Montgomery, D.C. (2008). Design and Analysis of Experiments. (7th ed.). John Wiley & 

Sons (Asia) Pte Ltd. 

Morris, J. W. F., Crest, M., Barlaz, M., Spokas, K., Kerman, A., and Yuan, L. (2012). 

Improved methodology to assess modification and completion of landfill gas 

management in the aftercare period. Waste management (New York, N.Y.). 32(12), 

2364–2373. 

MPOB (Malaysian Palm Oil Board), 2012. Home website. Available at: 

<http://www.mpob.gov.my/>. 

Muñoz, M., Gomez-rico, M. F., and Font, R. (2013). Use of thermogravimetry for single 

characterisation of samples of the composting process from sewage sludge. Journal of 

Analytical and Applied Pyrolysis. 103, 261–267. 

Musso, T. B., Roehl, K. E., Pettinari, G., and Vallés, J. M. (2010). Assessment of smectite-

rich claystones from Northpatagonia for their use as liner materials in landfills. 

Applied Clay Science. 48(3), 438–445. 

Nadaroglu, H., Kalkan, E., and Demir, N. (2010). Removal of copper from aqueous 

solution using red mud. Desalination, 251(1-3), 90–95.  

Naser, H. (2013). Assessment and management of heavy metal pollution in the marine 

environment of the Arabian Gulf: a review. Marine pollution bulletin. 72(1), 6–13.  

Nhan, C. T., Graydon, J. W., and Kirk, D. W. (1997). Contribution Utilizing Coal Fly Ash 

as a Landfill Barrier Material, 16(7). 



236 
 

Ngoc, U. N., and Schnitzer, H. (2009). Sustainable solutions for solid waste management 

in Southeast Asian countries. Waste Management. 29(6), 1982–1995. 

Nguyen, P. T., and Amiri, O. (2014). Study of electrical double layer effect on chloride 

transport in unsaturated concrete. Construction and Building Materials. 50, 492–498. 

Noorvand, H., Ali, A. A. A., Demirboga, R., Noorvand, H., and Farzadnia, N. (2013). 

Physical and chemical characteristics of unground palm oil fuel ash cement mortars 

with nanosilica. Construction and Building Materials. 48, 1104–1113. 

Oakley, S. M., and Jimenez, R. (2012). Sustainable sanitary landfills for neglected small 

cities in developing countries: the semi-mechanized trench method from Villanueva, 

Honduras. Waste management (New York, N.Y.). 32(12), 2535–2551. 

O’Flaherty, C. A. (1976). Highway Engineering. ( 2nd ed.). Great Britian:Edward Arnold 

Ltd. Pub. Ltd. 

Ogata, A., and Banks, R. B. (1961). A Solution of the Differential Equation of 

Longitudinal Dispersion in porous Media. Geological Survey Professional Paper. 

U.S.A Printing Office, Washington. 1-11. 

Ohimain, E. I., and Izah, S. C. (2014). Energy self-sufficiency of smallholder oil palm 

processing in Nigeria. Renewable Energy. 63, 426–431. 

Okoli, R. E., and Balafoutas, G. (1998). Landfill sealing potentials of bottom ashes of 

sludge cakes, 46, 307–314. 

Oonk, H., Zomeren, A. Van, Rees-White, T. C., Beaven, R. P., Hoekstra, N., Luning, L., 

and Hannen, M. (2013). Enhanced biodegradation at the Landgraaf bioreactor test-cell. 

Waste management (New York, N.Y.). 2048-2060. 

Östman, M. (2008). Ageing Landfills – Development and Processes. PhD, Thesis. Swedish  

University of Agricultural Sciences Uppsala. 

Oyanedel-Craver, V. A, Fuller, M., and Smith, J. A. (2007). Simultaneous sorption of 

benzene and heavy metals onto two organoclays. Journal of colloid and interface 

science. 309(2), 485–92.  

Oweis, I. S., and Khera, R. P. (1998). Geotechnology of waste management.  PSW 

Publishing Company. 35- 49. 

Palmer, B. G., Edil, T. B., and Benson, C. H. (2000). Liners for waste containment 

constructed with class F and C fly ashes. Journal of hazardous materials. 76(2-3), 

193–216. 

Palomino, A. M., Kim, S., Summitt, A., and Fratta, D. (2011). Impact of diatoms on fabric 

and chemical stability of diatom–kaolin mixtures. Applied Clay Science, 51(3), 287–

294. 

Paoli, L., Corsini, a, Bigagli, V., Vannini, J., Bruscoli, C., and Loppi, S. (2012). Long-term 

biological monitoring of environmental quality around a solid waste landfill assessed 

with lichens. Environmental pollution (Barking, Essex : 1987). 161, 70–5.  

Patthanaissaranukool, W., Polprasert, C., and Englande, A. J. (2013). Potential reduction of 

carbon emissions from Crude Palm Oil production based on energy and carbon 

balances. Applied Energy. 102, 710–717.  

Perkoulidis, G., Papageorgiou, A., Karagiannidis, A., and Kalogirou, S. (2010). Integrated 

assessment of a new Waste-to-Energy facility in Central Greece in the context of 

regional perspectives. Waste management (New York, N.Y.). 30(7), 1395–406. 

Peyronnard, O., and Benzaazoua, M. (2011). Estimation of the cementitious properties of 

various industrial by-products for applications requiring low mechanical strength. 

Resources, Conservation and Recycling. 56(1), 22–33. 

Pi, K. W., Gao, L. X., Fan, M. X., Gong, W. Q., and Wan, D. J. (2009). Two-stage 

biodegradation coupled with ultrafiltration for treatment of municipal landfill 

leachate. Process Safety and Environmental Protection. 87(5), 336–342.  



237 
 

 Pivato, A., and Raga, R. (2006). Tests for the evaluation of ammonium attenuation in 

MSW landfill leachate by adsorption into bentonite in a landfill liner. Waste 

Management. 26, 123–132.  

Prasad, M., Xu, H., and Saxena, S. (2008). Multi-component sorption of Pb(II), Cu(II) and 

Zn(II) onto low-cost mineral adsorbent. Journal of Hazardous Materials. 154(1-3), 

221–9.  

Public Soil Testing Laboratories in the Northeastern United States(NEC,1012). 

Pulford, I. D. (2007). The Chemistry of the Solid Earth.  In author. Principles of 

Environmental Chemistry. (234-278). The Royal Society of Chemistry: Macmillan 

India Ltd.  

Qi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F. A., and Mudd, G. (2011). 

Application of sludge dewatered products to soil and its effects on the leaching 

behaviour of heavy metals. Chemical Engineering Journal. 166(2), 586–595.  

Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., and 

Spooren, J. (2013). Characterization of landfilled materials: screening of the enhanced 

landfill mining potential. Journal of Cleaner Production. 55, 72–83. 

Rajamma, R., Ball, R. J., Tarelho, L. A. C., Allen, G. C., Labrincha, J. A., and Ferreira, V. 

M. (2009). Characterisation and use of biomass fly ash in cement-based materials. 

Journal of Hazardous Materials. 172, 1049–1060.  

Rajesh, S., and Viswanadham, B. V. S. (2011). Hydro-mechanical behavior of geogrid 

reinforced soil barriers of landfill cover systems. Geotextiles and Geomembranes, 

29(1), 51–64. 

Regadío, M., Ruiz, a I., de Soto, I. S., Rastrero, M. R., Sánchez, N., Gismera, M. J., 

Cuevas, J. (2012). Pollution profiles and physicochemical parameters in old 

uncontrolled landfills. Waste management (New York, N.Y.), 32(3). 482–97. 

Rengasamy, P., Krishna Murti, G.S.R., and Sarma, V.A.K. (1975). Isomorphous 

Substitution  of Iron for Aluminium in some Soil Kaolinites. Calys and Clay 

Minerals. 23, 211-214. 

Renman, G., and Kietlinska, A. (2005). An evaluation of reactive filter media for treating 

landfill leachate. Chemosphere.  61, 933–940. 

Roberts, A. A., and Shimaoka, T. (2008). Analytical study on the suitability of using 

bentonite coated gravel as a lndfill liner material. Waste Management.  28, 2635-

2644.  

Rotureau, E. (2014). Analysis of metal speciation dynamics in clay minerals dispersion by 

stripping chronopotentiometry techniques. Colloids and Surfaces A: Physicochemical 

and Engineering Aspects, 441, 291–297. 

Said-Mansour, M., Kadri, E.-H., Kenai, S., Ghrici, M., and Bennaceur, R. (2011).  

Influence of calcined kaolin on mortar properties. Construction and Building 

Materials. 25(5), 2275–2282.  

Sales, A., and Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as 

sand replacement. Waste management. 30(6), 1114–1122. 

Sánchez-Jiménez, N., Gismera, M. J., Sevilla, M. T., Cuevas, J., Rodríguez-Rastrero, M., 

and Procopio, J. R. (2012). Clayey materials as geologic barrier in urban landfills: 

Comprehensive study of the interaction of selected quarry materials with heavy 

metals. Applied Clay Science, 56, 23–29. 

Santos, E. Dos, Scorzelli, R. B., Bertolino, L. C., Alves, O. C., and Munayco, P. (2012). 

Characterization of kaolin from the Capim River region — Brazil. Applied Clay 

Science. 55, 164–167.  

Sarabian, T., and Rayhani, M. T. (2013). Hydration of geosynthetic clay liners from clay 

subsoil under simulated field conditions. Waste management. 33(1), 67–73. 



238 
 

Sata, V., Tangpagasit, J., Jaturapitakkul, C., and Chindaprasirt, P. (2012). Effect of W/B 

ratios on pozzolanic reaction of biomass ashes in Portland cement matrix. Cement and 

Concrete Composites. 34(1), 94–100.  

Scrivener, K. L., and Nonat, A. (2011). Hydration of cementitious materials, present and 

future. Cement and Concrete Research. 41(7), 651–665. 

Scullion, J., Winson, M., and Matthews, R. (2007). Inhibition and recovery in a fixed 

microbial film leachate treatment system subject to shock loading of copper and zinc. 

Water research, 41(18), 4129–38.  

Senin, H.B., Subhi, O., Rosliza, R., Kancono, N., and Azhar, M.S. (2006).  Role of 

sawdust in the removal of iron from aqueous solution. ASEAN Journal of Sciene and 

Technology Development. 23(3), 223-229. 

Shackelford,C.D. (1990). Transit-time design for earthen barriers. Engineering Geology.  

29, 79-94.  

Shackelford, C.D., and Daniel, D.E. (1991). Diffusion in saturated soil. I: Background.  

Journal of Geotechnical Engineering. 117, 467-484.  

Shackelford, C. D. (1993). Contaminant Transport. In Daniel, D. E. Geotechnical Practice 

for Waste Disposal. 33-65. Great Britain. Chapman and Hall, London. 

Shackelford, C. D., and Redmond, P. (1995). Solute Breakthrough Curves for Processed 

kaolin at low flow rates. Journal of Geotechnical Engineering. 122 (1), 17-32. 

Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000).  Evaluating 

the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles 

and Geomembranes. 18, 133–161. 

Sharma, H.D., and Lewis, S.P. (1994). Waste Containment Systems, Waste Stabilization, 

and Landfillss: Design and Evaluation,. Wiley, New York.  

Sharma, H. D., and Reddy, K. R. (2004). Geoenvironmental Engineering. Hoboken, New 

Jersey: John Wiley and Sons, Inc., USA. 

Shuit, S. H., Tan, K. T., Lee, K. T., and Kamaruddin, A. H. (2009). Oil palm biomass as a 

sustainable energy source : A Malaysian case study. Energy, 34(9), 1225–1235. 

Siddiqui, M. A., and Ahmed, Z. (2008). Geochemistry of the kaolin deposits of Swat 

(Pakistan). Chemie der Erde - Geochemistry. 68(2), 207–219.  

Silva, G., and Almanza, R. (2009).  Use of clays as liners in solar ponds. Solar Energy.  

83, 905-919. 

Silva, T. F. C. V., Silva, M. E. F., Cristina Cunha-Queda, a., Fonseca, A., Saraiva, I., 

Boaventura, R. R., and Vilar, V. J. P. (2013). Sanitary landfill leachate treatment 

using combined solar photo-Fenton and biological oxidation processes at pre-

industrial scale. Chemical Engineering Journal. 228, 850–866. 

Silva, T. F. C. V, Silva, M. E. F., Cunha-Queda, C., Fonseca, A., Saraiva, I., Sousa, M., 

Vilar, V. J. P. (2013). Multistage treatment system for raw leachate from sanitary 

landfill combining biological nitrification-denitrification/solar photo-

Fenton/biological processes, at a scale close to industrial - Biodegradability 

enhancement and evolution profile of trace po. Water research. 47(16), 6167–86. 

Sinthaworn, S., and Nimityongskul, P. (2009).  Quick monitoring of pozzolanic reactivity 

of waste ashes. Waste Management. 29(5),1526–1531. 

Sír, M., Podhola, M., Patočka, T., Honzajková, Z., Kocurek, P., Kubal, M., and Kuraš, M. 

(2012). The effect of humic acids on the reverse osmosis treatment of hazardous 

landfill leachate. Journal of hazardous materials, 207-208, 86–90. 

Sirieix, C., Fernández Martínez, J. L., Riss, J., and Genelle, F. (2013). Electrical resistivity 

characterization and defect detection on a geosynthetic clay liner (GCL) on an 

experimental site. Journal of Applied Geophysics. 90, 19–26.  



239 
 

Sivapullaiah, P. V., and Lakshmikantha, H. (2005). Lime-stabilised illite as a liner. Ground 

Improvement. 1, 39-45. 

Sizirici, B., Tansel, B., and Kumar, V. (2011). Knowledge based ranking algorithm for 

comparative assessment of post-closure care needs of closed landfills. Waste 

management. 31(6), 1232–8.  

Smith, G. N., and Smith, I. G. N.(1995).  Element of Soil Mechanics. (7th ed.). Great 

Britain: University Press, Cambridge. 

Snyder, K. A. (2009). Mineralogical and Microstructural Evolution in Hydrating 

Cementitious Sysyems. National Institute of Standards and Technology. Gaithersburg, 

MD 20899. 

Sparks, D.L., and Suarez, D.L. (1996).  Methods of soil analysis. Part 2: Chemical 

properties (3rd ed.). ASA, SSSA, CSSA, Madison, WI., 551-601. 

Srivastava, P., Singh, B., and Angove, M. (2005). Competitive adsorption behavior of 

heavy metals on kaolinite. Journal of colloid and interface science. 290(1), 28–38. 

Subramaniam, V., Ngan, M. A., May, C. Y., Meriam, N., and Sulaiman, N.M. (2008).  

Environmental Performance of the Milling Process of Malaysian Palm Oil Using the 

Life Cycle Assessment Approach. American Journal of Environmental Science.  4(4), 

310–315. 

Sunil, B. M., Shrihari, S., and Nayak, S. (2009). Shear strength characteristics and 

chemical characteristics of leachate-contaminated lateritic soil. Engineering Geology, 

106(1-2), 20–25. 

Szymona, K., Borysiuk, P., H’ng, P. S., Chin, K. L., and Mamiński, M. (2014). 

Valorization of waste oil palm (Elaeis guineensis Jacq.) biomass through 

furfurylation. Materials and Design. 53, 425–429. 

Taha, M. R., and Kabir, M. H. (2003). Sedimentary residual soils as a hydraulic barrier in 

waste containment systems. Second International Conference on Advances in Soft Soil 

Engineering Technology. Putrajaya, Malayisia, 895-904. 

Tangchirapat, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). Use of palm oil fuel ash 

as a supplementary cementitious material for producing high-strength concrete. 

Construction and Building Materials. 23(7), 2641–2646.  

Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., and Siripanichgorn, A. 

(2007). Use of waste ash from palm oil industry in concrete. Waste Mangement.  27, 

81–88.  

Temuujin, J., Williams, R. P., and Van Riessen, A. (2009). Effect of mechanical activation 

of fly ash on the properties of geopolymer cured at ambient temperature. Journal of 

Materials Processing Technology. 209(12-13). 5276–5280.  

Travar, I., Lidelöw, S., Andreas, L., Tham, G., and Lagerkvist, A. (2009). Assessing the 

environmental impact of ashes used in a landfill cover construction. Waste 

management. 29(4), 1336–1346. 

Tsiridis, V., Petala, M., Samaras, P., Kungolos, and Sakellaropoulos, G. P. (2012). 

Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity 

tests. Ecotoxicology and environmental safety. 84, 212–20.  

Turan, N. G., and Ergun, O. N. (2009). Removal of Cu(II) from leachate using natural 

zeolite as a landfill liner material. Journal of Hazardous Materials. 167. 696- 700.  

Udoeyo, F. F., Brroks, R., Inyang, H., and Bae, S. (2010). Imo Lateritic Soil as a Sorbent 

for Heavy Metals. International Journal of Research and Reviews in Applied Sciences. 

4(1), 1-6. 

Umamaheswaran, K., and Batra, V. S. (2008). Physico-chemical characterisation of Indian 

biomass ashes. Fuel. 87(6), 628–638.  



240 
 

Umar, M., Aziz, H. A., and Yusoff, M. S. (2010). Trends in the use of Fenton, electro-

Fenton and photo-Fenton for the treatment of landfill leachate. Waste management 

(New York, N.Y.), 30(11), 2113–21.  

Umar, M. S., Jennings, P., and Urmee, T. (2013). Strengthening the palm oil biomass 

Renewable Energy industry in Malaysia. Renewable Energy. 60, 107–115. 

USEPA (2007). EPA Guidline  for Environmental Management of landfill facilities. 

Municipal solid wates and commercial and industrial general wates. 

United State EPA. (2008). Fate, Transport and Transformation Test Guidelines. OPPTS 

835.1230, Adsorption/Desorption (Batch Equilibrium). 

United State EPA Science and Ecosystem Support Division Athens Georgia (2011). 

107-R2. Soil Sampling.  

United State EPA Science and Ecosystem Support Division Athens Georgia (2011). 

300-R2. Field X-Ray Fluorescence Measurement.  

Van der Sloot, H. a, and Kosson, D. S. (2012). Use of characterisation leaching tests and 

associated modelling tools in assessing the hazardous nature of wastes. Journal of 

hazardous materials. 207-208, 36–43. 

Vítková, M., Hyks, J., Ettler, V., and Astrup, T. (2013). Stability and leaching of cobalt 

smelter fly ash. Applied Geochemistry. 29, 117–125.  

Vizcayno, C., De Gutiérrez, R. M., Castello, R., Rodriguez, E., and Guerrero, C. E. (2010). 

Pozzolan obtained by mechanochemical and thermal treatments of kaolin. Applied 

Clay Science. 49(4), 405–413.  

Wagner, J., and Schnatmeyer, C. (2002). Test f ield study of different cover sealing 

systems for industrial dumps and polluted sites. Applied Clay Science. 21(1-2),  99–

116. 

Wahba, M. M., and Zaghloul, A. M. (2007).  Adsorption Characteristics of Some Heavy 

Metals by Some Soil Minerals. Journal of Applied Sciences Research. 3(6), 421–426. 

Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., and Siagi, Z. (2000). Combustion of 

agricultural residues. Progress in Energy and Combustion Science. 26(1), 1–27.  

Whitlow, R. (1995).  Basic Soil mechanics. (3rd ed.). Edinburgh Gate Harlow Essex, 

England: Longman Group Ltd. 

Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., and Christensen, T. H. (2013). 

Environmental impact assessment of leachate recirculation in landfill of municipal 

solid waste by comparing with evaporation and discharge (EASEWASTE). Waste 

management. 33(2), 382–389. 

Yabroudi, S. C., Morita, D. M., and Alem, P. (2013). Landfill Leachate Treatment Over 

Nitritation/Denitritation in an Activated Sludge Sequencing Batch Reactor. APCBEE 

Procedia. 5(L), 163–168.  

 Yadava, K. P., Tyagi, B. S., and Singhb, V. N. (1991). Effect of Temperature on the 

Removal of Lead ( I1 ) by Adsorption on China Clay and Wollastonite, 47–60. 

Yahaya, L. E., Adebowale, K. O., and Menon, R. R. (2009). Mechanical properties of 

organomodified kaolin/natural rubber vulcanizates. Applied Clay Science. 46(3), 283–

288. 

Yang, N., Zhang, H., Shao, L.-M., Lü, F., and He, P.-J. (2013). Greenhouse gas emissions 

during MSW landfilling in China: Influence of waste characteristics and LFG 

treatment measures. Journal of environmental management. 129, 510–21. 

Yao, Y., Li, Y., Liu, X., Jiang, S., Feng, C., and Rafanan, E. (2013). Characterization on a 

cementitious material composed of red mud and coal industry byproducts. 

Construction and Building Materials. 47, 496–501.  

Yeung, A. T. (2011). Milestone developments, myths, and future directions of 

electrokinetic remediation. Separation and Purification Technology. 79(2), 124–132.  



241 
 

Yin, C. Y., Aishah, S., Abdul, S., Lim, Y. P., Syed-ariffin, S. N., and Zamzuri, Z. (2008). 

An investigation into physicochemical characteristics of ash produced from 

combustion of oil palm biomass waste in a boiler. Fuel Processing Technology.  9, 6–

9.  

Yochim, A., Zytner, R. G., McBean, E. and  Endres, A. L. (2013). Estimating water 

content in an active landfill with the aid of GPR. Waste management. 33(10), 2015–

2028. 

Yoshizaki, T., Shirai, Y., Hassan, M. A., Baharuddin, A. S., Raja Abdullah, N. M., 

Sulaiman, A., and Busu, Z. (2013). Improved economic viability of integrated biogas 

energy and compost production for sustainable palm oil mill management. Journal of 

Cleaner Production. 44, 1–7. 

Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., and Maslehuddin, M. (2014). Evolution 

of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based 

concrete. Materials and Design. 55, 387–393.  

Zainudin, N. F., Lee, K. T., Kamaruddin, A. H., Bhatia, S., and Mohamed, A. R. (2005).  

Study of adsorbent prepared from oil palm ash ( OPA ) for flue gas desulfurization. 

Separation and Purification Technology.  45, 50–60.  

Zaman, A. U. (2014). Identification of key assessment indicators of the zero waste 

management systems. Ecological Indicators. 36, 682–693. 

Zegeye, A., Yahaya, S., Fialips, C. I., White, M. L., Gray, N. D., and Manning, D. a. C. 

(2013). Refinement of industrial kaolin by microbial removal of iron-bearing 

impurities. Applied Clay Science. 86, 47–53.   

Zhang, D., He, P., and Shao, L. (2009). Journal of Hazardous Materials. 168, 1497–1503. 

Zhang, H. J., Jeng, D.-S., Barry, D. a., Seymour, B. R., and Li, L. (2013). Solute transport 

in nearly saturated porous media under landfill clay liners: A finite deformation 

approach. Journal of Hydrology. 479, 189–199.  

Zhan, T. L. T., Guan, C., Xie, H. J., and Chen, Y. M. (2013). Vertical migration of leachate 

pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field 

and theoretical investigation. The Science of the total environment. 470-471C, 290–

298.  

Zhang, D-Q., He, P-J., and Shao, L-M. (2009). Potential gases emissions from the 

cumbustion of municipal solid waste by bio-drying. Journal of Hazardous Materials. 

168, 1497–1503. 

Zhang, H. J., Jeng, D.-S., Seymour, B. R., Barry, D. A., and  Li, L. (2012).  Solute 

transport in partially-saturated deformable porous media: Application to a landfill clay 

liner. Advances in Water Resources, 40, 1–10. 

Zhang, Q.-Q., Tian, B.-H., Zhang, X., Ghulam, A., Fang, C.-R., and He, R. (2013). 

Investigation on characteristics of leachate and concentrated leachate in three landfill 

leachate treatment plants. Waste management. 33(11), 2277–2286.  

Zhang, W., Zhang, X., Liang, M., and Lu, C. (2008). Mechanochemical preparation of 

surface-acetylated cellulose powder to enhance mechanical properties of cellulose-

filler-reinforced NR vulcanizates. Composites Science and Technology. 68.  2479–

2484. 

Zhang, Z., Lu, X., and Su, P. (2010). Dispersion of kaolin powders in silica sols. Applied 

Clay Science. 49(1-2), 51–54. 

Zhen-shan, L., Lei, Y., Xiao-yan, Q., and Yu-mei, S. (2009). Municipal solid waste 

management in Beijing City. Waste Management. 29(9), 2596–2599.  

Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z., and Renhua, H. (2009). 

Natural attenuation and characterization of contaminants composition in landfill 



242 
 

leachate under different disposing ages. The Science of the total environment. 

407(10), 3385–3391. 

 

 

 

 

 


	1
	1
	1
	2

	2

	2
	1
	2
	i-ii
	i
	004

	ii

	FULL
	brown iii-xxxv
	3-34
	3-33
	3-32
	3-31
	3-30
	3-29
	3-28
	3-27
	3-26
	3-25
	3-24
	3-23
	3-22
	brown 3-21
	3-20
	3-19
	3-18
	3-17
	3-16
	3-15
	3-14
	brown-3-13
	3-12
	3-11
	3-10
	3-9
	3-8
	3-7
	3-6
	3-5
	3-4
	3
	004

	4
	004


	5
	004


	6
	004


	7
	004


	8
	004


	9
	004


	10
	004


	11
	004


	12
	004


	13
	004


	14
	004


	15
	004


	16
	004


	17
	004


	18
	004


	19
	004


	20
	004


	21
	004


	22
	004


	23
	004


	24
	004


	25
	004


	26
	004


	27
	004


	28
	004


	29
	004


	30
	004


	31
	004


	32
	004


	33
	004


	34
	004


	35
	004


	brown 1-7
	1a
	1a
	1a
	1a
	1
	2
	3

	2a

	2b

	2a

	2b







