POTENTIAL OF KAOLIN- PALM OIL FUEL ASH MIXTURE AS SUSTAINABLE LANDFILL LINER MATERIAL

OYELEKE RAIFU BROWN

UNIVERSITI TEKNOLOGI MALAYSIA

POTENTIAL OF KAOLIN-PALM OIL FUEL ASH MIXTURE AS SUSTAINABLE LANDFILL LINER MATERIAL

OYELEKE RAIFU BROWN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2014

In the Name of ALLAH, the Most Gracious, the Most Merciful. To:

My Father: Late Prince (Haj.) Mustapha Oyeleke (1917-1983)

My Mother: Late Haja Sabtiyu Oyeleke (1920-2004), who gave me an excellent upbringing and cherished me with love and tenderness. May Almighty Allah subhanahu wa ta 'la continue to grant their souls with perfect peace and eternal rest, and may He also count them and us among His obedient servants on the day of

judgment, (amin).

My Heartthrob: Haja Khadijat Kuburah Bin Mohd.Jimoh, for her understanding and unalloyed cooperation.

My children:

Prince:

Mubarak Adeyemi (1994) Khalid Adeyinka (1996) Saleem Adegoke (1999) Ateeq Adeboye (2001), and

Princess:

Kabirah Abike (2005), for their patience and perseverance when I left them to pursue this noble course, at the stage when my attention is highly in need.

ACKNOWLEDGMENT

Firstly, I would like to express my profound gratitude to Almighty Allah (S.W.T) for showing me His guidance and blessing, as He has enable me complete this Ph.D thesis. May the peace and blessings of Almighty Allah (S.W.T) be upon our Noble Prophet Muhammad (S.A.W) for he is the unlettered messenger who has brought light to mankind and take them out of total darkness and ignorance. My sincere thanks also go to several institutions and persons numerous to be mentioned here.

Secondly, my deepest gratitude is directed to my able and astute supervisors, Dr. Mohd. Badruddin Bin Mohd. Yusof for his expertise advice, dedication, guidance, constructive criticisms, textual language checking system, and in thesis outlining. He is always available for me during the course of this research. I also want to sincerely thank my co-supervisors, in persons of Prof. Dr. Mohd. Razman Bin Mohd. Salim and Associate Prof. Kamarudin Ahmad for their invaluable suggestions, spirit of motivation and extensive knowledge which have contributed immensely to the success of this thesis. They have assisted me greatly in the collections of pertinent literatures, effective interpretation of all textual materials used and understanding of the system of note-taking, and finally, synthesizing from different sources. This has greatly contributed to the originality of this thesis.

In the absence of sustained financial support and in particular emotional stability, it would have been difficult for me to complete my thesis. For these two viable and important Ph.D parameters, I would like to clearly offer my deepest gratitude to the Universiti Teknologi Malaysia (UTM), for the IDF tuition scholarship offered for two semesters as financial leverage during the course of my

program. My thanks also go to the Librarians and other supporting staffs of Perpustakaan Sultanah Zahariah (PSZ), UTM Library for their assistance in makingthe relevant literatures and serene library environment available for this research.

Finally, I will like to extend my sincere appreciation to the following distinguish personalities and organizations for their unalloyed cooperation and unwavering supports, throughout the period of my studies at UTM. They are Haj. Abdel Yekeen Oyeleke; Haj. Mikhaeel Tayo Oyeleke; Haj. Semee Oyeleke; Haj. Taofeeq Oyeleke; Prince Abd. Hameed Adeyemi Onifade; and Muthashiru Kolawole. Others are Adewale Adeyemo; Sarafadeen Kolawole; Arc. Kalejaiye Abdurazak; Femi Olateru; Prince Munir Oyewale Sholadoye; Abdulkareem Ayinla; Taliat Yusuf; and the Oni Ira of Ira Land, His Royal Highness Abdulwahab Oyetoro; the entire sons and daughters of Ira Land; the Management of Kaduna Polytechnic, Built Environment Ltd, In-depth Engineering and Osbark Engineers Ltd. May Allah reward all of them for their opened or confined contributions and sincere support towards achieving this noble objective (amin).

ABSTRACT

Contamination of groundwater due to leachate percolating through landfill liner is a potential hazard to human health and the environment. Effective mitigation approaches and imperative research on alternative liner materials could reduce contamination. In this study, an investigation on the potential of kaolin premixed with pulverized palm oil fuel ash (PPOFA) as an alternative mineral liner material is proposed. The investigation was carried out in two stages. Initially, physico-chemical and mechanical characterizations were performed on these materials separately. Then, PPOFA was mixed in stages of 0, 10, 20, and 30 percent by dry mass of the kaolin and were compacted using Standard Proctor. Result from the compaction test showed that 15 percent of PPOFA was found to be the optimum dose for the formulated liner matrix. In the second stage, material characterizations were repeated on the formulated liner matrix followed by performance criteria tests. These tests included heavy metal removal efficiency, chemical sorption, leaching, hydraulic conductivity and column tests. The criteria examined were compared with the standards and previous related research. All the tests were conducted without pH adjustment and were duplicated. Based on sorption tests, Freundlich and Langmuir isotherm models were developed and validated using linear regression and correlation coefficient R. The performance tests recorded high metal ion removal efficiencies of 59 to 99 percent at solution equilibrium pH ranging from 7.64 to 3.00. Freundlich sorption capacities ranged from 0.2063 to 25.64, while the Langmuir monolayer sorption capacity, β ranged from 22.3714 to 52.6316 mgg⁻¹. Besides that, the modelled Freundlich (*q*_{eFred}) and Langmuir (q_{eLang}) isotherm were relatively well fitted to the experimental (q_{expt}) , with correlation coefficients (R) greater than 0.84. Leaching occurred at very low concentrations ranging from 0.003 to 0.19 mgL⁻¹ and hydraulic conductivity tests obtained values ranging from 3.14 to 3.66×10^{-6} cms⁻¹. Finally, the column test showed that the hydrodynamic dispersion coefficients (D_{I}^{*}) and retardation factors (R_{d}) ranged between 1.16×10^{-3} to 1.11×10^{-5} cm²s⁻¹ and 17 to 337 respectively. The proposed kaolin-PPOFA liner matrix has been proven to be a promising alternative liner material in ameliorating groundwater contamination from the leachate generated in the landfill.

ABSTRAK

Pencemaran air bumi yang disebabkan oleh penelusan air larut lesap melalui pelapik tapak pelupusan adalah berpotensi membahayakan manusia dan alam sekitar. Pendekatan pencegahan yang berkesan dan penyelidikan yang imperatif mengenai bahanbahan pelapik ini dapat mengurangkan pencemaran. Menerusi kajian ini, satu penyiasatan telah dicadangkan ke atas potensi campuran kaolin dengan serbuk abu bahan bakar kelapa sawit (PPOFA) sebagai alternatif kepada bahan mineral pelapik. Penyelidikan ini telah dijalankan dalam dua peringkat. Pada mulanya, pencirian kimia-fizikal dan mekanikal telah dilakukan ke atas bahan-bahan ini secara berasingan. Kemudian, bahan PPOFA telah dicampurkan pada tahap 0, 10, 20, 30 peratus jisim kering kaolin dan dipadatkan menggunakan kaedah Piawaian Proctor. Melalui ujian pemadatan, PPOFA 15 peratus merupakan dos optimum untuk matriks pelapik yang telah diformulasikan. Pada peringkat kedua, pencirian bahan telah diulangi pada matriks pelapik yang diformulasikan diikuti dengan ujian prestasi kriteria. Ujian-ujian ini termasuklah kecekapan penyingkiran logam berat, penyerapan kimia, larut lesap, kekonduksian hidraul dan ujian turus. Kriteria yang dianalisa telah dibandingkan dengan piawaian dan penyelidikan sebelumnya yang berkaitan. Kesemua ujian telah diulang sebanyak dua kali tanpa mengubah nilai pH. Berdasarkan ujian penyerapan, model lengkung sesuhu Freundlich dan Langmuir telah dihasilkan dan disahkan menggunakan kaedah regresi lelurus dan pekali korelasi R. Prestasi ujian merekodkan nilai kecekapan penyingkiran ion logam yang tinggi daripada 59 hingga 99 peratus pada keseimbangan pH larutan antara 7.64 hingga 3.00. Kapasiti erapan Freundlich bernilai antara 0.2063 hingga 25.64, manakala nilai kapasiti erapan ekalapisan Langmuir, β adalah antara 22.3714 hingga 52.6316 mgg⁻¹. Di samping itu, model lengkung sesuhu Freundlich (qeFred) dan Langmuir (qeLang) yang dihasilkan memberi nilai yang menghampiri nilai eksperimen (qexpt), dengan pekali korelasi (R) lebih besar daripada 0.84. Larutlesapan berlaku pada kepekatan yang sangat rendah iaitu antara 0.003 hingga 0.19 mgL⁻¹ dan ujian kekonduksian hidraul memberi nilai antara 3.14 hingga 3.66 $\times 10^{-6}$ cms⁻¹. Akhir sekali, ujian turus menunjukkan nilai pekali serakan hidrodinamik (D_{L}^{*}) dan faktor perencatan (R_{d}) yang masing-masing bernilai antara 1.16×10^{-3} ke 1.11×10^{-5} cm²s⁻¹ dan 17 ke 337. Matriks pelapik kaolin-PPOFA yang dicadangkan telah dibuktikan sebagai alternatif bahan pelapik yang berpotensi dalam membendung pencemaran air bumi dari proses larut lesap yang dihasilkan di tapak pelupusan.

TABLE OF CONTENTS

CHAPTER

TITLE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGMENT	iv
ABSTRACT	vi
ABSTRAK	vii
TABLE OF CONTENTS	viii
LIST OF TABLES	xxi
LIST OF FIGURES	xxiv
LIST OF ABBREVIATIONS	xxix
LIST OF SYMBOLS	xxxi
LIST OF APPENDICES	xxxiv

1		INTRODUCTION	1
	1.1	Background of the Problem	1
	1.2	Statement of the Problem	5
	1.3	Aim and Objectives of the Research	8
	1.4	Scope of the Research	8

2		LITRATURE REVIEW	11
	2.1	Introduction	11
	2.2	The Formation of Primary and Secondary Clay Minerals	11

2.2.1 The Basic Building Blocks of Kaolinite Mineral	12
2.2.1.1 The Formation of Unit Alumina and Silica	
Sheet	13
2.2.1.2 Net Positive Charge per Aluminium	
Octahedral Unit	14
2.2.1.3 Net Negative Charge per Silicon	
Tetrahedral Unit	14
2.2.1.4 The Formation of Kaolinite Structural	
Unit from the Unit Alumina and Sheets	14
2.2.1.5 The Formation of Kaolin Crystal from	
Kaolinite Structural Units	15
2.2.2 Physical Properties of Kaolin	16
2.2.3 Mechanical Properties of Kaolin	17
2.2.4 Chemical and Geotechnical Properties of	
Kaolin	17
2.2.4.1 Isomorphous Substitutions Processes and	
Formation of Binding Sites on Kaolinite	18
2.2.4.2 The Process of Cation-exchage in	
Kaolinitic Clay	20
2.2.4.3 Clay-water-ion Interaction System	20
2.2.4.4 Ionic Distribution in Clay-leachate	
Environment	21
2.2.4.5 Diffuse Double Layer in Hydrated Clay	
Mineral	21
2.2.5 Sourcing and Availability of Kaolin in Malaysia	22
2.2.5.1 General usage and Application	23
2.2.6 The Production and Challenges of Palm Oil Mill	
Biomass in Generating Sustainable Green Energy	
in Malaysia	24
2.2.6.1 The Production of POFA from Palm Oil	
Mill Biomass Residue	25
2.2.6.2 Statistics of POFA Generation in Malaysia	
Based on Quantity of Palm Oil Produced	

	in 2012 and 2013	25
	2.2.6.3 Chemical Composition of POFA	29
	2.2.6.4 Cementitious and Adsorbent Reactivity of	
	PPOFA	30
	2.2.6.5 Application of POFA in Environmental	
	Engineering	31
2.3	Review of Imperial Literatures on Liner Minerals	32
	2.3.1 Current Materials used as Liner in Modern	
	Landfills	32
	2.3.1.1 Soil Liner	32
	2.3.1.2 Geomembrane Liner	34
	2.3.1.3 Geosynthetic Clay Liner	34
	2.3.2 Alternative Liner Materials	36
	2.3.2.1 Bottom and Fly ash from Coal Industry	36
	2.3.2.2 Rubber and Bentonite added Fly ash	37
	2.3.2.3 Bottom Ash from Sludge Cake as Liner	
	Material	37
	2.3.2.4 Composting of Municipal Solid Waste as	
	Liner Material	38
	2.3.3 Mechanical Activation of Geo-mineral liner	
	Material	38
	2.3.4 Hydraulic Conductivity of Mineral Landfill	
	Liner	39
	2.3.4.1 Compaction and Hydraulic Conductivity	
	of Earthen Liner	40
	2.3.4.2 Effect of Biomass Ash on the Hydraulic	
	Conductivity of Mineral Liner	41
	2.3.4.3 The Role of DDL on Hydraulic	
	Conductivity	42
	2.3.5 Sorption and Retention Capacity in Mineral Liner	43
	2.3.6 Total Mass Flux of Contaminant Species	47
	2.3.6.1 Application of Contaminant Transport	
	Model in Mineral Liner	48

		2.3.6.2	Analytical Solution to the Governing	
			Equation of Contaminant Transport in	
			Mineral Liner	49
		2.3.6.3	Longitudinal Hydrodynamic Dispersion	
			and Retardation Coefficients of Dissolved	
			Solutes in Landfill Leachates	51
	2.3.7	Kaolin	itic Clay as Adsorbent and Landfill liner	52
		2.3.7.1	Calcination of Kaolinitic Clay and	
			Pozzolanicity	54
	2.3.8	POFA	as Pozzolanic and Adsorbent Material	54
		2.3.8.1	POFA as Pozzolanic Material in Landfill	
			Liner	55
		2.3.8.2	POFA as Adsorbent in Removal of Dye	55
		2.3.8.3	POFA as Adsorbent in Removal of Toxic	
			Metal Ion Solution	56
	2.3.9	Leacha	bility of Industrial Waste Materials	57
2.4	Overv	view of I	Landfill Technology	58
	2.4.1	Plannii	ng of Sanitary Landfill	58
	2.4.2	Prepara	ation of Landfill Site and Installation of	
		Monito	oring Devices	58
		2.4.2.1	Site Excavation	59
		2.4.2.2	Installation of Monitoring Devices and	
			Landfill Liner	59
	2.4.3	Operati	on of Landfill	59
		2.4.3.1	The Placement of Solid Wastes	60
		2.4.3.2	Leachate Generation	60
		2.4.3.3	Leachate collection system	61
		2.4.3.4	Landfill Gas Generation and Installation	
			of Gas Recovery Trench	61
		2.4.3.5	Landfill Liners	61
	2.4.4	Landfil	l Closure and Post-closure Control	62
		2.4.4.1	Final Cover Material	62
		2.4.4.2	Maintenance of Settled Final Surface	62

		2.4.5 Landfill Leachate Management	63
		2.4.5.1 Leachate Recycling	63
		2.4.5.2 Leachate Evaporation	65
		2.4.5.3 Leachate Treatment	65
		2.4.5.4 Discharge to Municipal Wastewater	
		Collection Systems	66
		2.4.5.5 Integrated Leachate Management System	67
		2.4.6 Pollution Problems at Landfill Site	67
		2.4.6.1 Atmospheric	68
		2.4.6.2 Hydrological	68
		2.4.6.3 Other Pollution Problems at Landfill Site	69
3		MATERIALS AND METHODS	70
	3.1	Introduction	70
	3.2	Production of Crude Palm Oil in Tai Tak Palm Oil Mill	70
	3.3	Generation of Raw POFA as Solid Waste Material in	
		Tai Tak Palm Oil Mill	73
	3.4	Sourcing, Sampling and Pre-treatment of Raw POFA	74
		3.4.1 Collection and Sampling of the Raw POFA	75
		3.4.2 Laboratory Pre-treatment of the Raw POFA	75
		3.4.3 Sieving of the Raw POFA after Oven Dried	76
		3.4.4 Mechanical Activation of the Sieved POFA	79
		3.4.4.1 Hammer Milling Process	80
		3.4.4.2 Ball Milling Process	81
	3.5	Sourcing and Pre-treatment of the Industrial Kaolin	82
		3.5.1 Sourcing of the Industrial Kaolin	82
		3.5.2 Pre-treatment Process of the Industrial Kaolin	83
	3.6	Physical Characterization of the Test Materials	83
		3.6.1 Particle Size Gradation	83
		3.6.2 Particle Density Analysis	85
	3.7	Chemical Characterization of the Test Materials	86
		3.7.1 Determination of Mass Loss on Ignition and	
		Unburnt Carbon Content	87

	3.7.2	Determ	ination of Scanned Particle Morphology	88
	3.7.3	Determ	ination of the BET Surface Area and	
		Pore Ch	naracteristics	89
	3.7.4	Chemic	al and Elemental Characterization	90
	3.7.5	Determ	ination of Mineral Compositions	90
	3.7.6	Determ	ination of pH and EC	92
	3.7.7	Determ	ination of Exchangeable Cations and	
		Cation	Exchange Capacity	93
3.8	Mech	anical Cl	haracterization of the Test Materials	95
	3.8.1	Determ	ination of Atterberg Consistency Values	95
		3.8.1.1	Determination of Liquid Limit by Cone	
			Penetrometer (dry-to- wet method)	96
		3.8.1.2	Determination of Plastic Limit	96
		3.8.1.3	Calculation of the Plasticity Index	97
	3.8.2	Classifi	cation of the Materials Based on the	
		BSCS I	Plasticity Chart	98
	3.8.3	Compa	ction Characteristics of the Industrial	
		Kaolin	Modified with the PPOFA at varying	
		Percent	age Dosage Level	98
		3.8.3.1	Determination of Initial Moisture Content	99
		3.8.3.2	Standard Proctor Compaction Test	99
		3.8.3.3	Plotting of the Moisture-density	
			Relationship Curve and obtaining the	
			Corresponding Value of Maximum	
			Dry Density and Optimum Moisture	
			Content	101
		3.8.3.4	Graphical Estimation of the PPOFA	
			Dosage Level Based on Compaction	
			Tests	101
3.9	Batch	Adsorpt	ion Equilibrium Test for the Formulated	
	Geo-l	iner Mat	erial	102
	3.9.1	Prepara	tion of the Aqueous Metal Solutions	102
	3.9.2	Sequen	tial Batch-test for Fixing the	

		Liner-to-leachate Ratio	104
	3.9.3	Material Set-up for the Batch Adsorption	
		Isotherm Test	105
	3.9.4	Experimental Process for the Batch Adsorption	
		Isotherm Test	106
	3.9.5	Determination of Equilibrium Concentration and	
		pH of the Test Specimens	107
	3.9.6	Heavy Metal Removal Efficiency and Sorption	
		Capacity of the Formulated Geo-mineral	
		Liner Material	109
	3.9.7	Adsorption Parameters from Freundlich and	
		Langmuir Model	110
	3.9.8	The Regression Line and Parameters for	
		Calculating the Freundlich Sorption Isotherm	
		Model Parameters	110
	3.9.9	The Regression Line and Parameters for	
		Calculating the Langmuir Sorption Isotherm	
		Model Parameters	111
3.10	Leachi	ing Test of the PPOFA, Industrial kaolin and the	
	Formu	lated Geo-mineral Liner Material	112
	3.10.1	Batch Leaching Performance Test	112
3.11	Hydrau	ulic Conductivity Test for the Formulated Geo-	
	liner M	Aaterial	114
	3.11.1	Fabrication of Acrylics Test Cells	114
	3.11.2	Preparation of Test Materials	115
	3.11.3	Proportioning and Storage of the Prepared Liner	
		Material	116
	3.11.4	Extrusion of air from Voids in Liner Material	117
	3.11.5	Material Compaction Process	118
	3.11.6	Initiating Pozzolanic Reaction in the Liner	
		Columns	119
	3.11.7	Permeameter Assemblage	120
	3.11.8	Establishing Hydraulic Conductivity of the	

	Compacted Liner Material Permeated with De-	
	aired DW water (the falling head permeability	
	method)	122
3.12	Column Diffusion-retardation Test	123
	3.12.1 Preparation of the Four Single Metal Species in	
	Aqueous Solutions	123
	3.12.2 Column Assemblage and Identification System	124
	3.12.3 Column Diffusion-retardation Test	125
	3.12.4 Seepage Velocity of the Column Liner assigned	
	to each the Heavy Metal Solution	126
	3.12.5 Analytical Solution to Determine the	
	Longitudinal Hydrodynamic Dispersion	
	Coefficient and Retardation Factor	128
	3.12.5.1 Proposed Analytical Solution to the	
	Contaminant Transport Model	128
	3.12.5.2 The use of Modified Analytical	
	Solution to Determine the	
	Contaminant Transport Parameters	128
	3.12.5.3 Optimization of the Proposed Model to	
	Determine the Longitudinal	
	Hydrodynamic Dispersion Coefficient	
	and Retardation Factor	130
	3.12.5.4 The use of the Excel's Solver as	
	Optimization Tool	130
3.13	Performance Evaluation Criteria	131
	3.13.1 Evaluation Based on the Heavy Metal	
	Removal Efficiency and Sorption Capacity	131
	3.13.2 Evaluation Based on the Leachability of the	
	Heavy Metals Tested	131
	3.13.3 Evaluation Based on the Hydraulic Conductivity	132
	3.13.4 Evaluation Base on the Longitudinal	
	Hydrodynamic Dispersion Coefficient and	
	Retardation Factor	132

	3.14	Calibrations of the Laboratory measuring Instrument	
		and Equipment for Reliability of Data	133
4		RESULTS AND DISCUSSIONS	134
	4.1	Introduction	134
	4.2	Physical Characterization of the PPOFA and the	
		Industrial Kaolin	135
		4.2.1 Visual and Manual Classifications	135
		4.2.2 Particle Size Gradation Parameters	138
		4.2.3 Particle Density Analysis	141
	4.3	Chemical Characterization of the PPOFA and the	
		Industrial Kaolin	142
		4.3.1 Mass Loss on Ignition and Unburn Carbon	
		Content	142
		4.3.2 Scanned Particle Morphological Analysis	144
		4.3.2.1 Surface Scanned Particle Morphological	
		Structure	144
		4.3.3 Surface Area and Pore Characteristics	146
		4.3.3.1 Surface Area Characteristics	147
		4.3.4 Chemical and Elemental Compositions	148
		4.3.5 Mineral Compositions	151
		4.3.6 pH and EC Determination	155
		4.3.7 Exchangeable Cations and Cation Exchange	
		Capacity	156
	4.4	Mechanical Characterization of the PPOFA and the	
		Industrial kaolin	158
		4.4.1 The Atterberg Consistency Limit States and	
		Plastic Index	158
		4.4.2 Classification Based on BSCS Plasticity Chart	159
		4.4.3 Compaction Characteristics of the Industrial	
		Kaolin Modified with the PPOFA at Varying	
		Percentage Dosage	159
		4.4.3.1 Moisture-density Relationship Curves and	

	Corresponding values of Maximum Dry	
	Density and Optimum Water content at	
	Varying Percentage PPOFA Dosage	159
	4.4.3.2 The Effect of Percentage PPOFA Dose	
	on Maximum Dry Density	161
	4.4.3.3 The Effect of Percentage PPOFA Dose	
	on Optimum Moisture Content	162
	4.4.3.4 The Effect of Kaolin – PPOFA Mixture	
	on the Position of the 100 % Saturation	
	Line	163
	4.4.3.5 Graphical Estimation of the Percentage	
	PPOFA Dose for the Design of the	
	Landfill Liner Material	163
	4.4.3.6 Implicit Deduction for the Actual PPOFA	
	Dosage Level in the Liner Material	165
4.5	Physical Characterization of the Formulated	
	Geo-mineral liner Material	166
	4.5.1 Visual and Manual Classifications	167
	4.5.2 Particle Size Gradation Parameters	168
	4.5.3 Particle Density Analysis	170
4.6	Chemical Characterization of the Formulated Geo-liner	
	Material	171
	4.6.1 Mass Loss on Ignition and Unburn Carbon	171
	4.6.2 Surface Scanned Particle Morphological Structur	171
	4.6.3 Surface Area Characteristics	173
	4.6.4 Characterization of the Pore Parameters	173
	4.6.5 Chemical and Elemental Compositions	174
	4.6.6 Mineral Compositions	175
	4.6.7 pH and EC Determination	176
	4.6.8 Exchangeable Cations and Cation Exchange	
	Capacity	178
4.7	Mechanical Characterization of the Formulated	
	Geo-liner Material	178

	4.7.1	The Atterberg Consistency Limit States	
		and Plastic Index	179
	4.7.2	Classification Based on BSCS Plasticity Chart	180
4.8	Perfo	rmance Evaluation Criteria for the Formulated	
	Geo-l	iner Material	181
	4.8.1	Heavy Metal ion Removal Efficiency	181
	4.8.2	Initial Parameters of the Metal ion Solutions	181
		4.8.2.1 The Effect of Initial Heavy Metal	
		Concentration on the Equilibrium pHe	
		and EC _e	182
		4.8.2.2 Trend in the Metal Removal Efficiency	183
		4.8.2.3 Factors Attributed to the Relatively low	
		Metal Removal Efficiency at Relatively	
		High Metal Concentration	185
		4.8.2.4 Enhancing the Overall Liner Performance	
		Efficiency	187
4.9	Adsor	ption Capacity	189
	4.9.1	Feasible Sorption Isotherm Data Points Adopted	
		for plotting the Regression Lines	189
	4.9.2	The Regression Line and Parameters for	
		Calculating the Freundlich and Langmuir	
		Sorption Isotherm Model Parameters	190
	4.9.3	The Generated Linear Regression Model used	
		to calculate the Freundlich and Langmuir	
		Sorption Isotherm Model Parameters and the	
		Coefficient of Determination	192
	4.9.4	Freundlich and Langmuir Sorption Isotherm	
		Parameters and Models for the Geo-liner Material	
		with respect to the Heavy Metal Species	193
	4.9.5	The Effect of Protonation Reaction of H^+ on	
		the Sorption of the Cd ²⁺	195
	4.9.6	Comparison of the Experimental and Modeled	
		Mass of the Heavy Metal ions Sorbed per unit	

	Dry Mass of the Liner Material	196
	4.9.7 Validating Sorption Responses from the	
	Established Freundlich and Langmuir Isotherm	
	Model by Curve Fitting and Correlation	
	Coefficient	197
	4.9.7.1 Validating the Freundlich and Langmuir	
	Isotherm Model from the Output qeFred	
	and q_{eLang} in relation to the Experimental	
	q _{expt} by the Degree of Curve Fitness	198
	4.9.7.2 Correlation Co-efficient of the Model	
	Output qeFred and qeLang in relation to the	
	Experimental q _{expt}	201
4.10	Leaching Test	202
	4.10.1 Batch Leaching Procedure Analysis	202
4.11	Hydraulic Performance of the Compacted	
	Geo-liner Material	203
	4.11.1 Geotechnical Parameters	204
	4.11.2 Established Steady Flow Condition	206
	4.11.3 Hydraulic Conductivity	207
	4.11.4 Statistical Inferences Drawn from Hydraulic	
	Conductivity Test	209
	4.11.5 Factor Responsible for the Recorded Relatively	
	Lower Dry Density	209
	4.11.6 Factors Attributed to the Relatively Low	
	Hydraulic Performance	210
4.12	Heavy Metal Diffusion and Retardation Performance	
	Analysis	213
	4.12.1 Chemical Properties of the Prepared Heavy	
	Metal Solutions	214
	4.12.2 Seepage Velocity of the Column Liner	
	Assigned to each of the Heavy Metal Solution	215
	4.12.3 Chemical Characteristics of the Effluent with	
	variation in the Cumulative Pore Volume Flow	216

	4.12.4	The Longitudinal Hydrodynamic Dispersion	
		Coefficient and Retardation Factor	218
		4.12.4.1 The Longitudinal Hydrodynamic	
		Dispersion Coefficient of the Metal	
		Solutes in the Liner Material	219
		4.12.4.2 The Retardation Factor of the Metal	
		Solutes in the Liner Material	220
5	CONC	LUSIONS AND RECOMMENDATIONS	222
	5.1 Int	roduction	222
	5.2 Re	commendations	225
REFERENCI	ES		227
Appendices A-T		243-280	

LIST OF TABLES

TABLE NO.

TITLE

2.1	Monthly Production of Oil Palm Products for the	
	Month of August 2012 and 2013 (Tonnes)	27
2.2	Annual and Forecast of crude Oil Production for the	
	2012 and 2013 (Tonnes)	28
2.3	Chemical composition of OPC in comparison with	
	pulverized and thermally treated pulverized POFA	30
2.4	Characteristics of raw leachate from Seelong landfill	
	in Johor-Malaysia	64
3.1	Test sieve designations and sizes to BS standard used	
	for the POFA sieving	78
3.2	Targeted and corresponding actual aqueous solutions	
	prepared for Zn^{2+} ion solutes (Temp.	
	$= 26.50 \pm 0.01 \ ^{\circ}\text{C})$	104
3.3	Geotechnical parameters of the compacted liner	
	columns	119
3.4	Chemical characteristics of the metal solutes	124
3.5	Hydraulic parameters of the formulated liner material	127
4.1	Visual and manual classifications of the test materials	137
4.2	Salient particle gradation parameters for the test	
	materials	140
4.3	BET fineness and pore characteristics of the tested	
	materials	147
4.4	Chemical and elemental composition of the PPOFA	149
4.5	Chemical and elemental composition of the industrial	

	kaolin	151
4.6	Mineral compositions of the PPOFA and the industrial	
	kaolin	153
4.7	Exchangeable cations and cation exchange capacity of	
	the tested materials	157
4.8	Optimum water content and corresponding maximum	
	dry unit weight recorded at varying percentage	
	PPOFA dose in the trial kaolin-PPOFA mix	161
4.9	Visual and manual classifications of the formulated	
	kaolin-PPOFA liner material	168
4.10	Salient particle gradation parameters for the	
	formulated kaolin-PPOFA liner material	170
4.11	Chemical characteristics of the formulated	
	kaolin-PPOFA liner material	172
4.12	Chemical and elemental composition of the formulated	
	kaolin-PPOFA liner material	174
4.13	Mineral compositions of the formulated kaolin-	
	PPOFA liner material	176
4.14	pH, Ec and Exchangeable cation concentration of the	
	formulated kaolin-PPOFA liner material	177
4.15	Linearized regression models used to determine the	
	parameters of the Freundlich isotherms for the sorbed	
	metal ions	191
4.16	Linearized regression models used to determine the	
	parameters of the Langmuir isotherms for the sorbed	
	metal ions	191
4.17	Linear regression model used in developing the	
	Freundlich and Langmuir isotherm model parameters	
	and the R^2 for single-metal solution	193
4.18	Comparison of Langmuir and Freundlich sorption	
	isotherm parameters and model for the single-element	
	system	194
4.19	Experimental and modeled mass of heavy metal ions	

	sorbed per unit dry mass of the formulated mineral	
	liner material	197
4.20	Correlation coefficient of q_{eFred} and q_{eLang} in relation to	
	q _{expt} at 5% significant level	201
4.21	BTP results of PPOFA, kaolin, and kaolin-PPOFA	
	mixtures	203
4.22	Geotechnical parameters of the compacted liner	
	columns	205
4.23	Established steady-state flow condition for DI water	
	through the liner columns	207
4.24	Hydraulic parameters of the formulated kaolin-PPOFA	
	liner material	215
4.25	The longitudinal hydrodynamic dispersion coefficients	
	and retardation factors obtained from column tests for	
	the single-metal solutions	219

LIST OF FIGURES

FIGURE NO.

TITLE

2.1	The basic structural units of kaolinite minerals: a)	
	aluminum ion enclosed by octahedron of hydroxyls;	
	b) silicon ion surrounded by tetrahedron of oxygen	
	atoms	12
2.2	Structural network of octahedral forming an alumina	
	sheet	13
2.3	Hexagonal network of tetrahedral forming a silica	
	sheet	13
2.4	The 1:1 kaolinite structure layer a) molecular	
	structure b) Schematic presentation	15
2.5	Isomorphism in kaolinite clay mineral leads to net	
	negative charge on clay particles	19
2.6	Distribution of ions adjacent to charged clay surface	
	according to the concept of diffuse double layer	22
3.1	Flow chart outline of laboratory activities	
	mile stones for the research	71
3.2	The processes of extraction of crude palm oil from	
	fresh fruit bunch, in Tai Tak oil milling industry	72
3.3	Mixture of bottom-ash and fly-ash deposited at the	
	repository of Tai Tak Palm Oil Mill firm	74
3.4	Collection of the raw POFA after sampling from the	
	stock pile waste	75
3.5	Raw POFA under process of open sun-dry	76
	•	

3.6	Set of test sieve used for effective capture of the raw	
	POFA in progress	77
3.7	The sieved POFA content retained on 75 μ m and	
	38 μ m and in the receiving pan ready for grinding	78
3.8	POFA being removed from the Los Angeles abrasion	
	machine after a milling process completed	80
3.9	FRITSCH planetary mill in operation	81
3.10	Bags of kaolin stacked at Tai Tak oil mill firm	82
3.11	PSA-CILAS 1180 particle size analyser	84
3.12	Vacuum pump for de-airing of specimens during	
	determination of particle density	85
3.13	Specimens in the ELE electric muffle furnace for the	
	LOI analysis	87
3.14	Energy Dispersive X-Ray Analyser for the structural	
	scanned electron morphology test	89
3.15	Bench-top EDXRF-Minipal 4 X-ray spectrometer-	
	PW4030 used in determination of oxides in the test	
	materials	91
3.16	Brucker D8 Advanced X-Ray diffractometer used for	
	the mineral detection test	91
3.17	PPOFA and kaolin-PPOFA geo-liner mixture	
	prepared for pH and EC determination	92
3.18	Triplicate specimens of the industrial kaolin prepared	
	for pH and EC determination	92
3.19	Kaolin-PPOFA prepared for the single run of	
	independent standard Proctor compaction test	100
3.20	A set of replicated kaolin-PPOFA geo-liner specimen	
	prepared for the batch isotherm test	106
3.21	HOTECH variable speed orbital shaker in progress	
	single-batch extraction process	107
3.22	Duplicated kaolin-PPOFA geo-liner specimens after	
	batch equilibrium test and ready for filtration	107
3.23	Duplicated analytes prepared for FAAS analysis	108

3.24	Assemblage of a typical Perspex test cell	115
3.25	Wet-mix kaolin-PPOFA matrix for the compacted	
	liner column	116
3.26	Kaolin-PPOFA geo-liner materials under	
	hydration process	117
3.27	Fabricated laboratory-scale air-pressure system for	
	compressing the geo-mineral liner material in the	
	Perspex column	118
3.28	Compacted kaolin-PPOFA geo-liner column injected	
	with the de-aired distilled water for pozzolanic	
	reaction process	120
3.29	Schematic diagram of the simulated kaolin-PPOFA	
	geo-mineral liner materials connected to the	
	permeameter assemblage	121
3.30	Schematic diagram indicating colour system for the	
	duplicated columns and ease in identification with	
	respect to type of heavy metal aqueous solution used	
	as permeant	125
4.1	Dry state condition of the pulverized palm oil	
	fuel ash	136
4.2	Dry state condition of the industrial kaolin	137
4.3	Variation in the constituted particle sizes of the	
	PPOFA	138
4.4	Variation in the constituted particle sizes of the	
	Industrial kaolin	139
4.5	Loss on ignition and corresponding unburn	
	carbon content of the PPOFA and the industrial	
	kaolin	143
4.6	Surface scanned morphology of the PPOFA	
	magnified at 300 times magnification	145
4.7	Surface scanned morphology of the industrial kaolin	
	magnified at 200 times magnification	146
4.8	Mineralogical composition of the PPOFA	152

4.9	Mineralogical composition of the industrial kaolin	154
4.10	pH and EC of the PPOFA and the industrial kaolin in	
	de-aired distilled water	156
4.11	Estimated liquid limit at 20 mm cone penetration for	
	the industrial kaolin	158
4.12	Compaction curves characteristics for the industrial	
	kaolin modified with PPOFA at varying percentage	
	dose	160
4.13	Relationship between the maximum dry density and	
	optimum moisture content of the four kaolin-PPOFA	
	trial-mixes as a function of percentage PPOFA dose	165
4.14	Dry mixture of 375 g PPOFA in 2500 g kaolin as the	
	formulated geo-mineral	167
4.15	Variation in the constituted particle sizes of the	
	formulated geo-liner material	169
4.16	Surface scanned morphology of the formulated geo-	
	mineral liner material magnified at 200 time	
	magnification	172
4.17	Mineralogical composition of the formulated geo-	
	mineral liner material	176
4.18	Estimated liquid limit at 20 mm cone penetration for	
	the formulated geo-mineral liner	179
4.19	Metal removal efficiency of the formulated geo-	
	mineral liner material	184
4.20	Zn ²⁺ experimental and isotherm fitness isotherm	
	curves	199
4.21	Pb ²⁺ experimental and isotherm fitness isotherm	
	curves	199
4.22	Cd ²⁺ experimental and isotherm fitness isotherm	
	curves	199
4.23	Cu ²⁺ experimental and isotherm fitness isotherm	
	curves	200
4.24	Hydraulic conductivity of the eight compacted	

xxviii

	kaolin-PPOFA geo-mineral liner columns	208
4.25	Variation of C_{eff} , pH _{eff} , and EC _{eff} with PV of	
	0.0001-M Zn ²⁺ ions	216
4.26	Variation of C_{eff} , pH_{eff} , and EC_{eff} with PV of	
	0.0001-M Pb ²⁺ ions	217
4.27	Variation of C_{eff} , pH _{eff} , and EC _{eff} with PV of	
	0.0001-M Cd ²⁺ ions	217
4.28	Variation of C_{eff} , pH_{eff} , and EC_{eff} with PV of	
	0.0001-M Cu ²⁺ ions	217

LIST OF ABBREVIATIONS

AR	-	Analytical reagent
BAET	-	Batch adsorption equilibrium test
BET	-	Brunauer Emmet Teller
BS	-	British Standard
BSCS	-	British Soil Classification System
BSI	-	British Standard Institution
BTC	-	Breakthrough curve
CCL	-	Compacted clay liner
CE	-	Cation Exchange
CEC	-	Cation Exchange Capacity
CSH	-	Calcium Silicate Hydrate
DDL	-	Diffused double layer
DIW	-	Deionized Water
DW	-	Distilled water
EC	-	Electrical conductance
EDS	-	Energy dispersive spectroscopy
EDX	-	Energy Dispersive X-Ray Analyzer
EDXRF	-	Energy Dispersive X-Ray Fluorescence spectrometer
FAAS	-	Flame Atomic Absorption Spectrophotometer
GHG	-	Greenhouse gases
GPOFA	-	Ground POFA
GRG	-	Generalized Reduced Gradient
HDTMA	-	Hexadecyltrimethlammomium
HFC	-	Hydrofluorocarbons
ICDD	-	International Centre for Diffraction Data

LA	-	Los Angeles
LOI	-	Loss on ignition
MH	-	High plasticity silt
MSE	-	Mean square error
OFAT	-	One-factor-at-a time
OPC	-	Ordinary Portland cement
PKS	-	Palm kernel shell
PMF	-	Palm mesocarp fiber
POFA	-	Palm oil fuel ash
PPOFA	-	Pulverized palm oil fuel ash
PSA	-	Particle size analyser
PV	-	Pore volume
pzc	-	Point of zero charge
SA	-	Surface area
SEM	-	Scanning electron-microscope
SSE	-	Sum of squares of the error
SWGM	-	Solid waste management
TPPOFA	-	Treated PPOFA
<i>W/B</i>	-	Water-binder ratio
XRD	-	X-Ray Diffractometer
ZAV	-	Zero air void

LIST OF SYMBOLS

a	-	Cross sectional area of manometer tube (cm ²)
Α	-	Cross sectional area of compacted liner sample (cm ²)
C_{c}	-	Coefficient of curvature
C_{e}	-	Solute concentration in solution at equilibrium (mgL ⁻¹)
C_u	-	Coefficient of uniformity
$C_{e\!f\!f}$	-	Effluent concentration (mgL ⁻¹)
$C_{ m inf}$	-	Influent concentration (mgL ⁻¹)
C_{o}	-	Initial concentration (mgL ⁻¹)
C_R	-	Relative compaction (%)
CEC	-	Cation Exchange Capacity (cmol(+)/kg = meq/100g)
<i>d</i> 50	-	Mean particle diameter (µm)
D^{*}	-	Effective diffusion coefficient (cm ² s ⁻¹)
D_h	-	Hydrodynamic dispersion coefficient (cm ² s ⁻¹)
D_L	-	Longitudinal hydrodynamic dispersion coefficient (cm ² s ⁻¹)
D_m	-	Mechanical dispersion coefficient (cm ² s ⁻¹)
e	-	Void ration (dimensionless)
EC	-	Electrical conductance (mScm ⁻¹)
EC_{eff}	-	effluent electric conductance (mScm ⁻¹)
ECinf	-	Influent electric conductance (mScm ⁻¹)
EC_o	-	Initial electrical conductance (mScm ⁻¹)
EC_{e}	-	Equilibrium electrical conductance (mScm ⁻¹)
EDS	-	Energy Dispersive Spectroscopy (2θ)
EDX	-	Energy Dispersive X-ray (2θ)

f_{oc}	-	Organic carbon (%)
f_{om}	-	Organic matter (%)
F_d	-	Diffusive flux (mgcm ⁻² sec ⁻¹)
F_{M}	-	Dispersive flux (mgcm ⁻² sec ⁻¹)
F_T	-	Total mass flux (mgcm ⁻² sec ⁻¹)
F_{V}	-	Advective flux (mgcm ⁻² sec ⁻¹)
H_1	-	Height from effluent point to the upper mark (cm)
H_{2}	-	Height from effluent point to the lower mark (cm)
H_3^*	-	Distance of third calibration point from the upper mark (cm)
H_{i}	-	Initial head of the de-aired DW in the manometer (cm)
H_{f}	-	Subsequent head of the de-aired DW estimated in the
		Manometer at the end of a particular period of time (cm)
i	-	Hydraulic gradient (dimensionless)
I_P	-	Plasticity index (%)
k	-	1-D hydraulic conductivity (cms ⁻¹)
k _{ave}	-	Average hydraulic conductivity (cms ⁻¹)
$k_{\rm max}$	-	Maximum recorded hydraulic conductivity (cms ⁻¹)
K_{F}	-	Freundlich isotherm coefficient
l	-	Length of sample under test (cm)
LOI	-	Loss on ignition (%)
n	-	Porosity (dimensionless)
M_s	-	Mass of dry liner material add to the aqueous solution (g)
Ν	-	Freundlich isotherm constant (dimensionless)
pH_e	-	Equilibrium pH
pH_{eff}	-	Effluent pH
pH_{inf}	-	Influent pH
pH_o	-	Initial pH
PL	-	Peclet number (Dimensionless)
PV	-	Pore volume (cm ³)
$q_{e}^{'}$	-	Solute removal efficiency (%)

q_e	-	Mass of contaminant sorbed per unit dry mass of the solid
		(mgg ⁻¹)
q_{expt}	-	Measured mass of contaminant sorbed per unit dry mass of
		the solid (mgg ⁻¹)
q_{eFred} .	-	Freundlich mass of contaminant sorbed per unit dry mass of
		the solid (mgg ⁻¹)
<i>q</i> eLang.	-	Langmuir mass of contaminant sorbed per unit dry mass of the
		solid (mgg ⁻¹)
r	-	Lnear correlation coefficients
R^2	-	Coefficient of determination
R_d	-	Retardation factor (dimensionless)
SA	-	Surface area (m ² g ⁻¹)
t	-	Solute transport time in the porous medium (sec)
t _i	-	Start time of test (sec)
t_f	-	Subsequent estimated time corresponding to H_f (sec)
Δt	-	Difference between t_f and t_i (sec)
T_R	-	Dimensionless time factor
$V_{\scriptscriptstyle W}$	-	Volume of solution containing an initial concentration, $C_o(L)$
V_s	-	Seepage or average linear velocity (cms ⁻¹)
W_L	-	Liquid limit (%)
W _{opt}	-	Optimum water content (%)
W _P	-	Plastic limit (%)
W	-	Mass of adsorbent (g)
XRD	-	X-Ray Diffraction (count per sec / cps)
Ζ	-	Distance in the direction of contaminant flow (cm)

LIST OF APPENDICES

APPENDIX

TITLE

А	BSCS Sub-group Classification of Soils	
	based on the Grading and Plasticity Chart	
	(BS 5930:1999)	243
В	Properties of Aqueous Solutions Prepared for each	
	Metal Solute	244
С	Typical AAS Results for the Sequential Batch-test at	
	1:20 mix Ratio with Traces of Pb ²⁺ detected	246
D	Pore Volume Analysis of the Compacted	
	Kaolin-PPOFA Geo-liner Material	247
E	Minimum Geotechnical Requirements Recommended for	
	Compacted Mineral Liner to Attain Hydraulic	
	Conductivity of k less than or equal to 1×10^{-7} cms ⁻¹	251
F	The Calibration Curve obtained for the	
	SPB32-120 \pm 0.001g Analytical Bench-top	252
G	Water Content Determination at 10%	252
	PPOFA Dose	253
Н	Typical Data Generated for the	
	Determination of Series of Dry Density at	
	the same 10% PPOFA Dose	254
Ι	Data Points Generated for the Plotting of the	
	Dry Density-moisture Content Relation	
	Curve and the Zero Air Void Line at 10%	
	PPOFA Dose	255

J	Operating Parameters for the Aqueous Environment	Operating Parameters for the Aqueous Environment		
	at Batch Equilibrium for the Formulated			
	Geo-liner Material	256		
Κ	Trend in the Heavy Metal ions Removal Efficiency			
	by the Formulated Geo-liner Material	260		
L	The Feasible Data Points Adopted for Regression			
	Parameters and Equilibrium Sorption Isotherm Model	261		
М	Linearized Regression Line used to Determine the			
	Parameters for the Freundlich Isotherm	263		
N	Linearized Regression Line used to Determine the			
	Parameters for the Langmuir Isotherm	265		
0	Freundlich and Langmuir Isotherm Parameters			
	for Zn ²⁺ Sorption onto the Formulated Kaolin-			
	PPOFA Geo-liner Material	267		
Р	Hydraulic Conductivity and Corresponding Statistical			
	Parameters obtained for each of the Kaolin-PPOFA			
	Composite Liner Columns	269		
Q	Typical Calculation for the Determination			
	of Hydraulic Conductivity of the Compacted			
	Kaolin-PPOFA Liner Material	270		
R	Solute Breakthrough Process of each Metal Solute	271		
S	Determination of D^*_L and R_d Parameters			
	from the Excel Solver Nonlinear			
	Generalized Reduced Gradient (GRG2)			
	Optimization Technique	279		
Т	List of Related Publications	280		

CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

In recent years the acceleration in urbanization of many countries worldwide has led to interest in various fields of research. One area is in the solid waste management (SWM) (Foo *et al.*, 2013; Karagiannidis *et al.*, 2010; Chen *et al.*, 2010; Guo *et al.*, 2010). Solid wastes are generally being generated by human activities. These wastes may be classified as municipal wastes from commercial and residential sources; hazardous wastes from hospitals and radioactive plants; as well as agricultural and industrial wastes. Colossal part of these wastes ends up in landfills as they are characterized by their unhygienic nature. Thus, solid wastes are generally unacceptable to the society.

Usually, open dumping or unlined landfilling of generated solid wastes is characterized by uncontrolled and heterogeneous disposal. Though waste dumping is regarded cheap to manage, it is highly pervasive and environmentally unacceptable to the teaming society. It has also been recognized as one of the contributing factors to unhealthy environment. Hence, open dumping could be classified as unsuitable technique militating against the yearnings and aspirations for green and sustainable environment. As such, nowadays unlined landfilling is being replaced by sanitary landfill. The sanitary landfilling of solid waste may be categorized as land disposal technique, and is commonly known as "engineered sanitary" landfill systems (Ayomoh, *et al.*, 2008; Manfredi and Christensen, 2009; Abu Amr *et al.*, 2012).

Even though engineered landfilling approach has been reported as inappropriate (Chang *et al.*, 2009), to date the technique still represents one of the primary component in integrated and sustainable waste management techniques (Galante *et al.*, 2010; Perkoulidis *et al.*, 2010; Agamuthu and Fauziah 2010). The prime objective of incorporating engineered landfill in integrated waste management system is to significantly limit the dangerous health impact from the generated wastes on the society. More to this is that it enhances sustainable and eco-friendly environment (Rajesh and Viswanadham, 2011).

Generally, disposed solid wastes in landfill undergo both biological and chemical degradation. Both processes take place in the presence of water percolated through solid waste deposited. The final aqueous-waste effluent discharged is referred to as leachates. Although engineered landfill techniques have tremendously reduced the paranoid of groundwater contamination from the generated leachates (Benbelkacem *et al.*, 2010; Foo *et al.*, 2013), the formation and management of the aqueous contaminant still pose major problem, thus demand great attention (Mendoza and Izquierdo, 2008; Kim et al., 2009; Umar *et al.*, 2010). For instance, leachate is prone to be a veritable source of non-biodegradable and toxic heavy metals ions disposition. Heavy metals, such as zinc (Zn), lead (Pb), cadmium (Cd), Nickel (Ni), Mercury (Hg) and copper (Cu) constitute part of these contaminant solutes. As such, they are considered toxic to human health and the environment at large (Chalermyanont *et al.*, 2009; Zhang *et al.*, 2013; Silva *et al.*, 2013).

Judging from the characteristics and age of the waste materials deposited in landfills, chemical ionization of heavy metals may as well be characterized by different level of toxicity (Östman, 2008; Zhang *et al.*, 2013). Also, some portion of the toxic aqueous pollutants may escape transfer to treatment plant and be transported through the liner located somewhere within the shallow unsaturated zone of the subsoil (Zhang *et al.*, 2012). Thereafter, the liquid waste may get in contact with the surrounding environments and renders it contaminated. Principally the surrounding environments include the valuable but infinite groundwater resource. Research has shown that leachate is liable to adversely transform the environment through the creation of imbalance and inhabitable ecosystem (Foo and Hameed, 2009; Silva *et al.*, 2013).

Besides, further decomposition of some chemical compounds present in the leachate may contribute significantly to the emission of obnoxious odor from within the landfill site. If uncontrolled, such emission may render the surrounding air polluted. The release of heat trapping greenhouse gases (GHG) such as carbon dioxide (CO₂) and methane (CH₄) are also witnessed (Zhang *et al.*, 2013; Ahmari and Zhang, 2013). Other non-environmentally friendly gaseous emissions such as ammonia (NH₄), nitrous oxide (N₂O) and hydrofluorocarbons (HFCs) are also released from the fill. As obtainable in groundwater pollution, the consequential effects of air pollution include adverse human health related implications such as cancer and air borne diseases. From the aforementioned, further research specifically on sustainable earthen landfill liner material is eminent. With this the adverse environmental impacts of the liquefied waste could be effectively ameliorated and at the same time ensure that the liner keep serving as functional integral part of solid waste management system.

The present situation in landfill liner material research shows that there are concerted efforts specifically geared toward the use of minerals as sustainable landfill liner material (Musso *et al.*, 2010; Koutsopoulou *et al.*, 2010; Quaghebeur *et al.*, 2013). Generally, landfill liners constructed from the use of only one material such as soil is not suitable for use as solid waste repository. It may often not meet the regulatory performance requirement of hydraulic conductivity and related contaminants attenuation (Chalermyanont *et al.*, 2009). Hence, soil liners are predominantly design of compacted composite clay material and formed the lower integral part which directly overlies the natural geologic structure (Fall *et al.*, 2009; Guyonnet *et al.*, 2009; Silva and Almanza, 2009; Lange *et al.*, 2010).

More specific, Fall *et al.* (2009) have shown great interest in the use of minerals as landfill liner material. They took the advantage of the strong negatively charged surface energy carried by soil particles. Hence, reactive mineral liner materials are used as trapping mechanism of the positively charged solute components of the contaminants. Usually, these solutes are often trapped and immobilized while migrating through the pore spaces of

the hydrated compacted clay liner (CCL) (Chalermyanont *et al.*, 2009; Silva and Almanza, 2009; Koutsopoulou *et al.*, 2010). The end result was the effective reduction and mitigation of groundwater pollution due to toxic heavy metal ions leached from the solid waste disposed in landfills.

Furtherance to the use of CCL, innovative researches are being carried out on the potential and viability of amending clayey soils with waste materials. The matrixes formed are often used as an alternative composite mineral liner material. These waste materials include ashes from incinerator plants (Travar *et al.*, 2009) as well as bottom and fly ashes produced as by-product from the burning of coal in power generating plants (Nhan *et al.*, 1997; Kayabalı and Bulus, 2000; Sivapullaiah and Baig, 2011) Other materials used as amending agent include secondary waste (Ganjian *et al.*, 2004) and natural clay-shredded tyre mixtures (Al-tabbaa and Aravinthan, 1998; Cokca and Yilmaz, 2004) One promising area of application of solid waste as alternative composite mineral liner material which at present lacks attention is in the incorporation of palm oil fuel ash (POFA) as additive material. POFA is a renewable bio-residue ash and is derived from palm oil milling industry. Judging from its physico-chemical properties and previous applications, POFA may be used as a potential cementitious and bio-sorbent additive in earthen sanitary landfill liner.

Large quantity of POFA waste generations are witnessed in rapidly developing countries like Malaysia, Indonesia, Thailand and Nigeria where varieties of oil palm trees species are being cultivated as cash crops (Subramaniam *et al.*, 2008; Yin *et al.*, 2008; Foo and Hameed, 2009; Patthanaissaranukool *et al.*, 2013; Ohimain and Izah, 2014) The powdery form of the ash as pulverized palm oil fuel ash (PPOFA) alone has been used as bio-sorbent in waste water treatment. The works of Zainudin *et al.* (2005) and Foo and Hameed (2009) are of particular interest in the area of study. Furthermore, the chemical compositions of POFA have shown that it may be used as supplementary cementitious material in concrete (Abdul Awal *et al.*, 2011; Ismail *et al.*, 2011; Kroehong *et al.*, 2011; Jaturapitakkul *et al.*, 2011; Aldahdooh *et al.*, 2013;Yusuf *et al.*, 2014; Aldahdooh *et al.*, 2014). Recently Amat *et al.* (2013) mixed raw POFA with gypsum and clay as binder to produce fire resistive panels used for internal partitions in buildings. As such, POFA may be incorporated into earthen landfill liner material for dual purposes of pozzolanic and

cementitious material. The new composite material may be used as an alternative and sustainable landfill liner material.

However, extensive practical experiences with the application of industrial generated ash-wastes have confirmed the leaching of toxic heavy metals (Asl *et al.*, 2013; Çoruh *et al.*, 2013; Abdel Rahman *et al.*, 2013; Yao *et al.*, 2013; Houben *et al.*, 2013) Thus, the presence and leachability of toxic heavy metals from the use of POFA as earthen landfill liner material should not be ignored.

The uniqueness of this innovative research is that it has significantly contributed in moving to a new frontier the boundary of knowledge connected to the valuable use of POFA. As such, the research has changed the paradigms in the use of the agro-based waste to a new resource, by premixing kaolin with the PPOFA and use as an alternative composite landfill liner material. The research has critically examined the physical, chemical, and mechanical properties of each material component and the formulated composite kaolin-PPOFA liner material. The performance of the formulated mineral liner was examined in terms of its removal efficiency and sorption capacity of four selected heavy metal ions in single-elemental species (Zn²⁺, Pb²⁺, Cd²⁺, and Cu²⁺); the leachability of the selected heavy metals; and the hydraulic conductivity. Finally the transient contaminant transport performance of the aqueous solution formed with respective to each of the single-metal ions was examined.

1.2 Statement of the Problem

Recent studies have shown that municipal solid waste, industrial wastes, hospital wastes and other waste types pose major threat to the environment and globally constitute great challenges (Liamsanguan *et al.*, 2008; Zhen-shan *et al.*, 2009; Ngoc and Schnitzer, 2009; Karagiannidis *et al.*, 2010; Zaman, 2014; Farooqui, 2014; Aslani and Wong, 2014). For instance, in Malaysia about 28,500 tonnes of municipal solid waste (MSW) have been reported to have been directly disposed of into various landfills on daily bases (Agamuthu and Fauziah, 2011). The authors reported that most of the landfills in Malaysia contaminate

the environment with the generated leachates as well as free emission of noxious landfill gases to surroundings. Similarly, a survey by Karagiannidis *et al.* (2010) revealed that on yearly bases in Greece, a significant part of the over 14,000 tonnes of infectious solid hospital waste generated are been mismanaged through dumping into household opendisposal sites and landfills after sterilization. In the recent years, China has been reported as the largest developing country in the world. The Landfill disposal technique has being the dominant disposal method for MSW generated in the country. Interestingly, as at 2006, China has 342 cost-effective municipal solid waste landfill sites which functionally accept heterogeneous wastes without requirement for separation (Chen *et al.*, 2010).

Due to its economic advantages and contributions toward the achievement of green and sustainable environment, sanitary landfilling of solid wastes continue to be the most economically viable and final solid waste disposal method (Chen *et al.*, 2010; Perkoulidis *et al*, 2010; Di Maria *et al.*, 2013; Yang *et al.*, 2013). However, waste containment in landfill sites enhances the concentrations of different dissolved and suspended pollutants as well as non-bio-degradable heavy metal ions leached from hydrated disposed wastes. The leachate formed is injurious to the public health and the environment at large. Landfill leachate as contaminated liquid effluent may percolate through liner material after the decomposition of deposited wastes. The liquid has been recognized as one of the most critical and detrimental issue in landfill operation (Ziyang *et al.*, 2009; Zhan *et al.*, 2013; Li *et al.*, 2013; Gallego *et al.*, 2014).

Despite the reliance of many communities on groundwater as main source of portable water and for culinary consumptions, the level of pervasiveness of its contamination and threat to the public health due to the varieties of toxic heavy metals ions is becoming unbearable (Chalermyanont *et al.*, 2009). Some of the common toxic heavy metals largely present in the leachate include, but not limited to lead (Pb), cadmium (Cd), copper (Cu), zinc (Zn), iron (Fe), nickel (Ni), and mercury (Hg). Consequently, many people have suffered great deal from carcinogenic and water borne ailment in connection with the consumption of leachate contaminated water (Zhang *et al.*, 2009; Nadaroglu *et al.*, 2010; Naser, 2013; Devic *et al.*, 2013).

More so, leachate contaminated groundwater has led to the imbalance in eco-system (Foo and Hameed, 2009). In addition, the liquid contaminant has contributed significantly to ozone layer depletion and greenhouse gas effect through the release of the heat trapping greenhouse gases (GHG) such as carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N₂O) (Oonk *et al.*, 2013; Ahmari and Zhang, 2013). Other non-environmentally friendly gaseous emissions as ammonia NH₄ and hydrofluorocarbons (HFCs) are also released to the surrounding environment. Accordingly, the installation of engineered and sustainable landfill liner is imperative since it constitutes one of the most important sub-system in the modern integrated and holistic solid waste management system (Edil, 2003; Demesouka *et al.*, 2013; Di Maria *et al.*, 2013).

The performance of engineered compacted clay liner has been evaluated hydraulically and most importantly on the basis of attenuation of various toxic chemical species (Fall *et al.*, 2009; Sunil *et al.*, 2009; Koutsopoulou *et al.*, 2010; Hamdi and Srasra, 2013; Zhan *et al.*, 2013). Also, the sustainability in geo-liner material formulation will necessitate the introduction and use of locally available solid waste material as additional but relatively cheap and reactive cementitious material. Base on the foregoing, the research explored the potential of compacted kaolin modified with pre-determined dry mass of PPOFA (organic ash) as an alternative and sustainable landfill liner material.

The industrial kaolin used as the main landfill mineral liner was procured in Malaysia. Kaolin is one of the sizeable natural resources deposit in Malaysia (Ariffin *et al.*, 2008). It has been reported that Malaysia has some 112 million tonnes of kaolin reserves located in some of the states (Lee and Teoh, 1992). Thus, indicate high natural deposit coupled with active mining activity (Liew *et al.*, 2012; and Ismail *et al.*, 2013). It has also been reported that the surface chemistry of kaolinitic clay is less chemically reactive (Vizcayno *et al.* 2009). The soil may then be classified as unfavourable for use solely as earthen landfill liner. Despite this, existing literatures have shown that researches have focused on the use of kaolin as geo-liner (Srivastava *et al.*, 2005 and Mockovčiaková *et al.*, 2008). Thus, this research explored the advantage of the inherent chemical compositions of PPOFA and was used in enhancing the less reactive kaolin as alternative composite landfill liner material.

1.3 Aim and Objectives of the Research

The aim of this research is to experimentally study the potential of kaolin admixed with PPOFA as CCL. The specific objectives of the study are:

- i. To establish the physical, chemical and mechanical characteristics of the industrial white kaolin, PPOFA and the formulated composite landfill liner material.
- ii. To determine the attenuation efficiency and sorption capacity of four randomly selected single-element species (Pb, Cd, Zn, and Cu) sorbed onto the formulated mineral liner material via batch adsorption equilibrium test (BAET) and validate the experimental results with the Freundlich and Langmuir model and respective sorption isotherm curves.
- iii. To determine the leachability of the industrial white kaolin, PPOFA and the formulated composite landfill liner material via batch leaching procedure (BLP).
- iv. To determine the hydraulic performance of the compacted kaolin-PPOFA mineral liner material and compare with existing criteria for clay liner.
- v. To determine the diffusion-retardation transport parameters governing the migration of the aqueous solutions of the four single-element species when permeated through the compacted column of the kaolin-PPOFA liner material.

1.4 Scope of the Research

The research was limited to laboratory based experiments, using the treated POFA as admixture to the kaolin. Both materials were obtained within Johor State of Malaysia. Initially the raw POFA was beneficiated by sieving and later subjected to two stages of milling process (i.e., hammer and ball milling). The industrial white kaolin was used as received with no further treatment. The simulated composite mineral liner material was formulated by introducing 375 g of the PPOFA to 2500 g dry mass of the industrial kaolin. Series of preliminary tests were conducted to establish the physical, chemical, and mechanical properties of the two basic component materials and their mixture as the composite liner material. The microstructural analyses conducted include the mass loss on

ignition (*LOI*) analysis at predefined furnace temperature of 440 \pm 25 °C and surface scanned morphology analysis using Energy Dispersive X-Ray Analyzer (EDX). Other microstructural analyses performed are the elemental and chemical compositions determined via Energy Dispersive X-Ray Fluorescence (EDXRF) spectrometer as well as the mineralogical composition which was determined via Brucker D8 Advanced X-Ray Diffractometer (XRD). The pH and the electrical conductance (EC) of the suspended solids of the three classes of materials were also determined.

The performance of the composite kaolin-PPOFA matrix as mineral liner was examined from the following criteria:

- i. Metal sorption efficiency
- ii. Adsorption capacity
- iii. Metal leachability
- iv. Hydraulic conductivity
- v. Diffusion-retardation parameters.

Four different toxic heavy metal ion solutions which formed part of those commonly found in landfill leachates and are of significant interest to the environment (i.e., Zn, Pb, Cd and Cu), were prepared as single-metal solution. Subsequently, the respective solutions at varying concentrations were engaged in the determination of the sorption efficiency and capacity of the liner material using the BAET isotherm analysis. The initial concentration (C_o) of the four heavy metals used for the metal retention efficiency and isotherm sorption tests ranged from 10 mgL⁻¹ to 120 mgL⁻¹. The presence and leachability of the four heavy metals in the kaolin, PPOFA, and the formulated liner material were examined through the BLP leaching test.

The falling head hydraulic conductivity test was conducted on series of compacted liner specimens prepared from the kaolin-PPOFA matrixes. For the test, eight specimens were prepared and compacted in respective transparent Perspex columns; where de-aired distilled (DI) water was used as the permeant. The completion of the hydraulic conductivity test was immediately followed by the column diffusion-retardation tests. The column test was performed with the influent concentration (C_{inf}) of each metal compound maintained at

0.0001M. The generated series of data from the test categories were analyzed and results obtained were compared with existing related literatures. In particular, performance of the formulated kaolin-PPOFA matrix as composite liner was as well compared with standard performance criteria for earthen liner material.

REFRENCES

- Abdel Rahman, R. O., Zin El Abidin, D. H., and Abou-Shady, H. (2013). Assessment of strontium immobilization in cement–bentonite matrices. *Chemical Engineering Journal*. 228, 772–780.
- Abdul, A., Abdul, H., Azmi, M., Johari, M., Shah, K., and Nordin, M. (2010). Ammoniacal nitrogen and COD removal from semi-aerobic landfill leachate using a composite adsorbent : Fixed bed column adsorption performance, *175*, 960–964.
- Abdul Awal, A. S. M. A., and Hussin, M. W. (2011). Effect of Palm Oil Fuel Ash in Controlling Heat of Hydration of Concrete. *Procedia Engineering*. 14, 2650–2657.
- Abichou, T., Barlaz, M. a, Green, R., and Hater, G. (2013). Liquid balance monitoring inside conventional, Retrofit, and bio-reactor landfill cells. *Waste management (New York, N.Y.).* 33(10), 2006–14.
- Abu Amr, S. S., and Aziz, H. A. (2012). New treatment of stabilized leachate by ozone/Fenton in the advanced oxidation process. *Waste management (New York, N.Y.).* 32(9), 1693–8.
- Agamuthu, P. and Fauziah, S.H. (2011). Challenges and Issues in moving towards sustainable landfilling in a transition country-Malaysia. Waste Management and Research.
- Ahmad, B.K., Taha, M.R., and Kassim, A.K. (2011). Electrokinetic treatment on a tropical residual soil. *Proceedings of the Institution of Civil Engineers*. 164 (GI1), 3-13.
- Ahmari, S., and Zhang, L. (2013). Utilization of cement kiln dust (CKD) to enhance mine tailings-based geopolymer bricks. *Construction and Building Materials*. 40, 1002–1011.
- Ahn, H.-S., and Jo, H. Y. (2009). Influence of exchangeable cations on hydraulic conductivity of compacted bentonite. *Applied Clay Science*. 44(1-2), 144–150.
- Akroyd, T.N.W. (1957). Laboratory Testing in Soil Engineering. Old Church Street, London, S.W.3.
- Albrecht, B.A., and Benson, C.H. (2001). Effect of Desiccation on Compacted Natural Clays. *Journal of Geotechnical and Geoenvironmental Engineering*. 127(1), 67-75.
- Al-tabbaa, A., and Aravinthan, T. (1998). Natural clay-shredded tire mixtures as landfill barrier materials, 18, 9–16.
- Aldahdooh, M., Muhamad Bunnori, N., and Megat Johari, M. (2013). Development of green ultra-high performance fiber reinforced concrete containing ultrafine palm oil fuel ash. *Construction and Building Materials*. 48, 379–389.
- Aldahdooh, M., Muhamad Bunnori, N., and Megat Johari, M. (2014). Influence of palm oil fuel ash on ultimate flexural and uniaxial tensile strength of green ultra-high performance fiber reinforced cementitious composites. *Materials & Design. 54*, 694– 701.

- Amat, R. C., Ibrahim, N. M., Rahim, N. L., Tajudin, N. S. B. A., and Ahmad, K. R. (2013). Fire Resistance of Biomass Ash Panels used for Internal Partitions in Buildings. *Procedia Engineering*. 53, 52–57.
- Amorós, J. L., Beltrán, V., Sanz, V., and Jarque, J. C. (2010). Electrokinetic and rheological properties of highly concentrated kaolin dispersions: Influence of particle volume fraction and dispersant concentration. *Applied Clay Science*. 49 (1-2), 33–43.
- Anglada, A., Urtiaga, A., Ortiz, I., Mantzavinos, D., and Diamadopoulos, E. (2011). Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design. *Waste management (New York, N.Y.)*, 31(8). 1833–40.
- Arias, F., and Sen, T. K. (2009). Removal of zinc metal ion (Zn²⁺) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 348(1-3), 100–108.
- Ariffin, K.S., Rahaman, H.A., Hussin, H., Hadi, K.A.A (2008). The genesis and characteristics of primary kaolinitic clay occurrence in Bukit Lampas, Simpang Pulai, Ipoh. Bulletin of Geological Society of Malaysia. 54, 9-16.
- Asl, S. H., Ahmadi, M., Ghiasvand, M., Tardast, A., and Katal, R. (2013). Artificial neural network (ANN) approach for modeling of Cr(VI) adsorption from aqueous solution by zeolite prepared from raw fly ash (ZFA). *Journal of Industrial and Engineering Chemistry*. 19(3), 1044–1055.
- Aslani, A., and Wong, K.F. V. (2014). Analysis of renewable energy development to power generation in the United States. *Renewable Energy*. 63, 153–161.
- ASTM, C618-08. (2008). Standard Specification Test Method for coal fly ash and raw or calcined natural pozzola for use as a mineral admixture in concrete. ASTM International.
- ASTM, D 421/422. (2012). Standard Specification Test Method for Particle-Size Analysis.
- ASTM, E 2090-12 (2012). Standard Specification Test Method for Optical and Scanning Electron Microscopy.
- Ayomoh, M. K. O., Oke, S. A., Adedeji, W. O., and Charles-owaba, O. E. (2008). An approach to tackling the environmental and health impacts of municipal solid waste disposal in developing countries. *Journal of Environmental Management*. 88, 108– 114.
- Badogiannis, E., and Tsivilis, S. (2009). Exploitation of poor Greek kaolins: Durability of metakaolin concrete. *Cement and Concrete Composites*. 31(2), 128–133.
- Bame, I. B., Hughes, J. C., Titshall, L. W., and Buckley, C. (2013). Leachate characteristics as influenced by application of anaerobic baffled reactor effluent to three soils: a soil column study. *Chemosphere*. 93(9), 2171–2179.
- Barroso, M., Touzefoltz, N., Vonmaubeuge, K., and Pierson, P. (2006). Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner. *Geotextiles and Geomembranes*. 24(3), 139–155.
- Benbelkacem, H., Bayard, R., Abdelhay, A., Zhang, Y., and Gourdon, R. (2010). Effect of leachate injection modes on municipal solid waste degradation in anaerobic bioreactor. *Bioresource technology*. 101(14), 5206–12.
- Benson, C. H., and Trast, J. M. (1995). Hydraulic conductivity of thirteen compacted clays. *Clays and Clay Minerals*. 43(6), 669-681.
- Bertolino, L. C., Rossi, A. M., Scorzelli, R. B., and Torem, M. L. (2010). Influence of iron on kaolin whiteness: An electron paramagnetic resonance study. *Applied Clay Science*, 49(3), 170–175.
- Billo, E.J. (2001). *Excell for Chemists, A Comprehensive Guide*. (2nd ed.). USA: John Wiley & Sons, Inc.

- Billong, N., Melo, U. C., Louvet, F., and Njopwouo, D. (2008). Properties of compressed lateritic soil stabilized with a burnt clay lime binder : Effect of mixture components. *Construction and Building Materials*. 8–11.
- Bouazza, A., Zornberg, J., McCartney, J. S., and Singh, R. M. (2013). Unsaturated geotechnics applied to geoenvironmental engineering problems involving geosynthetics. *Engineering Geology*. (0), 1-11.
- Brady, N.C., and Weil, R.R. (2004). *Elements of the nature and properties of soils*. (2nd ed.) Prentice Hall.
- British Standards BS 812: Part 2 (1996). Tests for geotechnical properties of aggregates.
- Brunauer, S. (1945). The Adsorption of Gases and Vapors. University Press, Oxford.
- BSI (British Standard Institution) BS 1377: 3: (1990). *Chemical and electro-chemical tests*. BSI, Milton Keyness.
- BSI (British Standards Institution) BS 1377: 4: (1990). *Compaction-related tests*. BSI, Milton Keyness.
- BSI (British Standards Institution) BS 1377: 2: (1998). *Classification tests*. BSI, Milton Keyness.
- BSI (British Standards Institution) BS 5930: (1999). Code of Practice for Site Investigations.
- BSI, London. Chalermyanont, T., and Arrykul, S. (2005). Compacted sand-bentonite mixtures for hydraulic containment liners. *Songklanakarin Journal of Science and Technology*. 27(2), 313-323.
- Chalermyanont, T., Arrykul, S., and Charoenthaisong, N. (2008). Transport of heavy metals and chemical compatibility of hydraulic conductivity of a compacted sandbentonite mixture. *Songklanakarin Journal of Science and Technology*. 30 (2), 269-276.
- Chalermyanont, T., Arrykul, S., and Charoenthaisong, N. (2009). Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals. *Waste Management*. 29(1), 117–127.
- Chandara, C., Sakai, E., Azizli, K. A. M., Ahmad, Z. A., and Hashim, S. F. S. (2010). The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. *Construction and Building Materials*. 24(9), 1590–1593.
- Chandara, C., Azizi, K. A. M., M., Ahmad, Z. A., Fuad, S., and Hashim, S. (2011). Analysis of Mineralogical Component of Palm Oil Fuel Ash with or without Unburned Carbon. *Advanced Materials Research*. 173, 7–11.
- Chandara, C., Mohd Azizli, K. A., Ahmad, Z. A., Saiyid Hashim, S. F., and Sakai, E. (2012). Heat of hydration of blended cement containing treated ground palm oil fuel ash. *Construction and Building Materials*. 27(1), 78–81.
- Chandrasekhar, S., and Ramaswamy, S. (2002). Influence of mineral impurities on the properties of kaolin and its thermally treated products. *Applied Clay Science*. 21(3-4), 133–142.
- Chang, C., Wang, C., Mui, D. T., Cheng, M., and Chiang, H. (2009). Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan, *165*, 766–773.
- Chang, N.-B., Parvathinathan, G., and Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. *Journal of environmental management*. 87(1), 139–53.
- Charfi, A., Dhouib Sahnoun, R., and Bouaziz, J. (2013). Characterization and mechanical properties of phosphate-kaolin clay. *Powder Technology*. 235, 633–639.
- Chen, X., Geng, Y., and Fujita, T. (2010). An overview of municipal solid waste management in China. *Waste Management*. 30(4), 716–724.

- Chindaprasirt, P., Chotetanorm, C., and Rukzon, S. (2011). Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete. *Journal of materials in Civil Engineering*. 499-503.
- Claret, F., Tournassat, C., Crouzet, C., Gaucher, E. C., Schäfer, T., Braibant, G., and Guyonnet, D. (2011). Metal speciation in landfill leachates with a focus on the influence of organic matter. *Waste management (New York, N.Y.).* 31(9-10), 2036–45.
- Chong, M.F., Lee, K.P., Chieng, H. J., and Ramli, I.S.B. (2009). Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer. *Water Reseach*. 43, 3326-3334.
- Chusilp, N., Jaturapitakkul, C., and Kiattikomol, K. (2009). Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. *Construction and Building Materials*. 23(12), 3523–3531.
- Coccia, C. J. R., Gupta, R., Morris, J., and McCartney, J. S. (2013). Municipal solid waste landfills as geothermal heat sources. *Renewable and Sustainable Energy Reviews*. 19, 463–474.
- Coduto, D. P. (2007). *Geotechnical Engineering Principles and Practices*. Pearson Education, Inc. New Delhi, India.
- Cokca, E., and Yilmaz, Z. (2004). Use of rubber and bentonite added fly ash as a liner material. *Waste management (New York, N.Y.).* 24(2), 153–64.
- Coles, C., and Yong, R. (2002). Aspects of kaolinite characterization and retention of Pb and Cd. *Applied Clay Science*. 22(1-2), 39–45.
- Colombo, C., Sellitto, V. M., Palumbo, G., Di Iorio, E., Terribile, F., and Schulze, D. G. (2014). Clay formation and pedogenetic processes in tephra-derived soils and buried soils from Central-Southern Apennines (Italy). *Geoderma*. 213, 346–356.
- Craig, R.F. (2004). *Soil Mechanics*. Spon Press, Taylor and Francis Group. London and New York.
- Çoruh, S., Elevli, S., Ergun, O. N., and Demir, G. (2013). Assessment of leaching characteristics of heavy metals from industrial leach waste. *International Journal of Mineral Processing*. 123, 165–171.
- Darshini, D., Dwivedi, P., and Glenk, K. (2013). Capturing stakeholders' views on oil palm-based biofuel and biomass utilisation in Malaysia. *Energy Policy*. 62, 1128–1137.
- Daniel, D.E., and Benson, C.H. (1990). Water Content Density Creteria for Compacted soil Liners. *Journal of Geotechnical Engineering*. ASCE. 116(12), 21-39.
- David, E.D. (1993). Clay liners. *Geotechnical Practice for Waste Disposal*. (ed. by David, E. Daniel) Chapman and Hall, London, UK. 137-163.
- Declan, O., and Paul, Q. (2003). *Geotechnical Engineering and Environmental Aspects of Clay Liners for Landfill Projects*. Fehily Timoney and Co., and Irish Geotechnical Services Ltd.
- Demesouka, O. E., Vavatsikos, P., and Anagnostopoulos, K. P. (2013). Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study. *Waste management (New York, N.Y.).* 33(5), 1190– 206.
- De Weerdt, K., Kjellsen, K. O., Sellevold, E., and Justnes, H. (2011). Synergy between fly ash and limestone powder in ternary cements. *Cement and Concrete Composites*. 33(1), 30–38.
- Devic, G., Djordjevic, D., and Sakan, S. (2013). Natural and anthropogenic factors affecting the groundwater quality in Serbia. *The Science of the total environment*. 468-469C, 933–942.

- Di Maria, F., Sordi, A., and Micale, C. (2013). Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. *Waste management (New York, N.Y.)*. 33(11), 2557–2567.
- Divya, P. V., Viswanadham, B. V. S., and Gourc, J. P. (2012). Influence of geomembrane on the deformation behaviour of clay-based landfill covers. *Geotextiles and Geomembranes*. *34*, 158–171.
- Dominijanni, A., and Manassero, M. (2012). Modelling the swelling and osmotic properties of clay soils. Part II: The physical approach. *International Journal of Engineering Science*. 51, 51–73.
- Dwivedy, M., and Mittal, R. K. (2013). Willingness of residents to participate in e-waste recycling in India. *Environmental Development*. *6*, 48–68.
- Edil, T. B. (2003). A review of aqueous-phase VOC transport in modern landfill liners, 23, 561–571.
- Ekosse, G.-I. E. (2010). Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. *Applied Clay Science*. 50(2), 212–236.
- El-Sabbagh, S. H., Ahmed, N. M., and Ward, A. (2012). Effect of kaolin-metal oxides core-shell pigments on the properties of styrene-butadiene rubber composites. *Materials and Design*, 40, 343–355.
- Elshorbagy, W. A., and Mohamed, A. M. O. (2000). Evaluation of using municipal solid waste compost in landfill closure caps in arid areas, 20.
- Eren, E. (2009). Removal of lead ions by Unye (Turkey) bentonite in iron and magnesium oxide-coated forms. *Journal of Hazardous Materials*. 165(3), 63–70.
- Fall, M., Célestin, J. C., and Han, F. S. (2009). Suitability of bentonite-paste tailings mixtures as engineering barrier material for mine waste containment facilities. *Minerals Engineering*. 22(9-10), 840–848.
- Farooqui, S. Z. (2014). Prospects of renewables penetration in the energy mix of Pakistan. *Renewable and Sustainable Energy Reviews*. 29, 693–700.
- Foo, K. Y., and Hameed, B. H. (2009). Value-added utilization of oil palm ash : A superior recycling of the industrial agricultural waste. *Journal of Hazardous Materials*. 172, 523–531.
- Foo, K Y, Lee, L. K., and Hameed, B. H. (2013a). Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. *Chemical Engineering Journal.* 223, 604–610.
- Foo, K.Y., Lee, L. K., and Hameed, B. H. (2013b). Batch adsorption of semi-aerobic landfill leachate by granular activated carbon prepared by microwave heating. *Chemical Engineering Journal*, 222, 259–264.
- Galante, G., Aiello, G., Enea, M., and Panascia, E. (2010). A multi-objective approach to solid waste management. *Waste Management*. 1–9.
- Gallego, E., Perales, J. F., Roca, F. J., and Guardino, X. (2014). Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber. *Science of The Total Environment*, 470-471, 587–599.
- Gálvez, A., Giusti, L., Zamorano, M., and Ramos-Ridao, a F. (2009). Stability and efficiency of biofilms for landfill leachate treatment. *Bioresource Technology*. *100*(20), 4895–4898.
- Gambhir, M.L. (2004). *Concrete Technology*. (3rd ed.). New Delhi, India: Tata McGraw-Hill Pub. Comp., Ltd.
- Gámiz, E., Párraga, J., Sánchez-Marañón, M., Melgosa, M., Fernández-González, M. V., and Delgado, R. (2011). Is the Pharmacopoeia test a good estimator of the organic impurities in kaolin. *Applied Clay Science*. *51*(4), 431–437.

- Ganjian, E., Claisse, P., Tyrer, M., and Atkinson, A. (2004). Preliminary investigations into the use of secondary waste minerals as a novel cementitious landfill liner. 18, 689–699.
- Garaj-Vrhovac, V., Oreščanin, V., Gajski, G., Gerić, M., Ruk, D., Kollar, R., Cvjetko, P. (2013). Toxicological characterization of the landfill leachate prior/after chemical and electrochemical treatment: A study on human and plant cells. *Chemosphere*, 93(6), 939–45.
- Gidigasu, M.D. (1976). Laterite Soil Engineering: Pedogenesis and Engineering Principles Developments in Geotechnical Engineering. Elservier, Amsterdam, the Netherlands.
- Gilat, A. (2008). *Matlab an introduction with applications*. (3rd ed.). United State of America: John Wiley and Sons, Inc.
- Gomez, K.A., and Gomez, A.A. (1984). *Statistical Proceedures for Agricultural research*. (2nd ed.). New York :John Wiley and Sons, Inc.
- Grabowska-Olszewska, B. (2003). Modelling physical properties of mixtures of clays: example of a two-component mixture of kaolinite and montmorillonite. *Applied Clay Science*. 22(5), 251–259.
- Guerra, D. J. L., and da Silva, R. A. R. (2013). Kinetic and thermodynamic studies of Brazilian illite–kaolinite in natural and intercalated forms as adsorbents to removal of Zn2+ from aqueous solutions. *Journal of the Taiwan Institute of Chemical Engineers*. 1–7.
- Guo, X., Xiang, D., Duan, G., and Mou, P. (2010). A review of mechanochemistry applications in waste management. *Waste Management*. 30(1), 4–10.
- Guyonnet, D., Touze-Foltz, N., Norotte, V., Pothier, C., Didier, G., Gailhanou, H., and Blanc, P. (2009). Performance-based indicators for controlling geosynthetic clay liners in landfill applications. *Geotextiles and Geomembranes*. 27(5), 321–331.
- Hamdi, N., and Srasra, E. (2013). Hydraulic conductivity study of compacted clay soils used as landfill liners for an acidic waste. *Waste management (New York, N.Y.).* 33(1), 60–66.
- Hameed, B.H., Ahmad, A.A., and Aziz, N. (2007). Isothermal, kinetics and thermodynamics of acid dye adsorption on activated palm ash. *Chemical Engineering Journal*. 133, 195-203.
- Hasan, M., Ahmad, A. L., and Hameed, B. H. (2008). Adsorption of reactive dye onto cross-linked chitosan / oil palm ash composite beads. *Chemical Engineering Journal*. 136, 164–172.
- Head, K. H. (1994). Manual of Soil Laboratory Testing. (2nd ed.). Vol. 2,New York, Toronto: John Wiley & Sons, Inc.
- Herrmann, I., Svensson, M., Ecke, H., Kumpiene, J., Maurice, C., Andreas, L., and Lagerkvist, A. (2009). Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners. *Water Research*. 43, 3541-3547.
- Hillel, D., (1998). Environmental Soil Physics. San Diego, California: Academic Press.
- Houben, D., Evrard, L., and Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. *Chemosphere*. 92(11), 1450–1457.
- Hrad, M., Huber-Humer, M., Wimmer, B., and Reichenauer, T. G. (2012). Design of top covers supporting aerobic in situ stabilization of old landfills--an experimental simulation in lysimeters. *Waste management (New York, N.Y.)*. 32(12), 2324–35.
- Huerta Buitrago, B., Ferrer Muñoz, P., Ribé, V., Larsson, M., Engwall, M., Wojciechowska, E., and Waara, S. (2013). Hazard assessment of sediments from a

wetland system for treatment of landfill leachate using bioassays. *Ecotoxicology and environmental safety*. 97, 255–262.

- Husain, Z., Zainac, Z., and Abdullah, Z. (2002). Briquetting of palm and shell from the processing of palm nuts to palm oil. *Biomass and Bioenergy*. 22, 505–509.
- Hussin, M.W., Muthusamy, K., and Zakaria, F. (2011). Effect of Mixing Constituent toward Engineering Properties of POFA Cement-Based Aerated Concrete. *Journal of Materials in Civil Engineering*. 22 (4), 287-295.
- Hyun, S., Kang, D. H., Kim, J., Kim, M., and Kim, D.-Y. (2011). Adsorptive removal of aqueous fluoride by liner minerals from SPL-landfill leachate during the seepage process. *Desalination*. 276(1-3), 347–351.
- Ismail, M., ElGelany Ismail, M., and Muhammad, B. (2011). Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash. *Construction and Building Materials*. 25(5), 2358–2364.
- Ibrahim, M. A., Göransson, G., Kaczala, F., Hogland, W., and Marques, M. (2013). Characterization of municipal solid waste temporary storage sites: Risks posed to surrounding areas as a consequence of fire incidents. *Waste management (New York, N.Y.).* 33(11). 2296–306.
- Ilyushechkin, A. Y., Roberts, D. G., and Harris, D. J. (2014). Characteristics of solid byproducts from entrained flow gasification of Australian coals. *Fuel Processing Technology*. 118, 98–109.
- Ismail, M., ElGelany Ismail, M., and Muhammad, B. (2011). Influence of elevated temperatures on physical and compressive strength properties of concrete containing palm oil fuel ash. *Construction and Building Materials*. 25(5), 2358–2364.
- Ismail, M., Yusuf, T. O., Noruzman, A. H., and Hassan, I. O. (2013). Early Strength Characteristics of Palm Oil Fuel Ash and Metakaolin blended Geopolymer Mortar. *Advanced Materials Research*. 693, 1045–1048.
- Jamil, T. S., Ibrahim, H. S., Abd El-Maksoud, I. H., and El-Wakeel, S. T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. *Desalination*. 258(1-3), 34–40.
- Jaturapitakkul, C., Tangpagasit, J., Songmue, S., and Kiattikomol, K. (2011). Filler effect and pozzolanic reaction of ground palm oil fuel ash. *Construction and Building Materials*. 25(11), 4287–4293.
- Jiao, F., Ninomiya, Y., Zhang, L., Yamada, N., Sato, A., and Dong, Z. (2013). Effect of coal blending on the leaching characteristics of arsenic in fly ash from fluidized bed coal combustion. *Fuel Processing Technology*. 106, 769–775.
- Jin, J., Li, X., Chi, Y., and Yan, J. (2010). Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology. Waste Management and Research : The *Journal of the International Solid Wastes and Public Cleansing Association*. ISWA, 28(12), 1133–1142.
- Jo, H., Benson, C., Shackelford, D., Lee, J. and Edil, T. (2005). Long-trem hydraulic conductivity of a Geosynthetic Clay Liner permeated with inorganic salt solutions. *Journal of Geotechnical and Geoenvironmental Engineering*.
- Kaliyan, N., and Vance Morey, R. (2009). Factors affecting strength and durability of densified biomass products. *Biomass and Bioenergy*. 33(3), 337–359.
- Kalkan, E. (2006). Utilization of red mud as a stabilization material for the preparation o clay liners. *Engineering Geology*. 87, 220-229.
- Karagiannidis, A., Papageorgiou, A., Perkoulidis, G., Sanida, G., and Samaras, P. (2010). A multi-criteria assessment of scenarios on thermal processing of infectious hospital wastes : A case study for Central Macedonia. *Waste Management*. 30(2), 251–262.

- Katsumi, T., Benson, C. H., Foose, G. J., and Kamon, M. (2001). Performance-based design of landfill liners. *Engineering Geology*. 60, 139–148.
- Kaya, A., and Durukan, S. (2004). Utilization of bentonite-embedded zeolite as clay liner. *Applied Clay Science*. 25, 83–91.
- Kayabalı, K., and Bulus, G. (2000). The usability of bottom ash as an engineering material when amended with different matrices. *Engineering Geology*. 56, 293–303.
- Kim, H. J., Endo, D., Sato, M., Matsuo, T., and Matsuto, T. (2009). Estimation of water movement in a closed landfill based on tracer tests in gas vents and changes in leachate quality. *Waste Management*. 29(8), 2308–2315.
- Kim, H., and Kim, T. (2002). Measurement of hardness on traditional ceramics. *Journal of the European Ceramic Society*. 22(9-10), 1437–1445.
- Kolaříková, I., Švandová, J., Přikryl, R., and Vinšová, H. (2010). Applied Clay Science Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment. *Applied Clay Science*. 47(1-2), 10–15.
- Koutsopoulou, E., Papoulis, D., Tsolis-katagas, P., and Kornaros, M. (2010). Minerals used in sanitary landfills for the retention of organic and inorganic pollutants. *Applied Clay Science*. 49(4), 372–382.
- Kroehong, W., Sinsiri, T., and Jaturapitakkul, C. (2011). Effect of Palm Oil Fuel Ash Fineness on Packing Effect and Pozzolanic Reaction of Blended Cement Paste. *Procedia Engineering*. 14, 361–369.
- Kwame Efavi, J., Damoah, L., Yaw Bensah, D., Dodoo Arhin, D., and Tetteh, D. (2012). Development of porous ceramic bodies from kaolin deposits for industrial applications. *Applied Clay Science*. 65-66, 31–36.
- Laner, D., Crest, M., Scharff, H., Morris, J. W. F., and Barlaz, M. (2012). A review of approaches for the long-term management of municipal solid waste landfills. *Waste* management (New York, N.Y.). 32(3), 498–512.
- Lange, K., Rowe, R. K., and Jamieson, H. (2010). Geotextiles and Geomembranes The potential role of geosynthetic clay liners in mine water treatment systems. *Geotextiles* and Geomembranes. 28(2), 199–205.
- Larsen, R. W. (2009). *Engineering with Excel.* (3rd ed.). Upper Saddle River, New Jersey: Pearson Education, Inc.
- Li, M., Sun, C., Gau, S., and Chuang, C. (2010). Effects of wet ball milling on lead stabilization and particle size variation in municipal solid waste incinerator fly ash. *Journal of Hazardous Materials*. 174, 586–591.
- Li, Y., Li, J., Chen, S., and Diao, W. (2012). Establishing indices for groundwater contamination risk assessment in the vicinity of hazardous waste landfills in China. *Environmental pollution (Barking, Essex : 1987). 165*, 77–90.
- Li, Y., Li, J., and Deng, C. (2013). Occurrence, characteristics and leakage of polybrominated diphenyl ethers in leachate from municipal solid waste landfills in China. *Environmental pollution (Barking, Essex : 1987). 184C*, 94–100.
- Li, Z., Lu, H., Ren, L., and He, L. (2013). Experimental and modeling approaches for food waste composting: A review. *Chemosphere*. 93(7), 1247–57.
- Liamsanguan, C., and Gheewala, S. H. (2008). The holistic impact of integrated solid waste management on greenhouse gas emissions in Phuket, *16*, 1865–1871.
- Liew, Y. M., Kamarudin, H., Mustafa Al Bakri, A. M., Bnhussain, M., Luqman, M., Khairul Nizar, I., and Ruzaidi, C. M. (2012). Optimization of solids-to-liquid and alkali activator ratios of calcined kaolin geopolymeric powder. *Construction and Building Materials*. 37, 440–451.
- Lothenbach, B., Scrivener, K., and Hooton, R. D. (2011). Supplementary cementitious materials. *Cement and Concrete Research*. 41(12), 1244–1256.

- Malaysian Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009, Second Schedule (Regulation 113).
- Manfredi, S., and Christensen, T. H. (2009). Environmental assessment of solid waste landfilling technologies by means of LCA-modeling. *Waste Management*. 29(1), 32–43.
- Marshall, R. E., and Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. *Waste management (New York, N.Y.).* 33(4), 988–1003.
- Maulini-Duran, C., Artola, A., Font, X., and Sánchez, A. (2013). A systematic study of the gaseous emissions from biosolids composting: Raw sludge versus anaerobically digested sludge. *Bioresource technology*. 147, 43–51.
- Mehmood, M. K., Adetutu, E., Nedwell, D. B., and Ball, S. (2009). In situ microbial treatment of landfill leachate using aerated lagoons. *Bioresource technology*. *100*(10), 2741–2744.
- Mendes, M. J., Touze-Foltz, N., Gardoni, M., Ahari, M., and Mazeas, L. (2013). Quantification of diffusion of phenolic compounds in virgin GCL and in GCL after contact with a synthetic leachate. *Geotextiles and Geomembranes*. 38, 16–25.
- Mendoza, F. J. C., and Izquierdo, A. G. (2008). Design of a model to assess the environmental risk of leachate dams, 28, 2122–2133.
- Misra, V., and Pandey, S. D. (2005). Hazardous waste, impact on health and environment for development of better waste management strategies in future in India. *Environment international*, *31*(3), 417–31.
- Mitchell, J. K., and Soga, K. (2005). *Fundamentals of Soil Behavior*. (3rd ed.). Hoboken, New Jersey: John Wiley & Sons, Inc., USA.
- Mockovčiaková, a., Iveta, Š., Jiří, Š., and Ivana, K. (2008). Characterization of changes of low and high defect kaolinite after bioleaching. *Applied Clay Science*. 39(3-4), 202–207.
- Mohammedzein, Y. E. A., Al-Rawas, A. A., and Al-Aghbari, M. Y. (2005). Assessment of crushed shales for use as compacted landfill liners. *Engineering Geology*. 80, 271-281.
- Montgomery, D.C. (2008). *Design and Analysis of Experiments*. (7th ed.). John Wiley & Sons (Asia) Pte Ltd.
- Morris, J. W. F., Crest, M., Barlaz, M., Spokas, K., Kerman, A., and Yuan, L. (2012). Improved methodology to assess modification and completion of landfill gas management in the aftercare period. *Waste management (New York, N.Y.).* 32(12), 2364–2373.
- MPOB (Malaysian Palm Oil Board), 2012. Home website. Available at: http://www.mpob.gov.my/>.
- Muñoz, M., Gomez-rico, M. F., and Font, R. (2013). Use of thermogravimetry for single characterisation of samples of the composting process from sewage sludge. *Journal of Analytical and Applied Pyrolysis*. 103, 261–267.
- Musso, T. B., Roehl, K. E., Pettinari, G., and Vallés, J. M. (2010). Assessment of smectiterich claystones from Northpatagonia for their use as liner materials in landfills. *Applied Clay Science*. 48(3), 438–445.
- Nadaroglu, H., Kalkan, E., and Demir, N. (2010). Removal of copper from aqueous solution using red mud. *Desalination*, 251(1-3), 90–95.
- Naser, H. (2013). Assessment and management of heavy metal pollution in the marine environment of the Arabian Gulf: a review. *Marine pollution bulletin*. 72(1), 6–13.
- Nhan, C. T., Graydon, J. W., and Kirk, D. W. (1997). Contribution Utilizing Coal Fly Ash as a Landfill Barrier Material, 16(7).

- Ngoc, U. N., and Schnitzer, H. (2009). Sustainable solutions for solid waste management in Southeast Asian countries. *Waste Management*. 29(6), 1982–1995.
- Nguyen, P. T., and Amiri, O. (2014). Study of electrical double layer effect on chloride transport in unsaturated concrete. *Construction and Building Materials*. 50, 492–498.
- Noorvand, H., Ali, A. A. A., Demirboga, R., Noorvand, H., and Farzadnia, N. (2013). Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica. *Construction and Building Materials*. 48, 1104–1113.
- Oakley, S. M., and Jimenez, R. (2012). Sustainable sanitary landfills for neglected small cities in developing countries: the semi-mechanized trench method from Villanueva, Honduras. *Waste management (New York, N.Y.).* 32(12), 2535–2551.
- O'Flaherty, C. A. (1976). *Highway Engineering*. (2nd ed.). Great Britian:Edward Arnold Ltd. Pub. Ltd.
- Ogata, A., and Banks, R. B. (1961). A Solution of the Differential Equation of Longitudinal Dispersion in porous Media. *Geological Survey Professional Paper*. U.S.A Printing Office, Washington. 1-11.
- Ohimain, E. I., and Izah, S. C. (2014). Energy self-sufficiency of smallholder oil palm processing in Nigeria. *Renewable Energy*. 63, 426–431.
- Okoli, R. E., and Balafoutas, G. (1998). Landfill sealing potentials of bottom ashes of sludge cakes, 46, 307–314.
- Oonk, H., Zomeren, A. Van, Rees-White, T. C., Beaven, R. P., Hoekstra, N., Luning, L., and Hannen, M. (2013). Enhanced biodegradation at the Landgraaf bioreactor test-cell. *Waste management (New York, N.Y.).* 2048-2060.
- Östman, M. (2008). Ageing Landfills Development and Processes. PhD, Thesis. Swedish University of Agricultural Sciences Uppsala.
- Oyanedel-Craver, V. A, Fuller, M., and Smith, J. A. (2007). Simultaneous sorption of benzene and heavy metals onto two organoclays. *Journal of colloid and interface science*. 309(2), 485–92.
- Oweis, I. S., and Khera, R. P. (1998). *Geotechnology of waste management*. PSW Publishing Company. 35-49.
- Palmer, B. G., Edil, T. B., and Benson, C. H. (2000). Liners for waste containment constructed with class F and C fly ashes. *Journal of hazardous materials*. 76(2-3), 193–216.
- Palomino, A. M., Kim, S., Summitt, A., and Fratta, D. (2011). Impact of diatoms on fabric and chemical stability of diatom–kaolin mixtures. *Applied Clay Science*, 51(3), 287– 294.
- Paoli, L., Corsini, a, Bigagli, V., Vannini, J., Bruscoli, C., and Loppi, S. (2012). Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. *Environmental pollution (Barking, Essex : 1987). 161*, 70–5.
- Patthanaissaranukool, W., Polprasert, C., and Englande, A. J. (2013). Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances. *Applied Energy*. 102, 710–717.
- Perkoulidis, G., Papageorgiou, A., Karagiannidis, A., and Kalogirou, S. (2010). Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives. *Waste management (New York, N.Y.)*. 30(7), 1395–406.
- Peyronnard, O., and Benzaazoua, M. (2011). Estimation of the cementitious properties of various industrial by-products for applications requiring low mechanical strength. *Resources, Conservation and Recycling*. 56(1), 22–33.
- Pi, K. W., Gao, L. X., Fan, M. X., Gong, W. Q., and Wan, D. J. (2009). Two-stage biodegradation coupled with ultrafiltration for treatment of municipal landfill leachate. *Process Safety and Environmental Protection*. 87(5), 336–342.

- Pivato, A., and Raga, R. (2006). Tests for the evaluation of ammonium attenuation in MSW landfill leachate by adsorption into bentonite in a landfill liner. *Waste Management*. 26, 123–132.
- Prasad, M., Xu, H., and Saxena, S. (2008). Multi-component sorption of Pb(II), Cu(II) and Zn(II) onto low-cost mineral adsorbent. *Journal of Hazardous Materials*. 154(1-3), 221–9.
- Public Soil Testing Laboratories in the Northeastern United States(NEC, 1012).
- Pulford, I. D. (2007). The Chemistry of the Solid Earth. In author. Principles of Environmental Chemistry. (234-278). The Royal Society of Chemistry: Macmillan India Ltd.
- Qi, Y., Szendrak, D., Yuen, R. T. W., Hoadley, A. F. A., and Mudd, G. (2011). Application of sludge dewatered products to soil and its effects on the leaching behaviour of heavy metals. *Chemical Engineering Journal*. 166(2), 586–595.
- Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., and Spooren, J. (2013). Characterization of landfilled materials: screening of the enhanced landfill mining potential. *Journal of Cleaner Production*. *55*, 72–83.
- Rajamma, R., Ball, R. J., Tarelho, L. A. C., Allen, G. C., Labrincha, J. A., and Ferreira, V. M. (2009). Characterisation and use of biomass fly ash in cement-based materials. *Journal of Hazardous Materials*. 172, 1049–1060.
- Rajesh, S., and Viswanadham, B. V. S. (2011). Hydro-mechanical behavior of geogrid reinforced soil barriers of landfill cover systems. *Geotextiles and Geomembranes*, 29(1), 51–64.
- Regadío, M., Ruiz, a I., de Soto, I. S., Rastrero, M. R., Sánchez, N., Gismera, M. J., Cuevas, J. (2012). Pollution profiles and physicochemical parameters in old uncontrolled landfills. *Waste management (New York, N.Y.)*, 32(3). 482–97.
- Rengasamy, P., Krishna Murti, G.S.R., and Sarma, V.A.K. (1975). Isomorphous Substitution of Iron for Aluminium in some Soil Kaolinites. *Calys and Clay Minerals*. 23, 211-214.
- Renman, G., and Kietlinska, A. (2005). An evaluation of reactive filter media for treating landfill leachate. Chemosphere. 61, 933–940.
- Roberts, A. A., and Shimaoka, T. (2008). Analytical study on the suitability of using bentonite coated gravel as a Indfill liner material. *Waste Management*. 28, 2635-2644.
- Rotureau, E. (2014). Analysis of metal speciation dynamics in clay minerals dispersion by stripping chronopotentiometry techniques. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 441, 291–297.
- Said-Mansour, M., Kadri, E.-H., Kenai, S., Ghrici, M., and Bennaceur, R. (2011). Influence of calcined kaolin on mortar properties. *Construction and Building Materials*. 25(5), 2275–2282.
- Sales, A., and Lima, S. A. (2010). Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. *Waste management*. 30(6), 1114–1122.
- Sánchez-Jiménez, N., Gismera, M. J., Sevilla, M. T., Cuevas, J., Rodríguez-Rastrero, M., and Procopio, J. R. (2012). Clayey materials as geologic barrier in urban landfills: Comprehensive study of the interaction of selected quarry materials with heavy metals. *Applied Clay Science*, 56, 23–29.
- Santos, E. Dos, Scorzelli, R. B., Bertolino, L. C., Alves, O. C., and Munayco, P. (2012). Characterization of kaolin from the Capim River region — Brazil. *Applied Clay Science*. 55, 164–167.
- Sarabian, T., and Rayhani, M. T. (2013). Hydration of geosynthetic clay liners from clay subsoil under simulated field conditions. *Waste management.* 33(1), 67–73.

- Sata, V., Tangpagasit, J., Jaturapitakkul, C., and Chindaprasirt, P. (2012). Effect of W/B ratios on pozzolanic reaction of biomass ashes in Portland cement matrix. *Cement and Concrete Composites*. 34(1), 94–100.
- Scrivener, K. L., and Nonat, A. (2011). Hydration of cementitious materials, present and future. *Cement and Concrete Research*. 41(7), 651–665.
- Scullion, J., Winson, M., and Matthews, R. (2007). Inhibition and recovery in a fixed microbial film leachate treatment system subject to shock loading of copper and zinc. *Water research*, 41(18), 4129–38.
- Senin, H.B., Subhi, O., Rosliza, R., Kancono, N., and Azhar, M.S. (2006). Role of sawdust in the removal of iron from aqueous solution. ASEAN Journal of Sciene and Technology Development. 23(3), 223-229.
- Shackelford,C.D. (1990). Transit-time design for earthen barriers. *Engineering Geology*. 29, 79-94.
- Shackelford, C.D., and Daniel, D.E. (1991). Diffusion in saturated soil. I: Background. *Journal of Geotechnical Engineering*. 117, 467-484.
- Shackelford, C. D. (1993). Contaminant Transport. In Daniel, D. E. *Geotechnical Practice for Waste Disposal*. 33-65. Great Britain. Chapman and Hall, London.
- Shackelford, C. D., and Redmond, P. (1995). Solute Breakthrough Curves for Processed kaolin at low flow rates. *Journal of Geotechnical Engineering*. 122 (1), 17-32.
- Shackelford, C. D., Benson, C. H., Katsumi, T., Edil, T. B., and Lin, L. (2000). Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes. 18, 133–161.
- Sharma, H.D., and Lewis, S.P. (1994). Waste Containment Systems, Waste Stabilization, and Landfillss: Design and Evaluation,. Wiley, New York.
- Sharma, H. D., and Reddy, K. R. (2004). *Geoenvironmental Engineering*. Hoboken, New Jersey: John Wiley and Sons, Inc., USA.
- Shuit, S. H., Tan, K. T., Lee, K. T., and Kamaruddin, A. H. (2009). Oil palm biomass as a sustainable energy source : A Malaysian case study. *Energy*, 34(9), 1225–1235.
- Siddiqui, M. A., and Ahmed, Z. (2008). Geochemistry of the kaolin deposits of Swat (Pakistan). *Chemie der Erde Geochemistry*. 68(2), 207–219.
- Silva, G., and Almanza, R. (2009). Use of clays as liners in solar ponds. Solar Energy. 83, 905-919.
- Silva, T. F. C. V., Silva, M. E. F., Cristina Cunha-Queda, a., Fonseca, A., Saraiva, I., Boaventura, R. R., and Vilar, V. J. P. (2013). Sanitary landfill leachate treatment using combined solar photo-Fenton and biological oxidation processes at preindustrial scale. *Chemical Engineering Journal*. 228, 850–866.
- Silva, T. F. C. V, Silva, M. E. F., Cunha-Queda, C., Fonseca, A., Saraiva, I., Sousa, M., Vilar, V. J. P. (2013). Multistage treatment system for raw leachate from sanitary landfill combining biological nitrification-denitrification/solar photo-Fenton/biological processes, at a scale close to industrial - Biodegradability enhancement and evolution profile of trace po. *Water research*. 47(16), 6167–86.
- Sinthaworn, S., and Nimityongskul, P. (2009). Quick monitoring of pozzolanic reactivity of waste ashes. *Waste Management*. 29(5),1526–1531.
- Sír, M., Podhola, M., Patočka, T., Honzajková, Z., Kocurek, P., Kubal, M., and Kuraš, M. (2012). The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate. *Journal of hazardous materials*, 207-208, 86–90.
- Sirieix, C., Fernández Martínez, J. L., Riss, J., and Genelle, F. (2013). Electrical resistivity characterization and defect detection on a geosynthetic clay liner (GCL) on an experimental site. *Journal of Applied Geophysics*. 90, 19–26.

- Sivapullaiah, P. V., and Lakshmikantha, H. (2005). Lime-stabilised illite as a liner. *Ground Improvement*. 1, 39-45.
- Sizirici, B., Tansel, B., and Kumar, V. (2011). Knowledge based ranking algorithm for comparative assessment of post-closure care needs of closed landfills. *Waste management*. 31(6), 1232–8.
- Smith, G. N., and Smith, I. G. N.(1995). *Element of Soil Mechanics*. (7th ed.). Great Britain: University Press, Cambridge.
- Snyder, K. A. (2009). Mineralogical and Microstructural Evolution in Hydrating Cementitious Sysyems. National Institute of Standards and Technology. Gaithersburg, MD 20899.
- Sparks, D.L., and Suarez, D.L. (1996). *Methods of soil analysis*. Part 2: Chemical properties (3rd ed.). ASA, SSSA, CSSA, Madison, WI., 551-601.
- Srivastava, P., Singh, B., and Angove, M. (2005). Competitive adsorption behavior of heavy metals on kaolinite. *Journal of colloid and interface science*. 290(1), 28–38.
- Subramaniam, V., Ngan, M. A., May, C. Y., Meriam, N., and Sulaiman, N.M. (2008). Environmental Performance of the Milling Process of Malaysian Palm Oil Using the Life Cycle Assessment Approach. *American Journal of Environmental Science*. 4(4), 310–315.
- Sunil, B. M., Shrihari, S., and Nayak, S. (2009). Shear strength characteristics and chemical characteristics of leachate-contaminated lateritic soil. *Engineering Geology*, 106(1-2), 20–25.
- Szymona, K., Borysiuk, P., H'ng, P. S., Chin, K. L., and Mamiński, M. (2014). Valorization of waste oil palm (Elaeis guineensis Jacq.) biomass through furfurylation. *Materials and Design*. 53, 425–429.
- Taha, M. R., and Kabir, M. H. (2003). Sedimentary residual soils as a hydraulic barrier in waste containment systems. Second International Conference on Advances in Soft Soil Engineering Technology. Putrajaya, Malayisia, 895-904.
- Tangchirapat, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. *Construction and Building Materials*. 23(7), 2641–2646.
- Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., and Siripanichgorn, A. (2007). Use of waste ash from palm oil industry in concrete. *Waste Mangement*. 27, 81–88.
- Temuujin, J., Williams, R. P., and Van Riessen, A. (2009). Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. *Journal of Materials Processing Technology*. 209(12-13). 5276–5280.
- Travar, I., Lidelöw, S., Andreas, L., Tham, G., and Lagerkvist, A. (2009). Assessing the environmental impact of ashes used in a landfill cover construction. *Waste management*. 29(4), 1336–1346.
- Tsiridis, V., Petala, M., Samaras, P., Kungolos, and Sakellaropoulos, G. P. (2012). Environmental hazard assessment of coal fly ashes using leaching and ecotoxicity tests. *Ecotoxicology and environmental safety*. 84, 212–20.
- Turan, N. G., and Ergun, O. N. (2009). Removal of Cu(II) from leachate using natural zeolite as a landfill liner material. *Journal of Hazardous Materials*. 167. 696-700.
- Udoeyo, F. F., Brroks, R., Inyang, H., and Bae, S. (2010). Imo Lateritic Soil as a Sorbent for Heavy Metals. *International Journal of Research and Reviews in Applied Sciences*. 4(1), 1-6.
- Umamaheswaran, K., and Batra, V. S. (2008). Physico-chemical characterisation of Indian biomass ashes. *Fuel.* 87(6), 628–638.

- Umar, M., Aziz, H. A., and Yusoff, M. S. (2010). Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. *Waste management* (*New York, N.Y.*), 30(11), 2113–21.
- Umar, M. S., Jennings, P., and Urmee, T. (2013). Strengthening the palm oil biomass Renewable Energy industry in Malaysia. *Renewable Energy*. 60, 107–115.
- USEPA (2007). *EPA Guidline for Environmental Management of landfill facilities*. Municipal solid wates and commercial and industrial general wates.
- United State EPA. (2008). *Fate, Transport and Transformation Test Guidelines*. OPPTS 835.1230, Adsorption/Desorption (Batch Equilibrium).
- United State EPA Science and Ecosystem Support Division Athens Georgia (2011). 107-R2. *Soil Sampling*.
- United State EPA Science and Ecosystem Support Division Athens Georgia (2011). 300-R2. *Field X-Ray Fluorescence Measurement*.
- Van der Sloot, H. a, and Kosson, D. S. (2012). Use of characterisation leaching tests and associated modelling tools in assessing the hazardous nature of wastes. *Journal of hazardous materials*. 207-208, 36–43.
- Vítková, M., Hyks, J., Ettler, V., and Astrup, T. (2013). Stability and leaching of cobalt smelter fly ash. *Applied Geochemistry*. 29, 117–125.
- Vizcayno, C., De Gutiérrez, R. M., Castello, R., Rodriguez, E., and Guerrero, C. E. (2010). Pozzolan obtained by mechanochemical and thermal treatments of kaolin. *Applied Clay Science*. 49(4), 405–413.
- Wagner, J., and Schnatmeyer, C. (2002). Test f ield study of different cover sealing systems for industrial dumps and polluted sites. *Applied Clay Science*. 21(1-2), 99–116.
- Wahba, M. M., and Zaghloul, A. M. (2007). Adsorption Characteristics of Some Heavy Metals by Some Soil Minerals. *Journal of Applied Sciences Research*. 3(6), 421–426.
- Werther, J., Saenger, M., Hartge, E.-U., Ogada, T., and Siagi, Z. (2000). Combustion of agricultural residues. *Progress in Energy and Combustion Science*. 26(1), 1–27.
- Whitlow, R. (1995). *Basic Soil mechanics*. (3rd ed.). Edinburgh Gate Harlow Essex, England: Longman Group Ltd.
- Xing, W., Lu, W., Zhao, Y., Zhang, X., Deng, W., and Christensen, T. H. (2013). Environmental impact assessment of leachate recirculation in landfill of municipal solid waste by comparing with evaporation and discharge (EASEWASTE). Waste management. 33(2), 382–389.
- Yabroudi, S. C., Morita, D. M., and Alem, P. (2013). Landfill Leachate Treatment Over Nitritation/Denitritation in an Activated Sludge Sequencing Batch Reactor. APCBEE Procedia. 5(L), 163–168.
- Yadava, K. P., Tyagi, B. S., and Singhb, V. N. (1991). Effect of Temperature on the Removal of Lead (11) by Adsorption on China Clay and Wollastonite, 47–60.
- Yahaya, L. E., Adebowale, K. O., and Menon, R. R. (2009). Mechanical properties of organomodified kaolin/natural rubber vulcanizates. *Applied Clay Science*. 46(3), 283– 288.
- Yang, N., Zhang, H., Shao, L.-M., Lü, F., and He, P.-J. (2013). Greenhouse gas emissions during MSW landfilling in China: Influence of waste characteristics and LFG treatment measures. *Journal of environmental management*. 129, 510–21.
- Yao, Y., Li, Y., Liu, X., Jiang, S., Feng, C., and Rafanan, E. (2013). Characterization on a cementitious material composed of red mud and coal industry byproducts. *Construction and Building Materials*. 47, 496–501.
- Yeung, A. T. (2011). Milestone developments, myths, and future directions of electrokinetic remediation. *Separation and Purification Technology*. 79(2), 124–132.

- Yin, C. Y., Aishah, S., Abdul, S., Lim, Y. P., Syed-ariffin, S. N., and Zamzuri, Z. (2008). An investigation into physicochemical characteristics of ash produced from combustion of oil palm biomass waste in a boiler. *Fuel Processing Technology*. 9, 6– 9.
- Yochim, A., Zytner, R. G., McBean, E. and Endres, A. L. (2013). Estimating water content in an active landfill with the aid of GPR. *Waste management*. 33(10), 2015–2028.
- Yoshizaki, T., Shirai, Y., Hassan, M. A., Baharuddin, A. S., Raja Abdullah, N. M., Sulaiman, A., and Busu, Z. (2013). Improved economic viability of integrated biogas energy and compost production for sustainable palm oil mill management. *Journal of Cleaner Production*. 44, 1–7.
- Yusuf, M. O., Megat Johari, M. A., Ahmad, Z. A., and Maslehuddin, M. (2014). Evolution of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based concrete. *Materials and Design*. 55, 387–393.
- Zainudin, N. F., Lee, K. T., Kamaruddin, A. H., Bhatia, S., and Mohamed, A. R. (2005). Study of adsorbent prepared from oil palm ash (OPA) for flue gas desulfurization. *Separation and Purification Technology*. 45, 50–60.
- Zaman, A. U. (2014). Identification of key assessment indicators of the zero waste management systems. *Ecological Indicators*. 36, 682–693.
- Zegeye, A., Yahaya, S., Fialips, C. I., White, M. L., Gray, N. D., and Manning, D. a. C. (2013). Refinement of industrial kaolin by microbial removal of iron-bearing impurities. *Applied Clay Science*. 86, 47–53.
- Zhang, D., He, P., and Shao, L. (2009). Journal of Hazardous Materials. 168, 1497–1503.
- Zhang, H. J., Jeng, D.-S., Barry, D. a., Seymour, B. R., and Li, L. (2013). Solute transport in nearly saturated porous media under landfill clay liners: A finite deformation approach. *Journal of Hydrology*. 479, 189–199.
- Zhan, T. L. T., Guan, C., Xie, H. J., and Chen, Y. M. (2013). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation. *The Science of the total environment*. 470-471C, 290– 298.
- Zhang, D-Q., He, P-J., and Shao, L-M. (2009). Potential gases emissions from the cumbustion of municipal solid waste by bio-drying. *Journal of Hazardous Materials*. 168, 1497–1503.
- Zhang, H. J., Jeng, D.-S., Seymour, B. R., Barry, D. A., and Li, L. (2012). Solute transport in partially-saturated deformable porous media: Application to a landfill clay liner. *Advances in Water Resources*, 40, 1–10.
- Zhang, Q.-Q., Tian, B.-H., Zhang, X., Ghulam, A., Fang, C.-R., and He, R. (2013). Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. *Waste management*. 33(11), 2277–2286.
- Zhang, W., Zhang, X., Liang, M., and Lu, C. (2008). Mechanochemical preparation of surface-acetylated cellulose powder to enhance mechanical properties of cellulosefiller-reinforced NR vulcanizates. *Composites Science and Technology*. 68. 2479– 2484.
- Zhang, Z., Lu, X., and Su, P. (2010). Dispersion of kaolin powders in silica sols. Applied Clay Science. 49(1-2), 51–54.
- Zhen-shan, L., Lei, Y., Xiao-yan, Q., and Yu-mei, S. (2009). Municipal solid waste management in Beijing City. *Waste Management*. 29(9), 2596–2599.
- Ziyang, L., Youcai, Z., Tao, Y., Yu, S., Huili, C., Nanwen, Z., and Renhua, H. (2009). Natural attenuation and characterization of contaminants composition in landfill

leachate under different disposing ages. The Science of the total environment. 407(10), 3385–3391.