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ABSTRACT 

 

 

 

Reduction of carbon dioxide (CO2) emissions into the atmosphere is a key 

challenge in order to mitigate the anthropogenic greenhouse effect. A CO2 emission 

causes lots of problems to human health and increases the global warming, CO2-uptake 

decreases these environmental issues. Mineral carbonation process is an alternative 

method during which industrial wastes rich in calcium (Ca) or magnesium (Mg) react 

with CO2 to form a stable carbonated mineral. In this research the feasibility of CO2 

mineral carbonation by the use of red gypsum, as a Ca-rich source, was technically 

evaluated using autoclave mini reactor. For this purpose, the effect of a wide-range of 

key procedure variables such as reaction temperature, reaction time, particle size, 

stirring rate, CO2 pressure, and liquid to solid ratio, on the rate of mineral carbonation 

were studied. The results show that the maximum conversion of Ca (98.8%) is 

obtained at the condition that has optimum amount of these variables. Moreover, the 

results confirmed that red gypsum has high potential to form calcium carbonate 

(CaCO3) during the process of CO2 mineral carbonation. It was concluded that mineral 

carbonation process using red gypsum could be considered as an attractive and low-

cost method in industry to mitigate considerable amount of CO2 from the atmosphere, 

which is the main issue in the current and coming years. 
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ABSTRAK 

 

 

 

Pengurangan pelepasan karbon dioksida (CO2) ke atmosfera merupakan 

cabaran utama bagi mengurangkan kesan rumah hijau antropogenik. Pelepasan CO2 

menyebabkan banyak masalah kepada kesihatan manusia dan meningkatkan 

pemanasan global, pengambilan CO2 akan mengurangkan isu-isu alam sekitar. Proses 

pengkarbonan mineral adalah kaedah alternatif di mana bahan buangan industri yang 

kaya dengan kalsium (Ca) dan magnesium (Mg) bertindak balas dengan CO2 untuk 

membentuk mineral karbonat yang stabil. Dalam kajian ini kemungkinan, 

pengkarbonan mineral CO2 dengan menggunakan gipsum merah, sebagai sumber yang 

kaya Ca, telah dinilai secara teknikal dengan menggunakan reaktor mini autoklaf. 

Untuk tujuan ini, kesan pelbagai pembolehubah utama seperti suhu, masa tindakbalas, 

saiz zarah, kadar pengadukan, tekanan CO2, dan nisbah cecair pepejal kepada, 

terhadap atas kadar pengkarbonan mineral telah dikaji. Hasil kajian menunjukkan 

bahawa penukaran maksimum Ca (98.8%) diperoleh pada keadaan pembolehubah 

optimum. Selain itu, keputusan mengesahkan bahawa gipsum merah mempunyai 

potensi yang tinggi untuk membentuk kalsium karbonat (CaCO3) semasa proses 

pengkarbonan mineral CO2. Sebagai kesimpulan didapati proses pengkarbonan 

mineral menggunakan gipsum merah boleh dianggap sebagai kaedah yang menarik 

dan kos rendah, sehingga boleh diguna kan oleh industri untuk mengurangkan 

sejumlah besar CO2 dari atmosfera, yang merupakan isu utama pada masa ini dan masa 

akan datang. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

Carbon dioxide (CO2), alongside other gases, is released into the atmosphere 

during fuel combustion, particularly due to the extensive use of fossil fuels for energy 

production from coal, oil, and natural gas since the industrial revolution (Kwon et al., 

2011). The industries, which are major contributors of CO2, are power plants and steel 

making industries that burn coal or other fossil fuels as their traditional sources of fuel. 

Since fossil fuels are in abundance all over the world, it is unlikely that industries can 

replace them with other sources of fuel in the near future. Fossil fuels, as the essential 

energy sources, are utilized for more than 85% of the world energy consumption (IEA, 

2008). Despite the advantages of fossil fuels, including high energy supply, ease of 

use and storage, and low cost; the net increase of CO2 into the atmosphere causes a 

real challenge related global warming (IPCC, 2005). 

 

Since the industrial revolution, the levels of greenhouse gases (GHGs) and CO2 

in the atmosphere have greatly increased (Bachu, 2000; Mackenzie et al., 2001; Bachu 

et al., 2007; SRA, 2007). The rise of the global surface temperature is attributed to the 

increased GHGs and it is estimated that the average annual temperature will rise by 

2.0 °C (Bodman et al., 2013). Environmentalists first used the term “greenhouse ef-

fect” in early 1800s to describe the impact of trace gases in the atmosphere. Concern 

on climate change by environmentalists began in the mid-1950s after noticing the slow 

but steady impact of climate change (IPCC, 2005).  
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Industrialization and development of countries in the 21st century are estimated 

to increase the demands of energy by 57% from 2004 to 2030 (IEA, 2008). Figure 1.1 

shows the projected energy consumption in different sources from 2004 to 2030. 

 

 

Figure 1.1 Projected energy consumption from 2004 to 2030 (USEIA, 2011) 

 

The concentration of CO2 in the Earth’s atmosphere has been enhanced sharply 

from 280 ppm in the 1750s to about 389 ppm in 2010 due to the increase in fossil fuel 

consumption and other human activities (Thoning et al., 2013). Moreover, atmospheric 

CO2 has risen recently to about 395 ppm in 2012 (Thoning et al., 2013). Consequently, 

the increase of CO2 concentration to average of 943 ppm by the end of the 21st is 

expected (Sanderson et al., 2011; Bodman et al., 2013).  

 

The term global warming is used to refer to the phenomenon in which the 

earth’s surface temperature increased by about 0.7 °C in the 20th century. This increase 

can be attributed to the reliance of humans on fossil fuels for more than 85% of their 

energy needs. This ratio is expected to continue for the next 30 years. The amount of 

released CO2 has changed in recent years. Thus, the related global temperature is 

estimated to exceed 2 °C by 2100 (Bodman et al., 2013) as a direct result of 

anthropogenic activities and then CO2 emission to the atmosphere. As a result, the 
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anthropogenic activities should be minimized to reduce CO2 emission and climate 

change.  

 

IPCC (2007) referenced models that predict the earth’s surface temperatures 

will increase by 1.5–5.8 °C between the year 1990 and 2100. This will result to the 

rising of sea levels and most importantly, changes in the patterns and amounts of 

precipitation. The impacts of these changes are vast and devastative ranging from 

droughts, floods, hurricanes, and heat waves to tornadoes. The impact on human life, 

economic, and financial situations of everyone will be devastating. For this reason, the 

need to fight climate change is dire and thus should be prioritized. 

 

Some primary alternatives are adopted for moderation of CO2 emission. These 

alternatives include use of fuels that are less carbon intensive, improvement of energy 

efficiency, and sequestration of carbon through various ways of storage and capture 

(Bachu, 2000; Preston and Jones, 2006; Bachu et al., 2007). 

 

The objective of CO2 capture and sequestration (CCS) is to aid global decrease 

of CO2 emissions through “capturing” the CO2 produced. Consequently, there has been 

a rise in the global acknowledgement of the importance of emissions and as a result, 

the Kyoto Protocol was formulated. This is an agreement signed by the key 

industrialized nations. It binds about 37 industrialized nations and the European 

community to cut their emissions by an average of five percent below their levels of 

emissions in 1990. Its first commitment period started in 2008 and ended in 2012. 

During the second commitment period, Parties committed to reduce greenhouse gas 

(GHG) emissions by at least 18 percent below 1990 levels in the eight-year period 

from 2013 to 2020; however, the composition of Parties in the second commitment 

period is different from the first.  

 

The reductions required in the emissions can only be attained by simultaneously 

taking different methods of mitigating emission of CO2 for example CCS, energy 

efficiency, fuel switching and renewable energy. Energy efficiency and fuel switching 

cover the decrease of CO2 produced at the source; however, there exists a limitation to 

the alterations, which can be adopted by the establishments, both private and public, 

without having a cost implication. Despite these changes, production of CO2 still 
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occurs. The amount that is produced should be captured and sequestered by decreasing 

emission at the source and even upon completion of production. There are three key 

steps involved in sequestration of CO2. These are: 

(1) CO2 capture 

(2) mining and transportation of CO2  

(3) CO2 sequestration 

 

The point of focus in capture studies has diverted in the recent past towards 

the use of better solvents like ionic liquid-based materials, aqueous ammonia, and 

solids, which can absorb CO2 
chemically. All methods used in capture need a control 

process of CO2 
release and regeneration of the solvents by heating, in an energy-

intensive process. 

 

The CCS process begins when CO2 
is captured and reproduced in a concen-

trated form to allow convenient storage and transportation. Various methods of CO2 

capture, which are considered, include post-combustion, pre-combustion, and oxy-

fuel combustion capture. At present, the technologies show a theoretical efficiency 

of 90%, that is, eliminates 90% of the emissions from the effluent stream; however, 

they have not been used on a full-scale power plant level. Two instances of prosper-

ous pilot plants include the Ferry-bridge carbon capture pilot that uses post com-

bustion capture, which is 90% efficient, and the Renfrew oxyfuel project whose ef-

ficiency lies between 75-85% (DECC, 2012). 

 

The post-combustion capture refers to the removal of CO2 from power station 

flue gas prior to its compression, transportation, and storage in suitable places, as part 

of the CCS. The use of amine-based solvent for post-combustion capture has attracted 

considerable interest and led to significant progress in CO2 capture (Bui et al., 2014). 

This is in fact the most advanced technology for CO2 capture to date and it is likely to 

be the first carbon capture technology to be deployed worldwide on a large scale. The 

post-combustion pilot plants already demonstrate the feasibility of CO2 removal with 

amine solvent from flue gas albeit at modest scale (Folger, 2009; Bui et al., 2014).  
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At pre-combustion capture, there is the separation of CO2 prior to combus-

tion, which takes place into streams of hydrogen, and CO2, by reacting the fuel with 

air or steam to produce hydrogen. The most common technique used for the separa-

tion is steam reforming. The oxy-fuel combustion process is same as the pre-com-

bustion CO2 capture in principle. The process of oxy-fuel combustion involves the 

burning of a fossil fuel energy source in the presence of pure oxygen. Burning fuel 

in the presence of oxygen removes contaminants, including nitrogen, from the ex-

haust stream resulting in water and CO2 being easier to capture. This technique still 

is being investigated since the temperatures necessary for the process of pure oxygen 

combustion to take place are very high (about 3500 °C). In theory, the flue gas upon 

stripping of the extra pollutants like SO2 and NO2 may be recycled back to the reaction 

unit to lower the reaction temperature. 

 

Water, which contains high concentrations of dissolved CO2, is very acidic 

(pH = ~3). Minimal quantities of this if present in the atmosphere may corrode steel 

(Cole et al., 2011). To avoid loss and damage of mechanical integrity of pipes, water 

is eliminated from the CO2 stream. The separation occurs in vapor-liquid separator 

drums, initially through gravity separation then through pressurizing the CO2 stream 

to 20-40 bars (Cole et al., 2011).  

 

Because fossil fuels are abundant all over the world, it is unlikely that indus-

tries can replace them with other sources of fuel in the near future and it is necessary 

to find ways to reduce concentration of CO2 in the atmosphere. Therefore, numerous 

researchers have focused on mitigation of GHGs released into the atmosphere (Hol-

loway, 2001; Herzog, 2002; Kaszuba et al., 2003; Carapellucci and Milazzo, 2003; 

Yamasaki, 2003; Palandri and Kharaka, 2004; Bachu et al., 2005; Maroto-Valer et al., 

2005; Metz et al., 2005; Xu et al., 2005; Flaathen et al., 2009; Gislason et al., 2010; 

King et al., 2010; Qafoku et al., 2012). As a result, some available and feasible meth-

ods such as geological storage, aquifer storage, deep sea or ocean storage, and mineral 

carbonation have been proposed to mitigate the amount of GHGs, especially CO2 in 

the atmosphere.  

 

 

http://www.ico2n.com/what-is-carbon-capture/capture-basics/oxyfuel-combustion
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Storing CO2 in geological formations, such as in depleted oil and gas reservoirs, 

is one of proposed solutions. These reservoirs contain hydrocarbon at high pressure 

over the geological period, which prove that they have the potential to be used for 

storage of CO2. However, this technique has its own challenges. The most important 

issues are the possibility of release of CO2, the determination of mineral reaction ki-

netics, and the understanding characterization of storage formations (Jun et al., 2013). 

Furthermore, the lack of permanency, the risk of leakage, and the post–monitoring of 

the site are other problems and challenges associated with this method (Metz et al., 

2005). 

 

Alternatively, Litynski et al. (2009) have mentioned three ways for reduction 

of the GHGs, especially CO2, emissions as follow: 

(1) Achieving the same economic production using less energy, 

(2) Utilizing carbonless energy sources, 

(3) CO2 sequestration 

 

As a result, there are three main issues in relation to the CCS methods, includ-

ing high-energy consumption, high expense, and low separation efficiency. Therefore, 

it is necessary to develop technologies to trap CO2 in the reservoir permanently, as well 

as monitoring the long-term fate of CO2 in the reservoir. One option for reducing and 

even eliminating the risks associated with the geological storage of CO2 is sequestrat-

ing it into more stable forms. Ex-situ or in-situ mineral carbonation is the ideal tech-

nology for reducing the emission of CO2. The minerals, rocks, and industrial wastes 

rich in calcium (Ca) and magnesium (Mg) are usually considered as feedstock candi-

dates due to their availability, low cost, and environmentally benign (Lackner et al., 

1995; Herzog, 2002; Maroto-Valer et al., 2005; Metz et al., 2005; King et al., 2010). 

In this method, first CO2 reacts with water to produce carbonic acid (hydration reac-

tion). Then, carbonic acid dissociates to bicarbonate and carbonate ions. At the end, 

carbonate ion reacts with the cation and produces a carbonate mineral. Therefore, min-

eral CO2 carbonation is considered as one of the most interesting and attractive meth-

ods due to simplicity of operation with low cost of adsorption.  

 



7 
 

Thermodynamically, CO2 can be bounded as a carbonate (Lackner et al., 1995) 

with many metals. In many instances, these carbonates dissolve in water; however, 

calcium (as well as magnesium) carbonate is stable as a solid. The chemical reactions 

in the mineral carbonation process are exothermic in nature (Lackner et al., 1995), 

leading to the formation of thermodynamically stable carbonate (Equation 1.1). Ac-

cording to Lackner et al. (1997), these reactions are very slow at ambient conditions. 

Two pretreatment processes have been used to accelerate the carbonation rate: acid 

and heat treatments (Herzog, 2002; Maroto-Valer et al., 2005; Kwon et al., 2011). 

These processes take long time and extensive energy, which has made this approach 

less interesting. However, the reaction rate accelerates with increasing surface area and 

temperature (Lackner et al., 1995; McGrail et al., 2006; Oelkers et al., 2008; Matter 

et al., 2009; Schaef et al., 2009; Gislason et al., 2010) and the process becomes attrac-

tive (Olsson et al., 2012): 

CaO + CO2 → CaCO3 + 179 kJ/mol     (1.1) 

 

As mentioned before, many natural minerals (e.g., olivine, gypsum, and wol-

lastonite) and industrial wastes (e.g., lignite fly ash, mining waste, and steel slag), con-

taining large amounts of Ca2+ and Mg2+ have been evaluated as feedstock candidates 

in mineral carbonation process (Lackner, 1995; O’Conner et al., 2002; Huijgen et al., 

2006; Teir et al., 2007a; Kwon et al., 2011; Cárdenas-Escudero et al., 2011; Lee et al., 

2012).  

 

According to Lee et al. (2012), industrial waste gypsum is classified into three 

main categories: flue gas desulfurization (FGD) gypsum, phosphogypsum, and red 

gypsum. These industrial by-products contain approximately 32.5% CaO (Lee et al., 

2012) that make them a potential feedstock for mineral carbonation purposes. The pro-

duced FGD gypsum could be directly used in the mineral carbonation without any 

grinding process since it is in a fine powder form (Chou et al., 2005). According to 

Lee et al. (2012), the SOx elimination process from power plant flow gas is the main 

source FGD gypsum. However, phosphogypsum is sourced from phosphate rocks to 

produce phosphate fertilizer by acid treatment. According to Claisse et al. (2008), red 

gypsum containing around 75% gypsum and 25% iron, is an omnipresent feedstock in 



8 
 

industrialized societies. Red gypsum is a by-product of titanium dioxide (TiO2) pro-

duction using sulphate process (Claisse et al., 2008). The addition of limestone to FGD 

gypsum and acid neutralization are considered as the main sources for red gypsum 

production (Claisse et al., 2008).  

 

As mentioned earlier, red gypsum contains approximately 32.5% CaO, which 

could be considered as a feedstock candidate in mineral CO2 sequestration. Therefore, 

red gypsum has been selected as a new feedstock candidate for further studies to en-

hance the conversion of Ca into carbonate form and produce stable calcium carbonate 

(CaCO3) in mineral carbonation process.  

 

 

 

1.2 Statement of Problem  

 

Reduction of CO2 emissions into the atmosphere is a key challenge in order to 

mitigate the anthropogenic greenhouse effect. Increasing CO2 and other GHGs in the 

atmosphere have caused to rise the mean global surface temperature. The average 

global warming has increased about 1 °C since industrial revolution. Moreover, growth 

of energy demand increases the fossil fuel consumption about 1.7% per year until 2030 

(IEA, 2008). Subsequently, increasing the GHGs emission will be more than 70% until 

2030. It is estimated that CO2 emission contributed more than 40% of GHGs emission. 

Therefore, mitigation and reducing of CO2 concentration in the atmosphere caused by 

anthropogenic activities are essential problems in the world, which is the most im-

portant preferment of this study. 

 

Alternatively, CO2 can be removed directly from the power plant flue gas by 

reaction with alkaline minerals or wastes by mineral carbonation (Huijgen et al., 2006; 

Costa et al., 2007; Oelkers et al., 2008; Rubin, 2008; Lammers et al., 2011). The nat-

ural minerals such as olivine, gypsum, and wollastonite, which are rich in Ca2+ or 

Mg2+, are usually considered as feedstock candidates for mineral carbonation. 

 

However, despite the rapid carbonation of waste and its open structure, mostly 

the previous carbonation studies have focused on the natural minerals containing Mg 
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[e.g., Zevehoven et al. (2008), Boerrigter (2009), Dufaud et al. (2009), Krevor and 

Lackner (2009), Li et al. (2009), Bonfils et al. (2010), Zhao et al. (2010), Kwak et al. 

(2010), Wang and Maroto-Valer (2011)]. 

 

Indeed, some industrial wastes such as lignite, fly ash, mining waste, and steel 

slag containing large amounts of Ca2+/Mg2+ have been evaluated as potential raw ma-

terials for CO2 sequestration processing. However, specifically, red gypsum is a new 

feedstock with a rate of dissolution and carbonation in the mineral carbonation process 

that no study until now has investigated its mineral carbonation process. Moreover, 

information about the control and determination of rates of both the dissolution and 

carbonation stages, which are not mentioned in previous studies, is essential to opti-

mize the mineral carbonation process in this study. Therefore, in this study red gypsum 

has been selected as a new feedstock candidate for further studies in mineral carbona-

tion process. 

 

 

 

1.3 Research Objectives 

 

  The main objectives of the current study are: 

(1) To develop a technically applicable and feasible process for CO2 mineral car-

bonation by the use of red gypsum based on its mineral composition verified 

by X-ray fluorescence (XRF), X-ray diffraction (XRD), and field emission 

scanning electron microscopy (FESEM) instruments. 

  

(2) To determine the rate of dissolution and carbonation of red gypsum in order 

to optimize the process of mineral CO2 sequestration based on possible effec-

tive variables, including reaction temperature and time, particle size, stirring 

rate, and liquid to solid ratio. 

 

(3) To determine the cost and energy required in dissolution and carbonation pro-

cess of red gypsum and assess its environmental issues associated with mineral 

CO2 sequestration. 
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1.4 Scope of the Study 

 

In this study, red gypsum is selected to reduce CO2 concentration in the atmos-

phere by applying mineral carbonation process. This process is conducted   using a 

mini reactor that is designed at the maximum working temperature of  315 °C (600 °F) 

and pressure of 2900 psi (~200 bar). To this aim, different kinds of experiments are 

performed at various conditions. 

 

A series of possible effective variables in mineral carbonation studies such as 

reaction temperature and time, particle size, stirring rate, and liquid to solid ratio are 

considered at specific ranges. The reaction temperature range is from 25 °C to 150 °C. 

The reaction time is limited up to 3 hours to investigate the optimum reaction time in 

carbonation experiments. Moreover, the particles size of red gypsum samples is cate-

gorized in four ranges, including <75 µm, 75-125 µm, 125-200 µm, and >200 µm. 

Furthermore, the stirring rate from 100 rpm to 600 rpm is considered to improve the 

dissolution and carbonation rates in mineral CO2 sequestration. Finally, different 

amounts of liquid to solid ratio up to 300 ml/g are applied as the target ratio for car-

bonation studies. Characterization of fresh red gypsum samples and then products is 

done using XRF, XRD, and FESEM instruments.  

 

 

 

1.5 Significance of the Study 

 

Global warming, a phenomenon resulted from enormous fossil fuel consump-

tion and CO2 emission into the atmosphere, is one of the main concerns in the 21st 

century. Increasing GHGs concentration, and especially CO2, is the main cause of in-

creasing Earth’s temperature. The findings of this study, which tries to sequester CO2 

via mineral carbonation, are helpful to prevent further damage caused by GHGs, and 

stabilize concentration of CO2 by reducing CO2 emission into the atmosphere. In other 

words, CO2 uptake mitigates environmental effects that are problematic for human 

health and increase the global warming. 
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Mineral carbonation is considered as a significantly new and interesting 

method that involves the process by which CO2 is eliminated from the atmosphere and 

is sequestrated as formed stable minerals. CO2 mineral carbonation in comparison with 

other methods of CCS that are geologic storage and ocean storage, is considered as 

one of the most attractive methods due to simplicity of operation with low cost of 

adsorption. Moreover, there are fewer limitations in its performance and no monitoring 

is needed. 

 

Using industrial wastes rich in Ca (or Mg) are favored in mineral carbonation 

process. Therefore, red gypsum, as a Ca-rich source and a new feedstock, which has 

not been addressed for mineral carbonation process yet, is selected from this category 

for advanced research. This study has focused on the mineral carbonation of red gyp-

sum, which is an industrial waste that has high Ca content. Industrial wastes are likely 

to have more advantages over the natural minerals and rocks because of which red 

gypsum is selected. For instance, they are available at industrial places, they are 

cheaper and geochemically unstable (e.g., ash and slag), hence, industrial wastes 

would be more reactive (Torróntegui, 2010; Olajire, 2013). Therefore, carbonation of 

industrial like red gypsum is expected to be a rapid process compared to minerals con-

taining Mg that are mostly used. Moreover, the structure of industrial wastes is rela-

tively open and the surface area for reaction is likely larger than natural minerals.  

 

In the process of mineral carbonation, no mining is needed, and therefore, the 

amount of energy consumption from mining is negligible. Moreover, chemical stabil-

ity of red gypsum reduces the effects of waste products on the environment signifi-

cantly. Furthermore, in addition to CO2 uptake, the reuse of produced wastes in mineral 

carbonation process of red gypsum is able to diminish the environmental impact.  

 

The low cost and small amount of energy required in the use of red gypsum 

and less environmental issues could be advantages to the CO2 sequestration process. 
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In short, it could be concluded that the findings of this study could be useful in 

resolving problem of GHGs and global warming with the lowest cost and less envi-

ronmental issues. Therefore, this method could be considered as a significant method 

for reducing the CO2 in the atmosphere. 

 

 

 

1.6 Overview of the Thesis 

 

According to main research objectives, this thesis involves some main tasks as 

follow. At the first task, the process of mineral carbonation is identified for detailed 

analysis in Chapter 2. Subsequently, a review of the existing literature in mineral car-

bonation process is discussed in relation to CO2 sequestration. At the second tasks, the 

necessary materials for mineral carbonation, approaches of the analysis, and steps of 

the mineral carbonation are explained in Chapter 3. At the third task, dissolution and 

carbonation experiments of red gypsum are investigated at different conditions, which 

addressed in Chapter 4. At the fourth task, the cost of mineral CO2 sequestration and 

required energy consumption are evaluated in relation to conducted experiments and 

the environmental issues associated with mineral CO2 sequestration are assessed. At 

the last task, the main conclusions of this study in addition to its implementations are 

addressed in Chapter 5. 
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(3) To reduce the reaction time by using direct mineral carbonation route instead of 

aqueous indirect mineral carbonation route. 

 

(4) To investigate the reuse of stable carbonated mineral, i.e., calcite, as 

supplementary cementation material to make cement or other construction 

materials. 

 

(5) To determine the life cycle assessment of red gypsum in mineral carbonation 

process. 
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