MINERAL CARBONATION OF RED GYPSUM FOR CARBON DIOXIDE SEQUESTRATION

OMEID RAHMANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Petroleum Engineering)

Faculty of Petroleum and Renewable Energy Engineering Universiti Teknologi Malaysia

SEPTEMBER 2014

This thesis is dedicated to my beloved Mother, Father, Sisters, and my Wife.

Thank you very much for your kind help and encouragement.

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude and appreciation to my research supervisor Prof. Dr. Radzuan Junin for his constructive advice, guidance, commitment, and loyal encouragement throughout this research. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Dr. Ariffin Samsuri (Chairman), Prof. Dr. Kheireddine Aroua (External Examiner), and Assoc. Prof. Khairul Sozana Kamarudin (Internal Examiner), for their encouragement, helpful, and insightful comments. I am really thankful of the Faculty of Petroleum & Renewable Energy Engineering (FPREE), School of Postgraduate Studies (SPS) for complete assistance during all stages of the research.

I would like to extend my appreciation especially to Abu Samah Nasir who helped me during experiments and analyses in all the time of research. My sincere thanks also goes to Dr. Mark Tyrer for making this possible to simulate the analyses and do geochemical modeling.

My appreciation is given to IAU – Mahabad Branch and also my family for financial support during this study. I would like to thank all my friends who participate and encourage me during this study.

ABSTRACT

Reduction of carbon dioxide (CO₂) emissions into the atmosphere is a key challenge in order to mitigate the anthropogenic greenhouse effect. A CO₂ emission causes lots of problems to human health and increases the global warming, CO₂-uptake decreases these environmental issues. Mineral carbonation process is an alternative method during which industrial wastes rich in calcium (Ca) or magnesium (Mg) react with CO_2 to form a stable carbonated mineral. In this research the feasibility of CO_2 mineral carbonation by the use of red gypsum, as a Ca-rich source, was technically evaluated using autoclave mini reactor. For this purpose, the effect of a wide-range of key procedure variables such as reaction temperature, reaction time, particle size, stirring rate, CO₂ pressure, and liquid to solid ratio, on the rate of mineral carbonation were studied. The results show that the maximum conversion of Ca (98.8%) is obtained at the condition that has optimum amount of these variables. Moreover, the results confirmed that red gypsum has high potential to form calcium carbonate (CaCO₃) during the process of CO₂ mineral carbonation. It was concluded that mineral carbonation process using red gypsum could be considered as an attractive and lowcost method in industry to mitigate considerable amount of CO₂ from the atmosphere, which is the main issue in the current and coming years.

ABSTRAK

Pengurangan pelepasan karbon dioksida (CO₂) ke atmosfera merupakan cabaran utama bagi mengurangkan kesan rumah hijau antropogenik. Pelepasan CO₂ menyebabkan banyak masalah kepada kesihatan manusia dan meningkatkan pemanasan global, pengambilan CO₂ akan mengurangkan isu-isu alam sekitar. Proses pengkarbonan mineral adalah kaedah alternatif di mana bahan buangan industri yang kaya dengan kalsium (Ca) dan magnesium (Mg) bertindak balas dengan CO₂ untuk membentuk mineral karbonat yang stabil. Dalam kajian ini kemungkinan, pengkarbonan mineral CO_2 dengan menggunakan gipsum merah, sebagai sumber yang kaya Ca, telah dinilai secara teknikal dengan menggunakan reaktor mini autoklaf. Untuk tujuan ini, kesan pelbagai pembolehubah utama seperti suhu, masa tindakbalas, saiz zarah, kadar pengadukan, tekanan CO₂, dan nisbah cecair pepejal kepada, terhadap atas kadar pengkarbonan mineral telah dikaji. Hasil kajian menunjukkan bahawa penukaran maksimum Ca (98.8%) diperoleh pada keadaan pembolehubah optimum. Selain itu, keputusan mengesahkan bahawa gipsum merah mempunyai potensi yang tinggi untuk membentuk kalsium karbonat (CaCO₃) semasa proses pengkarbonan mineral CO₂. Sebagai kesimpulan didapati proses pengkarbonan mineral menggunakan gipsum merah boleh dianggap sebagai kaedah yang menarik dan kos rendah, sehingga boleh diguna kan oleh industri untuk mengurangkan sejumlah besar CO₂ dari atmosfera, yang merupakan isu utama pada masa ini dan masa akan datang.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	COF TABLES	xii
	LIST	COF FIGURES	xiv
	LIST	COF APPENDICES	xviii
	LIST	TOF SYMBOLS	xix
1	INT	RODUCTION	1
	1.1	Background of Study	1
	1.2	Statement of Problem	8
	1.3	Research Objectives	9
	1.4	Scope of Study	10
	1.5	Significance of Study	10
	1.6	Overview of Thesis	12
2	LITH	ERATURE REVIEW	13
	2.1	Introduction	13
	2.2	Physical Properties of CO ₂	14

2.3	$CO_2 N$	Ineral Carbonation	15
	2.3.1	Suitable Solid Feedstock for Mineral	
		Carbonation	17
	2.3.2	Red Gypsum:	21
2.4	$CO_2 N$	Ineral Carbonation Routes	24
	2.4.1	Ex-situ CO ₂ Mineral Carbonation	25
		2.4.1.1 Direct Mineral Carbonation	26
		2.4.1.2 Indirect Mineral Carbonation	29
		2.4.1.3 Challenges of Ex-situ Mineral	
		Carbonation	33
	2.4.2.	In-situ CO ₂ Mineral Carbonation	35
		2.4.2.1 Challenges of In-situ Mineral	
		Carbonation	37
	2.4.3	Bio-mineralization	38
	2.4.4	Comparison of Different Mineral Carbonation	
		Methods	39
	2.4.5	Comparison of Carbonation Process in	
		Industrial Wastes and Minerals	41
2.5	Enviro	onmental Impacts of Mineral Carbonation	
	Proces	SS	41
	2.5.1	Clearing of Land	41
	2.5.2	Quality of Air	42
	2.5.3	Leaching of Metals	42
	2.5.4	Reclamation	43
2.6	Transj	portation	43
2.7	Cost A	Analysis	44
2.8	Gap A	analysis and Summary	45

RESE	ARCH	METHODOLOGY	47
3.1	Introd	uction	47
3.2	Materi	ials	47
	3.2.1	Red Gypsum	48
	3.2.2	Sulphuric Acid	48
	3.2.3	Ammonium Hydroxide	49
	3.2.4	CO ₂	49
3.3	Experi	imental Methods	49
	3.3.1	Physicochemical Properties Determination	49
	3.3.2	X-ray Diffraction	50
	3.3.3	X-ray Fluorescence	51
	3.3.4	Field Emission Scanning Electron	
		Microscopy	52
	3.3.5	Inductively Coupled Plasma Mass	
		Spectrometry (ICP-MS)	52
	3.3.6	Particle Size Distribution	53
3.4	Dissol	ution Study	53
	3.4.1	Experimental Variables	54
	3.4.2	Experimental Procedures	55
3.5	Carbo	nation Study	56
	3.5.1	Experimental Set-up	56
	3.5.2	Experimental Variables	58
	3.5.3	Experimental Procedures	60
	3.5.4.	Batch Dissolution in Carbonation	
		Experiment	60
3.6	Miner	al Carbonation Route	61
	3.6.1	Ca Conversion	63

3

	3.6.2	CO ₂ Uptake	63
3.7	Energ	y Consumption and Cost	65
3.8	Summ	nary	67
RESU	JLT AN	D DISCUSSION	68
4.1	Introd	uction	68
4.2	Chara	cterization of Red Gypsum	68
	4.2.1	XRD Analysis	73
	4.2.2	XRF and ICP-MS Analyses	73
		4.2.2.1 Major and Minor Components	74
		4.2.2.2 Trace Components	75
	4.2.3	Particle Size Analysis	76
4.3	Dissol	lution Process	77
	4.3.1	Calcium Phases in Dissolution Process	78
	4.3.2	Variables of the Dissolution Process	82
		4.3.2.1 Effect of Reaction Temperature	82
		4.3.2.2 Effect of Reaction Time	83
		4.3.2.3 Effect of Particle Size	84
		4.3.2.4 Effect of Stirring Rate	86
	4.3.3	Reaction Mechanisms in Dissolution Process	87
4.4	Carbo	nation Process	90
	4.4.1	Calcium Phases in Carbonation Process	90
	4.4.2	Variables of the Carbonation Process	91
		4.4.2.1 Effect of Reaction Temperature	91
		4.4.2.2 Effect of Reaction Time	93
		4.4.2.3 Effect of Stirring Rate	94
		4.4.2.4 Effect of Liquid to Solid Ratio	94

4

		4.4.3	Effect of NH ₄ OH Concentration		96
		4.4.4	Reaction Mechanisms in Carbonation Proce	ess	97
		4.4.5	Ca Conversion		103
		4.4.6	CO ₂ Uptake		104
	4.5	Cost E	Evaluation		106
		4.5.1	Consideration for Industrial Scale-up		107
		4.5.2	Assumptions and Analysis of Cost		108
	4.6	Enviro	onmental Issue		113
		4.6.1	Beneficial Applications of Carbonated		
			Products		114
	4.7	Summ	ary		115
5	CONC	CLUSI	DN		117
	5.1	Conclu	usion		117
		5.1.1	Applicable and Feasible Process for CO ₂		
			Mineral Carbonation		118
		5.1.2	Rate of dissolution and Carbonation of		
			Red Gypsum		118
		5.1.3	Cost and Energy Required in Dissolution		
			and Carbonation Process		120
		5.1.4	Environmental Issues Associated with CO ₂		
			Mineral Carbonation		121
	5.2	Implic	ation of the Study		122
	5.3	Recon	nmendation for Further Research		122
REFER	ENCES	5			124
Ammandi		1		151	164

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The natural minerals studied for mineral carbonation	
	[reproduced and reprinted from Torróntegui (2010) and	
	Olajire (2013)]	18
2.2	Composition of some potential natural minerals and	
	rocks for CO ₂ sequestration (after Wu et al., 2001)	20
2.3	The industrial wastes studied for mineral carbonation	
	[reproduced and reprinted from Torróntegui (2010) and	
	Olajire (2013)]	21
3.1	Concentration and quantity of material and chemical used	
	in dissolution experiment	54
3.2	Concentration and quantity of material and chemical used	
	in carbonation experiment	56
3.3	Production of CO_2 and the consumption of energy	
	during mining, grinding, and transportation processes	
	of red gypsum in different particle sizes	66
4.1	Chemical composition of fresh red gypsum sample,	
	conducted by XRF in major components and by ICP-MS	
	in minor components	74
4.2	Concentration amount of trace elements in red gypsum	
	determined by ICP-MS	75

4.3	Physicochemical properties of material and chemicals	
	used in dissolution process	77
4.4	Identified minerals in the fresh red gypsum sample	78
4.5	Identified minerals in the carbonated one	90
4.6	Applied conditions to evaluate the effect of L/S ratio on	
	carbonation experiments	95
4.7	The rate of CO ₂ uptake in the system based on the	
	effect of variables	106
4.8	Mass balance of the input and output routes in the	
	carbonation process of red gypsum	108
4.9	The amount of energy consumed for both input and	
	output routes in the mineral carbonation process of	
	red gypsum	109
4.10	The amount and cost of chemical needed in mineral	
	carbonation process for sequestration 1 tonne CO ₂	109
4.11	The amount of sold products obtained from sequestration	
	1 tonne CO ₂	111
4.12	The total cost of energy consumed for 1 tonne CO_2	
	Sequestration	112

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Projected energy consumption from 2004 to 2030	
	(USEIA, 2011)	2
2.1	Various phase of CO ₂ at different temperature and	
	pressure conditions [modified from Bachu (2000)]	14
2.2	The concept of mineral carbonation [reproduced from	
	(Olajire, 2013)]	16
2.3	Flowchart of formation of red gypsum	
	[reproduced from Gazquez et al. (2009)]	22
2.4	The process routes of mineral carbonation [reprinted and	
	modified from Huijgen and Comans (2003, 2005), Sipilä	
	et al. (2008), Torróntegui (2010), Olajire (2013)]	25
2.5	A schematic flowchart of aqueous mineral carbonation	
	process [after O'Connor et al.(2000)]	29
2.6	The overall project flow for the ex-situ process of indirect	
	mineral carbonation route	31
2.7	Free energy at main stages in the HCl extraction route	
	[modified from Huijgen and Comans (2005)]	32
2.8	Acetic acid process in CO ₂ mineral carbonation of	
	wollastonite sample [reprinted from Bobicki et al. (2012)]	33
3.1	The fresh sample of red gypsum	48
3.2	A schematic of Parker autoclave mini reactor	57

3.3	A digital set controller with Hall sensor feedback	58
3.4	A schematic diagram of experimental set-up for mineral	
	CO ₂ sequestration by carbonation of red gypsum samples	59
3.5	The flowchart of indirect aqueous mineral carbonation	62
4.1	FESEM photomicrograph of the fresh red gypsum	
	samples illustrated monocrystalline form	69
4.2	FESEM photomicrograph of the fresh red gypsum	
	samples illustrated polycrystalline form	70
4.3	FESEM photomicrograph of fresh red gypsum samples	
	illustrated irregular form	71
4.4	FESEM photomicrograph of fresh red gypsum samples	
	illustrated polyhedral form	72
4.5	XRD pattern of fresh red gypsum sample	73
4.6	Particle size distribution of red gypsum samples 1	
	(red curve) and 2 (blue curve)	77
4.7	FESEM photomicrographs with EDX analysis indicating	
	Ca-S-O phase (taken from remained solution after	
	Filtration of the first product)	79
4.8	FESEM photomicrographs with EDX analysis indicating	
	Ca-Fe-O phase (taken from remained solution after	
	filtration of the second product)	80
4.9	The amount of Ca-leaching in different pH value in	
	carbonation process	81
4.10	The effect of reaction temperature on the amount of Ca-	
	leaching in dissolution process	83
4.11	Effect of reaction time on the amount of Ca-leaching in	
	dissolution process for 2 h	84

4.12	Weight percent (wt.%) vs. particle size (m) range of	
	total red gypsum sample measured at three different	
	series	85
4.13	Effect of particle size on Ca leaching in dissolution	
	process of red gypsum samples	85
4.14	Effect of stirring rate (rpm) on dissolution process of	
	red gypsum sample	87
4.15	FESEM photomicrographs with EDX analysis of the first	
	product in mineral carbonation of red gypsum	88
4.16	FESEM photomicrographs with EDX analysis of the	
	second product in mineral carbonation of red gypsum	89
4.17	The effect of reaction temperature on conversion of Ca	
	to CaCO ₃ in mineral carbonation process	92
4.18	Effect of reaction time on the amount of Ca-conversion	
	during 3 h	93
4.19	Process variable of stirring rate (rpm) in mineral	
	carbonation of red gypsum using the autoclave mini	
	reactor	94
4.20	Effect of L/S ratio on carbonation experiments	96
4.21	Effect of NH ₄ OH concentration (mol/l) on Ca conversion	
	(%) in carbonation experiments	97
4.22	FESEM photomicrographs of (A) carbonated particle,	
	(B) surrounded by porous covering	99
4.23	FESEM photomicrographs of A and B indicating the	
	metastable crystal symmetry of CaCO ₃ before	
	precipitating of the stable product	100

4.24	FESEM photomicrograph indicating intermediate level	
	of converted crystal symmetry from metastable (A) to	
	stable stage of the third product (B)	101
4.25	FESEM photomicrograph (A) shows the crystal symmetry	
	of CaCO ₃ that is trigonal-rhombohedral. (B) FESEM-EDX	
	analysis upon a refined sample confirmed that the chemical	
	composition of the third product consists of CaCO ₃	102
4.26	The interaction of pH value and Ca conversion in	
	carbonated red gypsum samples with the optimum L/S	
	ratio of 10 ml/g during 24 h	103
4.27	Plot of different particle sizes of carbonated red gypsum	
	sample and volume of CO ₂ trapped during half an hour	105
4.28	The scheme of carbonation process and energy	
	consumption for sequestration of one tonne CO ₂	111
4.29	Chart diagram of total cost of 1 tonne CO ₂ sequestration	
	for mineral carbonation of red gypsum	113

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	XRD Pattern	151
В	Autoclave Mini Reactor	152
С	Estimation of Work Index for Red	
	Gypsum Sample	156
D	Calculation of the Amount of Output and Input	
	needed for Mineral Carbonation Process of Red Gypsum	158
Е	Calculation of the CO ₂ Uptake for Mineral	
	Carbonation Process of Red Gypsum	160

LIST OF SYMBOLS

d	-	Particle size (mm)
Т	-	Temperature
°C	-	Degree centigrade
t	-	Reaction time
n	-	Stirring rate
pCO_2	-	Partial pressure of carbon dioxide
Κ	-	Kelvin
ml	-	Milliliter
h	-	Hour
min	-	Minute
S	-	Second
g	-	Gram
kg	-	Kilogram
wt.%	-	Weight percent
pCO_2	-	Partial pressure of carbon dioxide
k	-	Rate constant
L/S	-	Liquid to solid ratio
rpm	-	Revolution per minute
Pa	-	Pascal
atm	-	Atmosphere
psi	-	Pound per square inch

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Carbon dioxide (CO₂), alongside other gases, is released into the atmosphere during fuel combustion, particularly due to the extensive use of fossil fuels for energy production from coal, oil, and natural gas since the industrial revolution (Kwon *et al.*, 2011). The industries, which are major contributors of CO₂, are power plants and steel making industries that burn coal or other fossil fuels as their traditional sources of fuel. Since fossil fuels are in abundance all over the world, it is unlikely that industries can replace them with other sources of fuel in the near future. Fossil fuels, as the essential energy sources, are utilized for more than 85% of the world energy consumption (IEA, 2008). Despite the advantages of fossil fuels, including high energy supply, ease of use and storage, and low cost; the net increase of CO₂ into the atmosphere causes a real challenge related global warming (IPCC, 2005).

Since the industrial revolution, the levels of greenhouse gases (GHGs) and CO₂ in the atmosphere have greatly increased (Bachu, 2000; Mackenzie *et al.*, 2001; Bachu *et al.*, 2007; SRA, 2007). The rise of the global surface temperature is attributed to the increased GHGs and it is estimated that the average annual temperature will rise by 2.0 °C (Bodman *et al.*, 2013). Environmentalists first used the term "greenhouse effect" in early 1800s to describe the impact of trace gases in the atmosphere. Concern on climate change by environmentalists began in the mid-1950s after noticing the slow but steady impact of climate change (IPCC, 2005).

Industrialization and development of countries in the 21st century are estimated to increase the demands of energy by 57% from 2004 to 2030 (IEA, 2008). Figure 1.1 shows the projected energy consumption in different sources from 2004 to 2030.

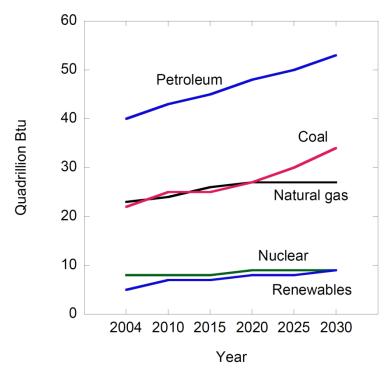


Figure 1.1 Projected energy consumption from 2004 to 2030 (USEIA, 2011)

The concentration of CO₂ in the Earth's atmosphere has been enhanced sharply from 280 ppm in the 1750s to about 389 ppm in 2010 due to the increase in fossil fuel consumption and other human activities (Thoning *et al.*, 2013). Moreover, atmospheric CO₂ has risen recently to about 395 ppm in 2012 (Thoning *et al.*, 2013). Consequently, the increase of CO₂ concentration to average of 943 ppm by the end of the 21st is expected (Sanderson *et al.*, 2011; Bodman *et al.*, 2013).

The term global warming is used to refer to the phenomenon in which the earth's surface temperature increased by about 0.7 °C in the 20th century. This increase can be attributed to the reliance of humans on fossil fuels for more than 85% of their energy needs. This ratio is expected to continue for the next 30 years. The amount of released CO₂ has changed in recent years. Thus, the related global temperature is estimated to exceed 2 °C by 2100 (Bodman *et al.*, 2013) as a direct result of anthropogenic activities and then CO₂ emission to the atmosphere. As a result, the

anthropogenic activities should be minimized to reduce CO₂ emission and climate change.

IPCC (2007) referenced models that predict the earth's surface temperatures will increase by 1.5–5.8 °C between the year 1990 and 2100. This will result to the rising of sea levels and most importantly, changes in the patterns and amounts of precipitation. The impacts of these changes are vast and devastative ranging from droughts, floods, hurricanes, and heat waves to tornadoes. The impact on human life, economic, and financial situations of everyone will be devastating. For this reason, the need to fight climate change is dire and thus should be prioritized.

Some primary alternatives are adopted for moderation of CO₂ emission. These alternatives include use of fuels that are less carbon intensive, improvement of energy efficiency, and sequestration of carbon through various ways of storage and capture (Bachu, 2000; Preston and Jones, 2006; Bachu *et al.*, 2007).

The objective of CO₂ capture and sequestration (CCS) is to aid global decrease of CO₂ emissions through "capturing" the CO₂ produced. Consequently, there has been a rise in the global acknowledgement of the importance of emissions and as a result, the Kyoto Protocol was formulated. This is an agreement signed by the key industrialized nations. It binds about 37 industrialized nations and the European community to cut their emissions by an average of five percent below their levels of emissions in 1990. Its first commitment period started in 2008 and ended in 2012. During the second commitment period, Parties committed to reduce greenhouse gas (GHG) emissions by at least 18 percent below 1990 levels in the eight-year period from 2013 to 2020; however, the composition of Parties in the second commitment period is different from the first.

The reductions required in the emissions can only be attained by simultaneously taking different methods of mitigating emission of CO_2 for example CCS, energy efficiency, fuel switching and renewable energy. Energy efficiency and fuel switching cover the decrease of CO_2 produced at the source; however, there exists a limitation to the alterations, which can be adopted by the establishments, both private and public, without having a cost implication. Despite these changes, production of CO_2 still

occurs. The amount that is produced should be captured and sequestered by decreasing emission at the source and even upon completion of production. There are three key steps involved in sequestration of CO₂. These are:

- (1) CO₂ capture
- (2) mining and transportation of CO₂
- (3) CO₂ sequestration

The point of focus in capture studies has diverted in the recent past towards the use of better solvents like ionic liquid-based materials, aqueous ammonia, and solids, which can absorb CO_2 chemically. All methods used in capture need a control process of CO_2 release and regeneration of the solvents by heating, in an energyintensive process.

The CCS process begins when CO_2 is captured and reproduced in a concentrated form to allow convenient storage and transportation. Various methods of CO_2 capture, which are considered, include post-combustion, pre-combustion, and oxyfuel combustion capture. At present, the technologies show a theoretical efficiency of 90%, that is, eliminates 90% of the emissions from the effluent stream; however, they have not been used on a full-scale power plant level. Two instances of prosperous pilot plants include the Ferry-bridge carbon capture pilot that uses post combustion capture, which is 90% efficient, and the Renfrew oxyfuel project whose efficiency lies between 75-85% (DECC, 2012).

The post-combustion capture refers to the removal of CO_2 from power station flue gas prior to its compression, transportation, and storage in suitable places, as part of the CCS. The use of amine-based solvent for post-combustion capture has attracted considerable interest and led to significant progress in CO_2 capture (Bui *et al.*, 2014). This is in fact the most advanced technology for CO_2 capture to date and it is likely to be the first carbon capture technology to be deployed worldwide on a large scale. The post-combustion pilot plants already demonstrate the feasibility of CO_2 removal with amine solvent from flue gas albeit at modest scale (Folger, 2009; Bui *et al.*, 2014). At pre-combustion capture, there is the separation of CO_2 prior to combustion, which takes place into streams of hydrogen, and CO_2 , by reacting the fuel with air or steam to produce hydrogen. The most common technique used for the separation is steam reforming. The oxy-fuel combustion process is same as the pre-combustion CO_2 capture in principle. The process of oxy-fuel combustion involves the burning of a fossil fuel energy source in the presence of pure oxygen. Burning fuel in the presence of oxygen removes contaminants, including nitrogen, from the exhaust stream resulting in water and CO_2 being easier to capture. This technique still is being investigated since the temperatures necessary for the process of pure oxygen combustion to take place are very high (about 3500 °C). In theory, the flue gas upon stripping of the extra pollutants like SO_2 and NO_2 may be recycled back to the reaction unit to lower the reaction temperature.

Water, which contains high concentrations of dissolved CO₂, is very acidic (pH = ~3). Minimal quantities of this if present in the atmosphere may corrode steel (Cole *et al.*, 2011). To avoid loss and damage of mechanical integrity of pipes, water is eliminated from the CO₂ stream. The separation occurs in vapor-liquid separator drums, initially through gravity separation then through pressurizing the CO₂ stream to 20-40 bars (Cole *et al.*, 2011).

Because fossil fuels are abundant all over the world, it is unlikely that industries can replace them with other sources of fuel in the near future and it is necessary to find ways to reduce concentration of CO_2 in the atmosphere. Therefore, numerous researchers have focused on mitigation of GHGs released into the atmosphere (Holloway, 2001; Herzog, 2002; Kaszuba *et al.*, 2003; Carapellucci and Milazzo, 2003; Yamasaki, 2003; Palandri and Kharaka, 2004; Bachu *et al.*, 2005; Maroto-Valer *et al.*, 2005; Metz *et al.*, 2005; Xu *et al.*, 2005; Flaathen *et al.*, 2009; Gislason *et al.*, 2010; King *et al.*, 2010; Qafoku *et al.*, 2012). As a result, some available and feasible methods such as geological storage, aquifer storage, deep sea or ocean storage, and mineral carbonation have been proposed to mitigate the amount of GHGs, especially CO_2 in the atmosphere. Storing CO₂ in geological formations, such as in depleted oil and gas reservoirs, is one of proposed solutions. These reservoirs contain hydrocarbon at high pressure over the geological period, which prove that they have the potential to be used for storage of CO₂. However, this technique has its own challenges. The most important issues are the possibility of release of CO₂, the determination of mineral reaction kinetics, and the understanding characterization of storage formations (Jun *et al.*, 2013). Furthermore, the lack of permanency, the risk of leakage, and the post–monitoring of the site are other problems and challenges associated with this method (Metz *et al.*, 2005).

Alternatively, Litynski *et al.* (2009) have mentioned three ways for reduction of the GHGs, especially CO₂, emissions as follow:

- (1) Achieving the same economic production using less energy,
- (2) Utilizing carbonless energy sources,
- (3) CO₂ sequestration

As a result, there are three main issues in relation to the CCS methods, including high-energy consumption, high expense, and low separation efficiency. Therefore, it is necessary to develop technologies to trap CO_2 in the reservoir permanently, as well as monitoring the long-term fate of CO_2 in the reservoir. One option for reducing and even eliminating the risks associated with the geological storage of CO_2 is sequestrating it into more stable forms. Ex-situ or in-situ mineral carbonation is the ideal technology for reducing the emission of CO_2 . The minerals, rocks, and industrial wastes rich in calcium (Ca) and magnesium (Mg) are usually considered as feedstock candidates due to their availability, low cost, and environmentally benign (Lackner *et al.*, 1995; Herzog, 2002; Maroto-Valer *et al.*, 2005; Metz *et al.*, 2005; King *et al.*, 2010). In this method, first CO_2 reacts with water to produce carbonic acid (hydration reaction). Then, carbonic acid dissociates to bicarbonate and carbonate ions. At the end, carbonate ion reacts with the cation and produces a carbonate mineral. Therefore, mineral CO_2 carbonation is considered as one of the most interesting and attractive methods due to simplicity of operation with low cost of adsorption. Thermodynamically, CO_2 can be bounded as a carbonate (Lackner *et al.*, 1995) with many metals. In many instances, these carbonates dissolve in water; however, calcium (as well as magnesium) carbonate is stable as a solid. The chemical reactions in the mineral carbonation process are exothermic in nature (Lackner *et al.*, 1995), leading to the formation of thermodynamically stable carbonate (Equation 1.1). According to Lackner *et al.* (1997), these reactions are very slow at ambient conditions. Two pretreatment processes have been used to accelerate the carbonation rate: acid and heat treatments (Herzog, 2002; Maroto-Valer *et al.*, 2005; Kwon *et al.*, 2011). These processes take long time and extensive energy, which has made this approach less interesting. However, the reaction rate accelerates with increasing surface area and temperature (Lackner *et al.*, 1995; McGrail *et al.*, 2006; Oelkers *et al.*, 2008; Matter *et al.*, 2009; Schaef *et al.*, 2009; Gislason *et al.*, 2010) and the process becomes attractive (Olsson *et al.*, 2012):

$$CaO + CO_2 \rightarrow CaCO_3 + 179 \text{ kJ/mol}$$
 (1.1)

As mentioned before, many natural minerals (e.g., olivine, gypsum, and wollastonite) and industrial wastes (e.g., lignite fly ash, mining waste, and steel slag), containing large amounts of Ca^{2+} and Mg^{2+} have been evaluated as feedstock candidates in mineral carbonation process (Lackner, 1995; O'Conner *et al.*, 2002; Huijgen *et al.*, 2006; Teir *et al.*, 2007a; Kwon *et al.*, 2011; Cárdenas-Escudero *et al.*, 2011; Lee *et al.*, 2012).

According to Lee *et al.* (2012), industrial waste gypsum is classified into three main categories: flue gas desulfurization (FGD) gypsum, phosphogypsum, and red gypsum. These industrial by-products contain approximately 32.5% CaO (Lee *et al.*, 2012) that make them a potential feedstock for mineral carbonation purposes. The produced FGD gypsum could be directly used in the mineral carbonation without any grinding process since it is in a fine powder form (Chou *et al.*, 2005). According to Lee *et al.* (2012), the SO_x elimination process from power plant flow gas is the main source FGD gypsum. However, phosphogypsum is sourced from phosphate rocks to produce phosphate fertilizer by acid treatment. According to Claisse *et al.* (2008), red gypsum containing around 75% gypsum and 25% iron, is an omnipresent feedstock in

industrialized societies. Red gypsum is a by-product of titanium dioxide (TiO₂) production using sulphate process (Claisse *et al.*, 2008). The addition of limestone to FGD gypsum and acid neutralization are considered as the main sources for red gypsum production (Claisse *et al.*, 2008).

As mentioned earlier, red gypsum contains approximately 32.5% CaO, which could be considered as a feedstock candidate in mineral CO₂ sequestration. Therefore, red gypsum has been selected as a new feedstock candidate for further studies to enhance the conversion of Ca into carbonate form and produce stable calcium carbonate (CaCO₃) in mineral carbonation process.

1.2 Statement of Problem

Reduction of CO₂ emissions into the atmosphere is a key challenge in order to mitigate the anthropogenic greenhouse effect. Increasing CO₂ and other GHGs in the atmosphere have caused to rise the mean global surface temperature. The average global warming has increased about 1 °C since industrial revolution. Moreover, growth of energy demand increases the fossil fuel consumption about 1.7% per year until 2030 (IEA, 2008). Subsequently, increasing the GHGs emission will be more than 70% until 2030. It is estimated that CO₂ emission contributed more than 40% of GHGs emission. Therefore, mitigation and reducing of CO₂ concentration in the atmosphere caused by anthropogenic activities are essential problems in the world, which is the most important preferment of this study.

Alternatively, CO₂ can be removed directly from the power plant flue gas by reaction with alkaline minerals or wastes by mineral carbonation (Huijgen *et al.*, 2006; Costa *et al.*, 2007; Oelkers *et al.*, 2008; Rubin, 2008; Lammers *et al.*, 2011). The natural minerals such as olivine, gypsum, and wollastonite, which are rich in Ca²⁺ or Mg²⁺, are usually considered as feedstock candidates for mineral carbonation.

However, despite the rapid carbonation of waste and its open structure, mostly the previous carbonation studies have focused on the natural minerals containing Mg [e.g., Zevehoven *et al.* (2008), Boerrigter (2009), Dufaud *et al.* (2009), Krevor and Lackner (2009), Li *et al.* (2009), Bonfils *et al.* (2010), Zhao *et al.* (2010), Kwak *et al.* (2010), Wang and Maroto-Valer (2011)].

Indeed, some industrial wastes such as lignite, fly ash, mining waste, and steel slag containing large amounts of Ca^{2+}/Mg^{2+} have been evaluated as potential raw materials for CO₂ sequestration processing. However, specifically, red gypsum is a new feedstock with a rate of dissolution and carbonation in the mineral carbonation process that no study until now has investigated its mineral carbonation process. Moreover, information about the control and determination of rates of both the dissolution and carbonation stages, which are not mentioned in previous studies, is essential to optimize the mineral carbonation process in this study. Therefore, in this study red gypsum has been selected as a new feedstock candidate for further studies in mineral carbonation process.

1.3 Research Objectives

The main objectives of the current study are:

- (1) To develop a technically applicable and feasible process for CO₂ mineral carbonation by the use of red gypsum based on its mineral composition verified by X-ray fluorescence (XRF), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM) instruments.
- (2) To determine the rate of dissolution and carbonation of red gypsum in order to optimize the process of mineral CO₂ sequestration based on possible effective variables, including reaction temperature and time, particle size, stirring rate, and liquid to solid ratio.
- (3) To determine the cost and energy required in dissolution and carbonation process of red gypsum and assess its environmental issues associated with mineral CO₂ sequestration.

1.4 Scope of the Study

In this study, red gypsum is selected to reduce CO_2 concentration in the atmosphere by applying mineral carbonation process. This process is conducted using a mini reactor that is designed at the maximum working temperature of 315 °C (600 °F) and pressure of 2900 psi (~200 bar). To this aim, different kinds of experiments are performed at various conditions.

A series of possible effective variables in mineral carbonation studies such as reaction temperature and time, particle size, stirring rate, and liquid to solid ratio are considered at specific ranges. The reaction temperature range is from 25 °C to 150 °C. The reaction time is limited up to 3 hours to investigate the optimum reaction time in carbonation experiments. Moreover, the particles size of red gypsum samples is categorized in four ranges, including <75 μ m, 75-125 μ m, 125-200 μ m, and >200 μ m. Furthermore, the stirring rate from 100 rpm to 600 rpm is considered to improve the dissolution and carbonation rates in mineral CO₂ sequestration. Finally, different amounts of liquid to solid ratio up to 300 ml/g are applied as the target ratio for carbonation studies. Characterization of fresh red gypsum samples and then products is done using XRF, XRD, and FESEM instruments.

1.5 Significance of the Study

Global warming, a phenomenon resulted from enormous fossil fuel consumption and CO₂ emission into the atmosphere, is one of the main concerns in the 21st century. Increasing GHGs concentration, and especially CO₂, is the main cause of increasing Earth's temperature. The findings of this study, which tries to sequester CO₂ via mineral carbonation, are helpful to prevent further damage caused by GHGs, and stabilize concentration of CO₂ by reducing CO₂ emission into the atmosphere. In other words, CO₂ uptake mitigates environmental effects that are problematic for human health and increase the global warming. Mineral carbonation is considered as a significantly new and interesting method that involves the process by which CO_2 is eliminated from the atmosphere and is sequestrated as formed stable minerals. CO_2 mineral carbonation in comparison with other methods of CCS that are geologic storage and ocean storage, is considered as one of the most attractive methods due to simplicity of operation with low cost of adsorption. Moreover, there are fewer limitations in its performance and no monitoring is needed.

Using industrial wastes rich in Ca (or Mg) are favored in mineral carbonation process. Therefore, red gypsum, as a Ca-rich source and a new feedstock, which has not been addressed for mineral carbonation process yet, is selected from this category for advanced research. This study has focused on the mineral carbonation of red gypsum, which is an industrial waste that has high Ca content. Industrial wastes are likely to have more advantages over the natural minerals and rocks because of which red gypsum is selected. For instance, they are available at industrial places, they are cheaper and geochemically unstable (e.g., ash and slag), hence, industrial wastes would be more reactive (Torróntegui, 2010; Olajire, 2013). Therefore, carbonation of industrial like red gypsum is expected to be a rapid process compared to minerals con-taining Mg that are mostly used. Moreover, the structure of industrial wastes is relatively open and the surface area for reaction is likely larger than natural minerals.

In the process of mineral carbonation, no mining is needed, and therefore, the amount of energy consumption from mining is negligible. Moreover, chemical stability of red gypsum reduces the effects of waste products on the environment significantly. Furthermore, in addition to CO_2 uptake, the reuse of produced wastes in mineral carbonation process of red gypsum is able to diminish the environmental impact.

The low cost and small amount of energy required in the use of red gypsum and less environmental issues could be advantages to the CO₂ sequestration process. In short, it could be concluded that the findings of this study could be useful in resolving problem of GHGs and global warming with the lowest cost and less environmental issues. Therefore, this method could be considered as a significant method for reducing the CO_2 in the atmosphere.

1.6 Overview of the Thesis

According to main research objectives, this thesis involves some main tasks as follow. At the first task, the process of mineral carbonation is identified for detailed analysis in Chapter 2. Subsequently, a review of the existing literature in mineral carbonation process is discussed in relation to CO₂ sequestration. At the second tasks, the necessary materials for mineral carbonation, approaches of the analysis, and steps of the mineral carbonation experiments of red gypsum are investigated at different conditions, which addressed in Chapter 4. At the fourth task, the cost of mineral CO₂ sequestration and required energy consumption are evaluated in relation to conducted experiments and the environmental issues associated with mineral CO₂ sequestration are assessed. At the last task, the main conclusions of this study in addition to its implementations are addressed in Chapter 5.

- (3) To reduce the reaction time by using direct mineral carbonation route instead of aqueous indirect mineral carbonation route.
- (4) To investigate the reuse of stable carbonated mineral, i.e., calcite, as supplementary cementation material to make cement or other construction materials.
- (5) To determine the life cycle assessment of red gypsum in mineral carbonation process.

REFERENCES

- Alexander, G., Maroto-Valer, M., and Gafarova-Aksoy, P. (2007). Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. *Fuel*, 86, 273-281.
- Alfredsson, H. A., Hardarson, B. S., Franzson, H., and Gislason, S. R. (2008). CO₂ sequestration in basaltic rock at the Hellisheidi site in SW Iceland: stratigraphy and chemical composition of the rocks at the injection site. *Mineral Mag.*, 72, 1-5.
- Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., and Gibert, B. (2009). Experimental study of carbon sequestration reactions controlled by the percolation of CO₂-rich brine through peridotites. *Environmental Science & Technology*, 43, 1226-1231.
- Appelo, C. A. J., and Postma, D. (2005). *Geochemistry, groundwater, and pollution*.A. A. Balkema Publishers, Netherlands.
- Assayag, N., Matter, J., Ader, M., Goldberg, D., and Agrinier, P. (2009). Water-rock interactions during a CO₂ injection field-test: implications on host rock dissolution and alteration effects. *Chem. Geology*, 265, 227-235.
- Astrup, T., Dijkstra, J. J., Comans, R. N. J., Van-Der Sloot, H. A., and Christensen, T.
 H. (2006). Geochemical modeling of leaching from MSWI air-pollutioncontrol residues. *Environmental Science & Technology*, 40 (11), 3551-3557
- Bachu, S. (2000). Sequestration of CO₂ in geological media: criteria and approach for site selection in response to climate change. *Energy Conversion and Management*, 41, 953-70.

- Bachu, S., Bonijolyb, D., Bradshawc, J., Burrussd, R., Hollowaye, S., Christensen, N.
 P., and Mathiassen, O. M. (2007). CO₂ storage capacity estimation: Methodology and gaps. *International Journal of Greenhouse Gas Control*, 1 (4), 430-443.
- Bui M., Gunawan, I., Verheyen, V., Feron, P., Meuleman, E., and Adeloju, S. (2014).
 Dynamic modelling and optimisation of flexible operation in post-combustion
 CO₂ capture plants-A review, *Computers and Chemical Engineering* 61, 245–265
- Bachu, S., Simbeck, D., and Thambimuthu, K. (2005). Special report on carbon dioxide capture and storage. IPCC-Intergovernmental Panel on Climate Change.
- Baciocchi, R., Costa, G., Polettini, A., and Pomi, R. (2009a). Influence of particle size on the carbonation of stainless steel slag for CO₂ storage. *Energy Procedia*, 1, 4859-4866.
- Baciocchi, R., Costa, G., Polettini, A., Pomi, R., and Prigiobbe, V. (2009b). Comparison of different reaction routes for carbonation of APC residues. *Energy Procedia*, 1, 4851-4858.
- Back, M., Kuehn, M., Stanjek, H., and Peiffer, S. (2008). Reactivity of alkaline lignite fly ashes towards CO₂ in water. *Environmental Science & Technology*, 42, 4520-4526.
- Balaz, P., Turianicova, E., Fabian, M., Kleiv, R.A., Briancin, J., and Obut, A. (2008). Structural changes in olivine (Mg,Fe)₂SiO₄ mechanically activated in highenergy mills. *Int. J Mineral Process*, 88, 1-6.
- Baldyga, J., Henczka, M., and Sokolnicka, K. (2010). Utilization of carbon dioxide by chemically accelerated mineral carbonation. *Mater. Let*, 64, 702-704.
- Bales, R. C., and Morgan, J. J. (1985). Dissolution kinetics of chrysotile at pH 7 to 10. *Geochim. Cosmochim. Acta*, 49 (11), 2281-2288.

- Bao, W., Li, H., and Zhang, Y. (2010). Selective leaching of steelmaking slag for indirect CO₂ mineral sequestration. *Ind. Eng. Chem. Res.*, 49, 2055-2063.
- Bauer, S., Class, H., Ebert, M., and et al. (2012). Modeling, parameterization and evaluation of monitoring methods for CO₂ storage in deep saline formations: the CO₂-MoPa project. *Environ Earth Science*, 67, 351-367
- Bearat, H. M. J., McKelvy, M. J., Chizmeshya, A. V. G., Gormley, D., Nunez, R., Carpenter, R. W., and et al. (2006). Carbon sequestration via aqueous olivine mineral carbonation: Role of passivating layer formation. *Environmental Science & Technology*, 40, 4802-4808.
- Beaudoin, G., Hébert, R., Constantin, M., Duchesne, J., Cecchi, E., Huot, F., Vigneau, S., and Fiola, R. (2008). Spontaneous carbonation of serpentine in milling and mining waste, southern Québec and Italy. *In: Proceedings of Accelerated Carbonation for Environmental and Materials Engineering (ACEME2008)*. Rome, Italy, 73-82.
- Berry, L., Taylor, A. R., Lucken, U., Ryan, K. P., and Brownlee, C. (2002). Calcification and inorganic carbon acquisition in coccolithophores. *Funct. Plant Biol.*, 9, 289-299.
- Bobicki, E. R., Liu, Q., Xu, Z., and Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. *Progress in Energy and Combustion Science*, 38, 302-320.
- Bodman, R. W., Rayner, P. J., and Karoly, D .J. (2013). Uncertainty in temperature projections reduced using carbon cycle and climate observations. *Nature Climate Change*, 3, 725-729.
- Boerrigter, H. (2009). *A process for preparing an activated mineral*. Shell Internationale Research Maatschappij B.V.
- Bonfils, B., Julcour, C., Bourgeois, F., Guyot, F., and Chiquet, P. (2010). About the foundations of direct aqueous carbonation with dissolution enhancing organic salts. *The 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 99-109.

- Boschi, C., Dini, A., Dallai, L., Gianelli, G., and Ruggieri, G. (2008). Mineralogical sequestration of carbon dioxide: new insights from the Malentrata magnesite deposit (Tuscany, Italy). *In: Proceedings of the 2nd International Conference* on Accelerated Carbonation for Environmental and Materials Engineering. Rome, Italy, 55-62.
- Boschi, C., Dini, A., Dallai, L., Ruggieri, G., and Gianelli, G. (2009). Enhanced CO₂ mineral sequestration by cyclic hydraulic fracturing and Si-rich infiltration into serpentinites at Malentrata (Tuscany, Italy). *Chem. Geology*, 265, 209-226.
- Butt, D. P., Lackner, K. S., and Wendt, C. H. (1998). The kinetics of binding carbon dioxide in magnesium carbonate. *The 23th international conference on coal utilization and fuel systems*. Clearwater, FL, USA.
- Carapellucci, R., and Milazzo, A. (2003). Membrane systems for CO₂ capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers Part A. *Journal of Power and Energy*, 217, 505-517.
- Cárdenas-Escudero, C., Morales-Flórez, V., Pérez-López, R., Santose, A., and Esquivias, L. (2011). Procedure to use phosphogypsum industrial waste for mineral CO₂ sequestration. *J Hazard Mater*, 196, 431- 435.
- Carey, J. W., Rosen, E. P., Bergfeld, D., Chipera, S. J., Counce, D. A., Snow, M. G., Ziock, H. J. and Guthrie, G. D. (2003). Experimental studies of the serpentine carbonation reaction. *The 28th International Technical Conference on Coal Utilization & Fuel Systems, Coal Technology Association*. Clearwater, FL, USA, 331–340.
- Carroll, S. A. and Knauss, K. G. (2005). Dependence of labradorite dissolution kinetics on CO_{2(aq)}, Al_(aq), and temperature. *Chem. Geology*, 217, 213-225.
- Chizmeshya, A. V. G., McKelvy, M. J., Gormley, D., Kocher, M., Nunez, R., Kim, Y. C., and Carpenter, R. (2004). CO₂ mineral carbonation processes in olivine feedstock: insights from the atomic scale simulation. *In: Proceedings of the 29th International Technical Conference on Coal Utilization and Fuel Systems*. Clearwater, FL, USA.

- Chou, M. M., Bruinius J. A., Benig V., Chou S. F. J., and Carty R. H. (2005). Producing ammonium sulfate from flue gas desulfurization by-product. *Energy Sources*, 27, 1061-1071.
- Claisse, P., Ganjian, E., and Tyrer, M. (2008). The use of secondary gypsum to make a controlled Low Strength Material. *The Open Construction and Building Technology Journal*, 2, 294-305.
- Clarens, F., Grandia, F., Meca, S., Duro, L., and Pablo, J. (2010). Determination of CO₂ sequestration capacity and stabilisation of MSWI fly ash through accelerated carbonation. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 205-214.
- Cole, I. S., Corrigan, P., Sim, S., and Birbilis, N. (2011). Corrosion of pipelines used for CO₂ transport in CCS: Is it a real problem? *International J Greenhouse Gas Control*, 5, 749-756.
- Costa, G., Baciocchi, R., Polettini, A., Pomi, R., Hills, CD., and Carey, P. J. (2007). Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues. *Environmental Monitoring and Assessment*, 135 (1-3), 55-75.
- Dalwai, I., and Smith, C. L. (2009). Sequestration of CO₂ by means of carbonation of mineral industrial tailings. The 4th year Chemical Engineering Dissertation. University of Cape Town, South Africa. p. 47.
- Daval, D., Martinez, I., Corvisier, J., Findling, N., Goffe, B., and Guyot, F. (2009a). Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modelling. *Chem. Geology*, 265, 63-78.
- Daval, D., Martinez, I., Guigner, J. M., Hellmann, R., Corvisier, J., Findling, N., Dominici, C., Goffe, B., and Guyot, F. (2009b). Mechanism of wollastonite carbonation deduced from micro- to nanometer length scale observations. *Am. Mineral*, 94, 1707-1726.

- Davis, J. A., and Kent, D. B. (1990). Surface complexation modeling in aqueous geochemistry. In: Hochella, M.F., White, A.F. (Eds.). *Reviews in Mineralogy*. Mineralogical Society of America, Washington D.C, USA.
- DECC. (2012). *Climate Change Act 2012: Impact Assessment*. Department of Energy and Climate Change, London, UK.
- Diener, S., Andreas, L., and Brannvall, E. (2010). Leaching properties of steel slags after ageing under laboratory and field conditions. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 237-245.
- Dipple, G. M., Wilson, S. A., Power, I. M., Thom, J. M., Raudsepp, M., and Southam, G. (2008). Passive mineral carbonation in mine tailings. *In: Proceedings of the* 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Rome, Italy, 119-122.
- Doucet, F. J. (2009a). Effective CO₂-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation. *Mineral Engineering*, 23, 262-269.
- Doucet, F. J. (2009b). Carbon dioxide sequestration by industrial mineral carbonation: Evaluation of industrial alkaline waste materials and their leachates-a South African perspective. Progress Report No. 2009-0044, Council for Geoscience, p. 35.
- Doucet, F. J. (2010). Development and optimization of steel slag reprocessing technologies with implications for the steel and cement manufacturing sectors and for long-term CO₂ sequestration. Progress Report No. 2010-0037, Council for Geoscience, p. 36.
- Duchesne, J., and Reardon, E. J. (1995). Measurement and Prediction of Portlandite Solubility in Alkali Solutions. *Cement and Concrete Research*, 25, 1043-1053.
- Dufaud, F., Martinez, I., and Shilobreeva, S. (2009). Experimental study of Mg-rich silicates carbonation at 400 and 500 °C and 1 kbar. *Chem. Geology*, 265, 79-87.

- Eloneva, S., Pusa, E. M., Kanerva, J., Ekroos, A., Zevenhoven, R., and Fogelholm, C.
 J. (2010). Co-utilisation of CO₂ and steelmaking slags for production of pure CaCO₃ legislative issues. *J Cleaner Prod*, 18, 1833-1839.
- Eloneva, S., Teir, S., Revitzer, H., Salminen, J., Said, A., Fogelholm, C. J., and et al. (2009). Reduction of CO₂ emissions from steel plants by using steelmaking slags for production of marketable calcium carbonate. *Steel Res. Int.*, 80, 415-421.
- Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J., and Zevenhoven, R. (2008). Fixation of CO₂ by carbonating calcium derived from blast furnace slag. *Energy*, 33, 1461-1467.
- Eloneva, S., Teir, S., Savolahti, J., Fogelholm, C. J., and Zevenhoven, R. (2007). Coutilization of CO₂ and calcium silicate-rich slags for precipitated calcium carbonate production (part II). *ECOS'2007, Padova*. Italy, Vol. II, pp. 1389-1396.
- Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W. D., and Perkins,
 E. H. (2004). Geochemical monitoring of fluid-rock interaction and CO₂ storage at the Weyburn CO₂-injection enhanced oil recovery site, Saskatchewan, Canada. *Energy*, 29 (9-10), 1393-1401.
- Fabian, M., Shopska, M., Paneva, D., Kadinov, G., Kostova, N., Turianicova, E., Briancin, J., Mitov, I., Kleiv, R. A., and Balaz, P. (2010). The influence of attrition milling on carbon dioxide sequestration on magnesium-iron silicate. *Mineral Engineering*, 23 (8), 616-620.
- Fagerlund, J., Teir, S., Nduagu, E., and Zevenhoven, R. (2009). Carbonation of magnesium silicate mineral using a pressurised gas/solid process. *Energy Procedia*, 1, 4907-4914.
- Fauth, D. J., Baltrus, J. P., Knoer, J. P., Soong, Y., Howard, B. H., Graham, W. J., Maroto-Valer, M. M., and Andresen, J. M. (2001). Conversion of silicate minerals with carbon dioxide producing environmentally benign and stable carbonates; Preprints of papers, division of fuel chemistry. *Am. Chem. Soc.*, 46 (1), 278-279.

- Fauziah, S., Zauyah, T., and Jamal, T. (1996). Characterization and land application of RG: waste product from the titanium dioxide industry. *Science Total Environmental*, 188, 243-251.
- Fernández, B. M., Li, X., Simons, S. J. R., Hills, C. D., and Carey, P. J. (2004). Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO₂. *Green Chemistry*, 6, 428-436.
- Flaathen, T. K., and Gislason, S. R. (2007). The effect of volcanic eruptions on the chemistry of surface waters: the 1991 and 2000 eruptions of Mt. Hekla, Iceland. *J Vol. Geothermal Res.*, 164, 293-316.
- Flaathen, T. K., Gislason, S. R., Oelkers, E. H., and Sveinbjörnsdóttir, A. E. (2009). Chemical evolution of the Mt. Hekla, Iceland, groundwaters: a natural analogue for CO₂ sequestration in basaltic rocks. *Applied Geochemistry*, 24 (3), 463-474.
- Folger, P. (2009). *Carbon Capture and Sequestration (CCS)*. CRS Report for Congress. Congressional Research Service.
- Garcia, B., Beaumont, V., Perfetti, E., Rouchon, V., Blanchet, D., Oger, P., Dromart,
 G., Huc, A. Y., and Haeseler, F. (2010). Experiments and geochemical modelling of CO2 sequestration by olivine: Potential, quantification. *Applied Geochemistry*, 25, 1383-1396.
- Gazquez, M. J., Bolivar, J. P., Vaca, F., García-Tenorio, R., and Caparros, A. (2013). Evaluation of the use of TiO₂ industry red gypsum waste in cement production. *Cement & Concrete Composites*, 37, 76-81.
- Gázquez, M. J., Bolívar, J. P., Garcia-Tenorio, R., and Vaca, F. (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. *J Hazard Mater*, 166, 1429-40.
- Gerdemann, S. J., Dahlin, D. C., O'Connor, W. K., and Penner, L. R. (2003). Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. Albany Research Center, Albany.

- Gerdemann, S. J., Dahlin, D. C., O'Connor, W. K., Penner, L. R., and Rush, G. E. (2004). Ex-situ and in-situ mineral carbonation as a means to sequester carbon dioxide. *In: Proceedings of twenty-first annual international Pittsburgh coal conference*. Osaka, Japan.
- Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., and Rush, H. (2007). Ex situ aqueous mineral carbonation. *Environmental Science & Technology*, 41 (7), 2587-2593.
- Ghoorah, M., Balucan, R. D., Kennedy, E. M., and Dlugogorski, B. Z. (2010). Selection of acid for weak acid processing of Australian wollastonite for mineralization of CO₂. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 147-156.
- Giammar, D. E., Bruant J., R. G., and Peters, C. A. (2005). Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. *Chemical Geology*, 217, 257-276.
- Gielen, D. (2003). Uncertainties in relation to CO₂ capture and sequestration. Preliminary results. IEA/EET Working Paper.
- Gislason, S. R., Wolff-Boenish, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W. S., Matter, J. M., Stute, M., Axelsson, G., and Fridriksson, T. (2010). Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project. *International J Greenhouse Gas Control*, 4, 537-545.
- Gitari, M. W., Petrik, L. F., Etchebers, O., Key, D. L., Iwuoha, E., and Okujeni, C. (2006). Treatment of acid mine drainage with fly ash: removal of major contaminants and trace elements. *J Environ Sci. Health A Tox Hazard Subst Environ Eng.*, 41 (8), 1729-1747.
- Goff, F., and Lackner, K. S. (1998). Carbon dioxide sequestering using ultramafic rocks. *Environmental Geosciences*, 5, 89-101.

- Goldberg, D. S., Kent, D. V., and Olsen, P. E. (2010). Potential on-shore and off-shore reservoirs for CO₂ sequestration in Central Atlantic magmatic province basalts. *Proc. Natl. Acad. Science*, 107, 1327-1332.
- Goldberg, D. S., Takahashi, T., and Slagle, A. L. (2008). Carbon dioxide sequestration in deep-sea basalt. *Proc. Natl. Acad. Science*, 105, 9920-9925.
- Goldberg, P., and Walters, R. (2002). A program to develop CO₂ sequestration via mineral carbonation. The 6th International Conference on Greenhouse Gas Control Technologies. Kyoto, Japan.
- Golubev, S. V., and Pokrovsky, O. S. (2006). Experimental study of the effect of organic ligands on diopside dissolution kinetics. *Chem. Geology*, 235, 377-389.
- Grandia, F., Meca, S., Duro, L., Clarens, F., and de Pablo, J. (2010). Stabilization of cement kiln dust through accelerated carbonation. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 329-332.
- Gunning, P. J., Hills, C. D., and Carey, P. J. (2008). Production of lightweight aggregate from industrial waste and carbon dioxide. *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 291-298.
- Gunning, P. J., Hills, C. D., and Carey, P. J. (2010). Accelerated carbonation treatment of industrial wastes. *Waste Manage*, 30, 1081-1090.
- Hänchen, M., Prigiobbe, V., Baciocchi, R., and Mazzotti, M. (2008). Precipitation in the Mg-carbonate system effects of temperature and CO₂ pressure. *Chem. Eng. Science*, 63, 1012-1028.
- Hangx, S. J. T., and Spiers, C. J. (2009). Coastal spreading of olivine to control atmospheric CO₂ concentrations: a critical analysis of viability. *International J Greenhouse Gas Control*, 3, 757-767.

- Haug, T. A., Johansen, H., and Brandvoll, O. (2010). The way forward for mineral carbonation-importance of collaboration, experiments, and modelling. *In:* Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Turku, Finland, 113-119.
- Haug, T. A., Kleiv, R. A., and Munz, I. A. (2008). Importance of particle size, specific surface area, and crystallinity of mechanically activated olivine for HCl dissolution. *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 83-92.
- Haywood, H. M., Eyre, J. M., and Scholes, H. (2001). Carbon dioxide sequestration as stable carbonate minerals-environmental barriers. *Environmental Geology*. 41, 11-16.
- Herzog, H. J. (2002). Carbon Sequestration via Mineral Carbonation: Overview and Assessment. MIT Laboratory for Energy and the Environment. Cambridge, Massachusetts.
- Hitch, M., Ballantyne, S. M., and Hindle, S. R. (2010). Revaluing mine waste rock for carbon capture and storage. *Int. J Min. Reclamation Environ*, 24, 64-79.
- Holloway, S. (1997). An overview of the underground disposal of carbon dioxide. Energy Conversion and Management, 38, 193-198.
- Huijgen, W. J. J., Witkamp, G. J., and Comans, R. N. J. (2005). Mineral CO₂ sequestration by steel slag carbonation. *Environmental Science & Technology*, 39, 9676-9682.
- Huijgen, W. J. J., and Comans, R. N. J. (2003). Carbon Dioxide Sequestration by Mineral Carbonation: Literature Review. ECN Report ECN-C-03-016. Energy Research Centre of the Netherlands. 52 pp.
- Huijgen, W. J. J., Witkamp, G. J., and Comans, R. N. J. (2006). Mechanisms of aqueous wollastonite carbonation as a possible CO₂ sequestration process. *Chem. Eng. Science*, 1, 4242-4251.

- Huntzinger, D. N., Gierke, J. S., Sutter, L. L., Kawatra, S. K., and Eisele, T. C. (2009). Mineral carbonation for carbon sequestration in cement kiln dust from waste piles. *J Hazard Mater*, 168, 31-37.
- International Energy Agency (IEA). (2008). *CO*₂ *capture and storage: a key carbon abatement option*. International Energy Agency. OECD Publishing. France.
- IPCC. (2005). Intergovernmental Panel on Climate Change special report on carbon capture and storage. Cambridge University Press, Cambridge, United Kingdom.
- International Energy Agency (IEA)/Greenhouse gas (GHG). (2000). CO₂ storage as carbonate minerals. CSMA Consultants Ltd; PH3/17. Cheltenham, United Kingdom.
- IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, USA.
- Jarvis, K., Carpenter, R. W., Windman, T., Youngchul, K., Nunez, R., and Alawneh, F. (2009). Reaction mechanisms for enhancing mineral sequestration of CO₂. *Environmental Science & Technology*, 43, 6314-6319.
- Jeschke, A. A., Vosbeck, K., and Dreybrodt, W. (2001). Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. *Geochimica Cosmochimica Acta*, 65 (1), 27-34.
- Jo, H., Park, S. H., Jang, Y. N., Chae, S. C., Lee, P. K., and Jo, H. Y. (2014). Metal extraction and indirect mineral carbonation of waste cement material using ammonium salt solutions. *Chemical Engineering Journal*, 254, 313–323.
- Jun, Y. S., Giammar, D. E., and Werth, C. J. (2013). Impacts of geochemical reactions on geologic carbon sequestration. *Environmental Science and Technology*, 47, 3–8.

- Kakizawa, M., Yamasaki, A., and Yanagisawa, Y. (2001). A new CO₂ disposal process using artificial rock weathering of calcium silicate accelerated by acetic acid. *Energy*, 6, 341-354.
- Kaszuba, J. P., Janecky, D. R., and Snow, M. G. (2003). Carbon dioxide reaction processes in a model brine aquifer at 200°C and 200 bars: implications for geologic sequestration of carbon. *Applied Geochemistry*, 18 (7), 1065-1080.
- Kawatra, S. K., Eisele, T. C., and Simmons, J. J. (2009). *Capture and Sequestration of Carbon Dioxide in Flue Gases*. Michigan Technological University, USA.
- Kelemen, P. B., and Matter, J. R. (2008). In situ carbonation of peridotite for CO₂ storage. *Proc. Natl. Acad. Science*, 105, 17295-17300.
- King, H. E., Plümper, O., and Putnis A. (2010). Effect of secondary phase formation on the carbonation of olivine. *Environmental Science & Technology*, 44, 6503-6509.
- Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K., and Yamada, K. (2008). Development of a new pH-swing CO₂ mineralization process with a recyclable reaction solution. *Energy*, 33, 776-784.
- Kohlmann, J., Zevenhoven, R., Mukherjee, A. B. and Koljonen, T. (2002). *Mineral carbonation for long-term storage of CO₂ from flue gases*. TKK-ENY-9, Helsinki University of Technology, Energy Engineering and Environmental Protection, Finnish National Research Programme, Finland.
- Kojima, T., Nagamine, A., Ueno, N., and Uemiya, S. (1997). Absorption and fixation of carbon dioxide by rock weathering. *Energy Conversion and Management*, 38, S461-466.
- Koljonen, T., Siikavirta, H., Zevenhoven, R., and Savolainen, I. (2004). CO₂ capture, storage and reuse potential in Finland. *Energy*, 29, 1521-1527.
- Koukouzas, N., Gemeni, V., and Ziock, H. J. (2009). Sequestration of CO₂ in magnesium silicates in Western Macedonia, Greece. *Int. J Mineral Process*, 93, 179-186.

- Krevor, S. C., and Lackner, K. S. (2009). Enhancing process kinetics for mineral carbon sequestration. *Energy Procedia*, 1, 4867-4871.
- Kühn, M., Clauser, C., Vosbeck, K., Stanjek, H., Meyn, V., Back, M., and Peiffer, S. (2009). Mineral trapping of CO₂ in operated hydrogeothermal reservoirs. Carbon dioxide sequestration in geological media. *AAPG Studies in Geology*, 59, 545-552.
- Kunzler, C., Alves, N. Pereira, E., Nienczewski, J., Ligabue, R., Einloft, S., and Dullius, J. (2011). CO₂ storage with indirect carbonation using industrial waste. *Energy Procedia*, 4, 1010–1017.
- Kuusik, R., Uibu, M., Velts, O., Trikkel, A., and Kallas, J. (2010). CO₂ trapping from flue gases by oil shale ash aqueous suspension: intensification and modeling of the process. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 227-235.
- Kwak, J. H., Hu, J. Z., Hoyt, D. W., Sears, J. A., Wang, C., Rosso, K. M., and Felmy, A. R. (2010). Metal carbonation of forsterite in supercritical CO₂ and H₂O using solid state 29Si, 13C NMR spectroscopy. *J Phys. Chem. C*, 114, 4126-4134.
- Kwon, S., Fan, M. H., DaCosta, H. M. D., and Russell, A. G. A. (2011). Factors affecting the direct mineralization of CO₂ with olivine. *J Environmental Science*, 23, 1233-1239.
- Lackner, K. S., Butt, D. P., and Wendt, C. H. (1997). Progress on binding CO₂ in mineral substrates. *Energy Conversion and Management*, *38*, 259–264.
- Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., and Sharp, D. H. (1995). Carbon dioxide disposal in carbonate minerals. *Energy*, 20 (11), 1153-1170.
- Lackner, K.S. (2002). Carbonate Chemistry for sequestering fossil carbon. *Annul. Rev. Energy Environ.*, 27, 193-232.
- Lammers, K., Murphy, R., Riendeau, A., Smirnov, A, Schoonen, M. A. A., and Strongin, D. R. (2011). CO₂ sequestration through mineral carbonation

of iron oxy hydroxides. *Environmental Science & Technology*, 45, 10422-10428.

- Lee, M. G., Jang, Y. N., Ryu, K. W., Kim, W., and Bang J. H. (2012). Mineral carbonation of flue gas desulfurization gypsum for CO₂ sequestration. *Energy*, 47, 370-377.
- Lee, B. D., Apel, W. A., and Walton, M. R. (2006). Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations. Final Project Report. Idaho National Laboratory, USA.
- Li, W., Li, W., Li, B., and Bai, Z. (2009). Electrolysis and heat pretreatment methods to promote CO₂ sequestration by mineral carbonation. *Chem. Eng. Res. Des.*, 87, 210-215.
- Litynski, J., Plasynski, S., Spangler, L., Finley, R., Steadman, E., Ball, D., Nemeth, K. J., McPherson, B., and Myer, L. (2009). U.S. Department of Energy's regional carbon sequestration partnership program: overview. *Energy Procedia*, 1, 3959-3967.
- Liu, Z., Yuan, D., and Dreybrodt, W. (2005). Comparative study of dissolution rate determining mechanisms of limestone and dolomite. *Environmental Geology*, 49, 274-279.
- Machenbach, I., Brandvoll, O., Wihle, J., Munz, I. A., and Johansen, H. (2008).
 Development of an industrial process concept for CO₂ sequestration by mineral carbonation. *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 459-461.
- Mackenzie, F. T., Lerman, A., and Ver, L. M. B. (2001). Recent past and future of the global carbon cycle. *AAPG*, 47, 51-82.
- Maroto-Valer M. M., Fauth D. J. Kuchta, M. E., Zhang Y., and Andrésen J. M. (2005). Activation of Magnesium Rich Minerals as Carbonation Feedstock Materials for CO₂ Sequestration. *Fuel Process Technology*, 86, 1627-1645.

- Maroto-Valer, M. M., Kuchta, M. E., Zhang, Y., and Andrésen, J. M. (2002a). Integrated carbonation: a novel concept to develop a CO₂ sequestration module for power plants. *The 6th International Conference on Greenhouse Gas Control Technologies*. Kyoto, Japan.
- Maroto-Valer, M. M., Kuchta, M. E., Zhang, Y., Andresen, J. M., and Fauth, D. J. (2004a). Comparison of physical and chemical activation of serpentine for enhanced CO₂ sequestration. *Preprints of symposia, American Chemical Society, Division Fuel Chemistry*, 49 (1), 373-375.
- Maroto-Valer, M. M., Zhang, Y., Kuchta, M. E., and Andresen, J. M. (2002b). Activation of serpentine minerals for enhanced CO₂ sequestration. *The 19th Annual International Pittsburgh Coal Conference*. Pittsburgh, PA, USA.
- Maroto-Valer, M. M., Zhang, Y., Kuchta, M. E., Andresen, J. M., and Fauth, D. J. (2004b). Process for sequestering carbon dioxide and sulfur oxide. Patent number: WO2004098740.
- Massachusetts Institute of Technology (MIT). 2007. *The future of coal: options for a carbon constrained world*. MIT Study on the Future of Coal. ISBN 978-0-615-14092-6.
- Matter, J. M., Broecker, W. S., Stute, M., Gislason, S. R., Oelkers, E. H., Stefansson, A., Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G., and Bjornsson, G. (2009). Permanent carbon dioxide storage into basalt: the carbfix pilot project, iceland. *Energy Procedia*, 1, 3641-3646.
- Matter, J.M., Broecker, W.S., Stute, M., Gislason, S.R., Oelkers, E.H., Stefansson, A.,
 Wolff-Boenisch, D., Gunnlaugsson, E., Axelsson, G., Bjornsson, G., 2009.
 Perma- nent carbon dioxide storage into basalt: the CarbFix pilot project,
 Iceland. *Energy Procedia*, 1, 3641-3646.
- Matter, J. M., and Kelemen, P. B. (2009). Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. *Nat. GeoScience*, 2, 837-841.
- Matter, J. M., Takahashi, T., Goldberg, D., and McGrail, B. P. (2007). Experimental evaluation of in situ CO₂-water-rock reactions during CO₂ injection in basaltic

rocks. Implications for geological CO₂ sequestration. *Geochemistry Geophysics Geosystems*, 8 (2), 1-19.

- McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y. J., Dooley, J. J., and Davidson, C.
 L. (2006). Potential for carbon dioxide sequestration in flood basalts. J Geophysical Research, 111, B12201.
- Mckelvy, M. J., Chizmeshya, A. V. G., Diefenbacherj, G., Bearat, H., and Wolf, G. (2004). Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. *Environmental Science & Technology*, 38, 6897-6903.
- Meima, J. A., Van der Weijden, R. D., Eighmy, T. T., and Comans, R. N. J. (2002). Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. *Applied Geochemistry*, 17 (12), 1503-1513.
- Mesters, C. M. A., Geerlings, J. J. C., and Oosterbeek, H. (2002). *Process for Mineral Carbonation with Carbon Dioxide*. Patent: WO 02085788.
- Metz, B., Davidson, O., De Coninck, H. C., Loos, M., and Meyer, L. A. (2005). *IPCC special report on carbon dioxide capture and storage*. Prepared by working group III of the intergovernmental panel on climate change. Cambridge, UK.
- Mlambo, T. K., Doucet, F. J., Van der Merwe, E. M., and Altermann, W. (2010). The application of mineral carbonation engineering principles to geological CO₂ sequestration: a conceptual approach to improved reservoir integrity. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation* for Environmental and Materials Engineering. Turku, Finland, 131-137.
- Montes-Hernandez, G., Pérez-López, R., Renard, F., Nieto, J. M., and Charlet, L. (2009). Mineral sequestration of CO₂ by aqueous carbonation of coal combustion fly-ash. *J Hazard Mater*, 161, 1347-1354.
- Morrel, S. (2004). An alternative energy-size relationship to that proposed by Bond for the design and optimisation of grinding circuits. *Int. J Mineral Process*, 74, 133-141.

- Munz, I. A., Kihle, J., Brandvoll, O., Machenbach, I., Carey, J. W., Haug, T. A., Johansen, H., and Eldrup, N. (2009). A continuous process manufacture of magnesite and silica from olivine, CO₂ and H₂O. *Energy Procedia*, 1, 4891-4898.
- Muriithi, G., Petrik, L., Gitari, W., and Doucet, F. J. (2010). Mineral carbonation of a fly ash brine system. In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Turku, Finland, 341-344.
- Muriithi, G. N., Gitari, M. W., and Petrik, L. F. (2009). Brine remediation using fly ash and accelerated carbonation. *Abstracts of the International Mine Water Conference*. Pretoria, South Africa, 19-23 October 2009, 671-679.
- Muriithi, G. N., Gitari, M. W., Petrik, L. F., and Ndungu, P. G. (2011). Carbonation of brine impacted fractionated coal fly ash: Implications for CO₂ sequestration. *J Environmental Management*, 92, 655-664.
- National Energy Technology Laboratory (NETL). (2001). Workshop NETL Mineral CO₂ Sequestration.
- Nduagu, E., and Zevenhoven, R. (2010). Production of magnesium hydroxide from magnesium silicate for the purpose of CO₂ mineralisation or increasing ocean alkalinity: effect of reaction parameters. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 31-40.
- Nelson, M. G. (2004). Carbon dioxide sequestration by mechanochemical carbonation of mineral silicates. Final report DOE FG26-02NT41547. University of Utah, Salt Lake City, UT, USA.
- Newall, P. S., Clarke, S. J., Haywood, H. M., Scholes, H., Clarke, N. R., King, P. A., and Barley, R. W. (2000). CO₂ storage as carbonate minerals. Report PH3117 for IEA Greenhouse Gas R&D Programme, CSMA Consultants Ltd. Cornwall, UK.

- Nichols, M. D. (2000). A general location guide for ultramafic rocks in California areas more likely to contain naturally occurring asbestos. California Department of Conservation, Division of Mines and Geology. Sacramento, CA.
- Nienczewski, J. R., Alves, S. M. S., Costa, G. S., Amaral, L. C., Dullius, J. E. L., Ligabue, R. A., Ketzer, J. M., and Einloft, S. (2008a). Improving the extraction of calcium and magnesium oxides of the steel slag aiming carbonates for mitigation of climate change. *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 249-256.
- Nienczewski, J. R., Alves, S. M. S., Costa, G. S., Amaral, L. C., Dullius, J. E. L., Ligabue, R. A., Ketzer, J. M., and Einloft, S. (2008b). Analysis of the influence of the size of carbon steel slag particle on the carbonation reaction. *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 447-450.
- Obst, M., Wehrli, B., and Dittrich, M. (2009). CaCO₃ nucleation by cyanobacteria: laboratory evidence for a passive, surface induced mechanism. *Geo biology*, 7, 324-347.
- O'Connor, W. K., Dahlin, D. C., Rush, G. E., Gerdemann, S. J., Penner, L. R., and Nilsen, D. N. (2004). Aqueous mineral carbonation: mineral availability, pretreatment, reaction parametrics and process studies. DOE/ARC-TR-04-002, Albany Research Center, Albany, OR, U. S.
- O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P., and Turner,
 P. C. (2001). Carbon dioxide sequestration by direct mineral carbonation:
 results from recent studies and current status. *In: Proceedings of the 1st National Conference on Carbon Sequestration*. Alexandria, VA, USA.
- O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P., and Turner,
 P. C. (2000). CO₂ storage in solid form: a study of direct mineral carbonation. *In: Proceedings of the 5th International Conference on Greenhouse Gas Technologies.* Cairns, Australia.

- O'Connor, W. K., Dahlin, D. C., Rush, G. E., Dahlin, C. L., and Collins, W. K. (2002). Carbon dioxide sequestration by direct mineral carbonation: process mineralogy of feed and products. *Minerals & Metallurgical Processing*, 19(2), 95-101.
- O'Connor, W. K., Dahlin, D. C., Rush, G. E., Gedermann, S. J., Penner, L. R., and Nilsen, D. N. (2005). *Aqueous mineral carbonation*. Final Report, DOE/ARC-TR-04-002.
- Oelkers, E. H. (2001). General kinetic description of multioxide silicate mineral and glass dissolution. *Geochim. Cosmochim. Acta*, 65, 3703-3719.
- Oelkers, E. H., Gislason, S. R., and Matter, J. (2008). Mineral Carbonation of CO₂. *Elements*, 4 (5), 333-337.
- Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of CO₂. J Petroleum Science and Engineering, 109, 364-392.
- Olsson, J., Bovet, N., Makovicky, E., Bechgaard, K., Balogh, Z., and Stipp, S. L. S. (2012). Olivine reactivity with CO₂ and H₂O on a microscale: implications for carbon sequestration. *Geochim. Cosmochim. Acta*, 77, 86-97.
- Orlando, A., Borrini, D., and Marini, L. (2011). Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity. *Applied Geochemistry*, 26, 1569-1583.
- Palandri, J. L., and Kharaka, Y. K. (2004). A compilation of rate parameters of watermineral interaction kinetics for application to geochemical modelling. Open File Report 2004-1068. U.S. Geological Survey, Menlo Park, USA.
- Park, A. A., and Fan, L. (2004). CO₂ mineral sequestration: physically activated dissolution of serpentine and pH swing process. *Chem. Eng. Science*, 59, 5241-5247.
- Perez-Lopez, R., Montes-Hernandez, G., Nieto, J. M., Renard, F., and Charlet, L., (2008). Carbonation of alkaline paper mill waste to reduce CO₂ greehouse gas emissions into the atmosphere. *Apply Geochemistry*, 23, 2292-2300.

- Power, I. M., Dipple, G. M., and Southam, G. (2010). Bioleaching of ultramafic tailings by Acidithiobacillus spp for CO₂ sequestration. *Chem. Geology*, 260, 286-300.
- Preston, B. L., and Jones, R. N. (2006). Climate change impacts on Australia and the benefits of early action to reduce global greenhouse gas emissions. *Climate Change Impacts on Australia*. CSIRO. Available at:
 http://csiro.au/files/files/ p6fy.pdf>.
- Prigiobbe, V., Costa, G., Baciocchi, R., Hanchen, M., and Mazzotti, M. (2009a). The effect of CO₂ and salinity on olivine dissolution kinetics at 120 °C. *Chem. Eng. Science*, 64, 3510-3515.
- Prigiobbe, V., Hanchen, M., Costa, G., Baciocchi, R., and Mazzotti, M. (2009b). Analysis of the effect of temperature, pH, CO₂ pressure, and salinity on the olivine dissolution kinetics. *Energy Procedia*, 1, 4881-4884.
- Prigiobbe, V., Hanchen, M., Werner, M., Baciocchi, R., and Mazzotti, M. (2009c). Mineral carbonation process for CO₂ sequestration. *Energy Procedia*, 1, 4885-4890.
- Prigiobbe, V., Polettini, A., and Baciocchi, R. (2009d). Gas-solid carbonation kinetics of air pollution control residues for CO₂ storage. *Chem. Eng. J*, 148, 270-278.
- Purnell, P., Farahi, E., and Short, N. R. (2008). Super-critical carbonation of pressed lime- waste composites. In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Rome, Italy, 299-304.
- Qafoku, O., Kovarik, L., Kukkadapu, R. K., Ilton, E. S., Arey, B. W., Tucek, J., and Felmy, A. R. (2012). Fayalite dissolution and siderite formation in watersaturated supercritical CO₂. *Chemical Geology*, 332-333, 124-135.
- Rau, G. H., Knauss, K. G., Langer, W. H., and Caldeira, K. (2007). Reducing energy related CO₂ emissions using accelerated weathering of limestone. *Energy*, 32, 1471-1477.

- Reddy, K. J., John, S., Weber, H., Argyle, M. D., Bhattacharyya, P., Taylor, D. T., Christensen, M., Foulke, T., and Fahlsing, P. (2010). Accelerated mineral carbonation (AMC) of flue gas carbon dioxide: pilot scale study. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 303-312.
- Reddy, K. J., Argyle, M. D., and Viswatej, A. (2008). Capture and mineralization of flue gas carbon dioxide (CO₂). *In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Rome, Italy, 221-228.
- Regnault, O., Lagneau, V., and Schneider, H. (2009). Experimental measurement of portlandite carbonation kinetics with supercritical CO₂. *Chem. Geology*, 265, 113-121.
- Ren, N. (2006). Progress in datum treatment methods of thermal analysis kinetics (Chinese). Progress Chemical, 18 (4), 410-416.
- Ridgwell, A., and Zeebe, R. E. (2005). The role of the global carbonate cycle in the regulation and evolution of the Earth system. *Earth Planet Science Let*, 34, 299-315.
- Romão, I., Ferreira, L. M. G., Fagerlund, J., and Zevenhoven, R. (2010). CO₂ sequestration with Portuguese serpentinite. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 77-87.
- Rubin, E. S. (2008). CO₂ capture and storage. *Elements*, 4, 311-317.
- Rudge, J. F., Kelemen, P. B., and Spiegelman, M. (2010). A simple model of reaction induced cracking applied to serpentinization and carbonation of peridotite. *Earth Planet Science Let*, 291, 215-227.
- Said, A., Eloneva, S., Fogerholm, C. J., Fagerlund, J., Nduagu, E., and Zevenhoven,
 R. (2010). Carbonation of Mg(OH)₂ produced from serpentinite rock: integration for integrated gasification combined cycle. *In: Proceedings of the*

3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Turku, Finland, 157-165.

- Santos, A., Ajbary, M., Morales-Florez, V., Kherbeche, A., Pinero, M., and Esquivias, L. (2009). Larnite powders and larnite/silica aerogel composites as effective agents for CO₂ sequestration by carbonation. *J Hazard Mater*, 168, 1397-1403.
- Santos, R., Francois, D., Vandevelde, E., Mertens, G., Elsen, J., and Van Gerven, T. (2010). Process intensification routes for mineral carbonation. *In: Proceedings* of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Turku, Finland, 13-22.
- Schaef, H. T., McGrail, B. P., and Owen, A. T. (2009). Basalt-CO₂-H₂O interactions and variability in carbonate mineralization rates. *Energy Procedia*, 1, 4899-4906.
- Schulze, R. K., Hill, M. A., Field, R. D., Papin, P. A., Hanrahan, R. J., and Byler, D. D. (2004). Characterization of carbonated serpentine using XPS and TEM. *Energy Conversion and Management*, 45 (20), 3169-3179.
- Seifritz, W. (1990). CO₂ disposal by means of silicates. *Nature*, 345, 486.
- Sipilä, J., Teir, S., and Zevenhoven, R. (2008). Carbon dioxide sequestration by mineral carbonation: literature review updates 2005-2007. Abo Akademi University, Turku, Finland.
- Song, N., Zhang, X., Wang, F., Zhang, C., and Tang, S. (2012). Elevated CO₂ increases Cs uptake and alters microbial communities and biomass in the rhizosphere of Phytolacca Americana Linn (pokeweed) and Amaranthus cruentus L. (purple amaranth) grown on soils spiked with various levels of Cs. J Environ Radioact., 112, 29-37.
- Soong, Y., Fauth, D. L., Howard, B. H., Jones, J. R., Harrison, D. K., Goodman, A. L., Gray, M. L., and Frommell, E. A. (2005). CO₂ sequestration with brine solution and fly ashes. *Energy Conversion Management*, 47, 1676-1685.

- SRA. (2007). The European technology platform for zero emission fossil fuel power plants (ZEP). Strategic Research Agenda.
- Stasiulaitiene, I., Fagerlund, J., Nduagu, E., Denafas, G., and Zevenhoven, R. (2011). Carbonation from Lithuania and Finland. *Energy Procedia*, 4, 2963-2970.
- Sun, J., Simons, S. J. R. (2008). Accelerated carbonation of the nirex reference vault backfill. In: Proceedings of the 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering. Rome, Italy, 305-312.
- Sun, Y., Yao, M. S., Zhang, J. P., and Yang, G. (2011). Indirect CO₂ mineral sequestration by steelmaking slag with NH₄Cl as leaching solution. *Chemical Engineering Journal*, 173, 437–445.
- Tawfic, T. A., Reddy, K. J., and Drever, J. I. (1995). Reaction of CO₂ with clean coal technology ash to reduce trace element mobility. *Water, Air and Soil Pollution*, 84, 385-398.
- Teir, S., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R. (2007). Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. *Energy*, 32, 528-539.
- Teir, S., Eloneva, S., Fogelholm, C. J., and Zevenhoven, R. (2009). Fixation of carbon dioxide by producing hydromagnesite from serpentinite. *Applied Energy*, 86, 214-218.
- Teir, S., Kettle, J., Harlin, A., and Sarlin, J. (2010). Production of silica and calcium carbonate particles from silicate minerals for inkjet paper coating and filler purposes. *In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering*. Turku, Finland, 63-74.
- Teir, S., Kuusik, R., Fogelholm, C.J., and Zevenhoven, R. (2007a). Production of magnesium carbonates from serpentinite for long-term storage of CO₂. *Int. J Mineral Process*, 85 (1-3), 1-15.

- Teir, S., Raiski, T., Kavaliauskaite, I., Denafas, G., and Zevenhoven, R. (2004). Mineral carbonation and Finnish pulp and paper industry. *The 29th international technical conference on coal utilization and fuel systems*. Clearwater, FL, USA.
- Teir, S., Revitzer, H., Eloneva, S., Fogelholm, C.J., and Zevenhoven, R. (2007b). Dissolution of natural serpentinite in mineral and organic acids. *Int. J Mineral Process*, 83 (1-2), 36-46.
- Thoning, K. W., Kitzis, D. R., and Crotwell, A. (2013). Atmospheric Carbon Dioxide Dry Air Mole Fractions from quasi-continuous measurements at Barrow, Alaska, Mauna Loa, Hawaii, American Samoa; and South Pole. 1973-2012, Version: 2013-05-28, Path: ftp://ftp.cmdl.noaa.gov/ccg/co2/in-situ/.
- Torróntegui, M. D. (2010). *Assessing the mineral carbonation science and technology*. MSc thesis. ETHZurich, Switzerland.
- Uibu, M., Velts, O., and Kuusik, R. (2010). Developments in CO₂ mineral carbonation of oil shale ash. *J Hazard Mater*, 174, 209-214.
- Uliasz-Bochenczyk, A., Mokrzycki, E., Piotrowski, Z., and Pomykala, R. (2009). Estimation of CO₂ sequestration potential via mineral carbonation in fly ash from lignite combustion in Poland. *Energy Procedia*, 1, 4873-4879.
- USEIA. (2011). Annual Energy Outlook 2011 with Projections to 2030. U.S. Energy Information Administration.
- Vogeli, J., Reid, D. L., Mathivha, R., Becker, M., Broadhurst, J., and Franzidis, J. P. (2010). Scale of natural carbonation occurring in mine wastes. *The 7th Inkabaye Afrika Earth Sciences Workshop*. Potsdam, Germany.
- Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., and Sbirrazzuoli, N. (2011). ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data. *Thermochim Acta*, 520, 1-19

- Wang, X., and Maroto-Valer, M. (2011). Integration of CO₂ capture and mineral carbonation by using recyclable ammonium salts. *Chem. Sus. Chem.*, 4, 1291-1300.
- Wendt, C. H., Butt, D. P., Lackner, K. S., and Ziock, H. J. (1998b). Thermodynamic considerations of using chlorides to accelerate the carbonate formation from magnesium silicates. Los Alamos National Laboratory, LA-UR-98-3612, Los Alamos, NM, USA.
- Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G., Raudsepp, M., Gabites, J. E., and Southam, G. (2009). Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: Examples from the Clinton Creek and Cassiar Chrysotile deposits, Canada. *Econ Geology*, 104, 95-112.
- Wolff-Boenisch, D. (2011). On the buffer capacity of CO₂-charged, seawater used for carbonation and subsequent mineral sequestration. *Energy Procedia*, 4, 3738-3745.
- Wu, J. C. S., Sheen, J. D., Chen, S. Y., and Fan, Y. C. (2001). Feasibility of CO₂ fixation via artificial rock weathering. *Ind. Eng. Chem. Res.*, 40, 3902-3905.
- Xu, T. F., Apps, J. A., and Pruess, K. (2005). Mineral sequestration of carbon dioxide in a sandstone-shale system. *Chemistry Geology*, 217, 295-318.
- Yamasaki, A. (2003). An overview of CO₂ mitigation options for global warming emphasizing CO₂ sequestration options. *Journal of Chemical Engineering of Japan, 36 (4)*, 361–75.
- Zevenhoven, R., and Kohlmann, J. (2002). CO₂ sequestration by magnesium silicate mineral carbonation in Finland. Recovery Recycling Re-integration. Geneva, Switzerland.
- Zevenhoven, R., and Teir, S. (2004). Long-term storage of CO₂ as magnesium carbonate in Finland. *The 3rd Annual Conference on Carbon Capture and Sequestration*. Alexandria, VA, USA.

- Zevenhoven, R., Bjorklof, T., Fagerlund, J., Romao, I., Highfield, J., and Jie, B. (2010). Assessment & improvement of a stepwise magnesium silicate carbonation route via MgSO₄ & Mg(OH)₂. In: Proceedings of the 3rd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, Turku, Finland, 41-49.
- Zevenhoven, R., and Kavaliauskaite, I. (2004). Mineral carbonation for long-term CO₂ storage: an energy analysis. *Int. J Thermodynamic*, 7 (1), 24-31.
- Zevenhoven, R., Teir, S., and Eloneva, S. (2008). Heat optimisation of a staged gassolid mineral carbonation process for long-term CO₂ storage. *Energy*, 33, 362-370.
- Zhao, L., Sang, L., Chen, J., Ji, J., and Teng, H. H. (2010). Aqueous carbonation of natural brucite: relevance to CO₂ sequestration. *Environmental Science & Technology*, 44, 406-411.
- Zheng, D., Lu H., Sun, X., Liu, X., Han, W., and Wang, L. (2013). Reaction mechanism of reductive decomposition of FGD gypsum with anthracite. *Thermochimica Acta*, 559, 23-31.