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ABSTRACT 

The foundation of any model-based testing (MBT) with Unified Modelling 

Language (UML) diagrams is test case generation (TCG) which predicts the 

expected functionalities of a system under test (SUT). However, problems associated 

with existing test case generation methods are lack of integration with various UML 

diagrams and tools, inability to cover all the model elements of UML diagrams, 

failure to generate comprehensive test cases based on adequate coverage criteria and 

lack of support tools for automatic generation of test cases. To address these 

challenges, efficient mapping strategies for model elements that engenders effective 

artefacts extraction and test case generation processes were proposed. The 

methodology employed in this research comprised constructing relevant models and 

algorithms as well as implementing with the use of Java programming language. 

Specifically, an enhanced elements mapper, artefacts extractor (parser) and test case 

generator were developed and integrated to produce the support tool. The elements 

mapper yielded an accuracy result of 99.31%. The artefacts extractor recorded 

99.64% accuracy while the test case generator recorded 100% accuracy. The 

improved methods proved to be more robust and efficiently generated quality test 

cases with eliminated redundancies based on all the descriptive attributes of UML 

diagrams. Limitations of existing the methods were addressed in the proposed 

method which is able to integrate more diagrams to generate quality test cases.  
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ABSTRAK 

Teras ujian berasaskan model (MBT) dengan gambar rajah Bahasa 

Pemodelan Bersatu (UML) merupakan penjanaan kes ujian (TCG) yang meramalkan 

fungsi jangkaan sistem di bawah ujian (SUT).Walau bagaimanapun, masalah yang 

berkaitan dengan kaedah penjanaan kes ujian yang sedia ada adalah kurangnya 

integrasi dengan pelbagai gambar rajah UML dan perkakasan, ketidakupayaan 

meliputi kesemua unsur model gambar rajah UML, kegagalan untuk menjana kes 

ujian yang komprehensif berdasarkan kriteria liputan yang memadai dan kekurangan 

perkakasan sokongan bagi penjanaan kes ujian automatik.  Bagi menangani cabaran 

tersebut, strategi pemetaan yang cekap bagi unsur model yang diwujudkan oleh 

pengekstrakan artifak berkesan dan proses penjanaan kes ujian telah dicadangkan. 

Kaedah yang digunakan dalam kajian ini terdiri daripada pembinaan model yang 

sesuai dan algoritma serta melaksanakannya dengan menggunakan bahasa 

pengaturcaraan Java secara khusus, pemeta elemen yang dipertingkatkan, 

pengekstrak artifak (penghurai) dan penjana kes ujian telah dibangunkan serta 

bersepadu untuk menghasilkan perkakasan sokongan.  Pemeta elemen menunjukkan 

ketepatan hasil kajian sebanyak 99.31%. Pengekstrak artifak mencatatkan ketepatan 

99.64%, manakala penjana kes ujian mencatatkan ketepatan 100%.  Kaedah yang 

dipertingkatkan ini terbukti lebih mantap dan secara cekap menjana kes ujian yang 

berkualiti dengan menghapuskan pertindihan berdasarkan semua sifat deskriptif 

gambar rajah UML. Had kaedah sedia ada dapat ditangani melalui kaedah yang 

dicadangkan yang mampu untuk menyepadukan lebih banyak gambar rajah untuk 

menjana kes ujian yang berkualiti. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

The fundamental activity of any black box testing is test case generation 

(Ingle and Mahamune 2015). This type of testing is designed based on the 

requirements specified and modelled for the software under test (SUT). Testing 

based on design models have the advantage that, test cases remain valid even when 

codes slightly changes (Kyaw and Min 2015). Design models are used as a basis for 

test case generation (Shanthi and Mohan Kumar 2012) and the technical name for 

this testing technique is known as Model Based Testing (MBT). However, the focus 

of this research is UML-based testing which is a sub set of MBT. It utilizes only 

UML diagrams for test case generation (Machado & Sampaio 2010). 

 

UML based testing (UBT) consist of 3 flows of procedural events which 

include: (i) the UML diagram used in modelling user’s requirements (ii) the parser 

required in extracting artefacts from model files of UML diagrams and (iii) a test 

case generation algorithm. The essence of creating models in UBT is to aid precise 

and comprehensive description of user’s requirements (Sawant and Shah 2011; 

Wehrmeister and Berkenbrock 2013). Parser aids the extraction of artefacts from the 

model files of UML diagrams which could be in XMI or .MDL format and stored in 

a tree or graph (Sawant and Shah 2012, Li et al. 2013) while test case generation 

process consist of algorithms that traverses the storage mediums to generate test 

cases (Priya and Sheba 2013). 
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The rest of the chapter is organized as follows: Section 1.2 discusses the 

motivation for undertaking this research work. Section 1.3 articulates the research 

problem statements while Section 1.4 deals with the research objectives. The scope 

of the study is presented in Section 1.5 while Section 1.6 provides the thesis 

structure. 

 

1.2 Motivation   

The complexities associated with testing have led to the need for automatic 

generation of test cases. This is because, user’s requirements are becoming larger 

and organizations are demanding for robust systems that can serve the needs of their 

customers irrespective of their geographical locations. Therefore, testing a fully 

implemented system with large requirements manually, can prove to be a difficult 

task (Jena et al. 2014). With the constant increase in system sizes, the concept of 

automatic generation of test cases is attracting serious research attention (Ingle and 

Mahamune, 2015). Correctly generated test cases may not only detect errors in a 

software system, but also minimizes the high cost and time associated with software 

testing process (Kyaw and  Min 2015). Furthermore, conducting testing from UML 

diagrams have a major advantage; that is, testing can be initiated as soon as the 

requirements/design documents becomes available; thus, saving time, cost, and 

detecting errors early during the development span (Kyaw and  Min 2015; 

Schweighofer and Heričko 2014; Kulkarni and Joglekar 2014).  

 

With these motivations, improved methods for test case generation based on 

UML diagrams, considering adequate coverage criteria is proposed. Therefore, each 

output of a coding exercise can be compared to the generated test cases in order to 

determine whether the system under development is behaving as expected or not.   
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1.3 Statements of the Problem   

The study was conducted in the area of test case generation with particular 

emphasis on UML diagrams driven by the problems arising from existing methods 

such as lack of integration with various UML diagrams and tools, inability to cover 

all model elements of UML diagrams, failure to generate comprehensive test cases 

based on adequate coverage criteria and lack of support tools for automatic 

generation of test cases. In this study, the problems of existing test case generation 

methods were addressed to ultimately provide mechanism of mapping generated test 

cases to the modelled requirements so as to verify the correctness of the SUT. 

Subsequently, the main research question of the study is: 

 

How can test cases be systematically generated  from UML diagrams? 

 

Figure 1.1 shows the four basic problems that was addressed by this research. 

The first problem has to do with lack of support for integrated generation of test 

cases from various UML diagrams. This is very crucial because, requirements could 

be modelled in structural or behavioural diagrams or both. Therefore, there is need to 

develop a method that can support diagrams in both categories to execute testing at 

various levels. The second problem has to do with the fact that UML diagrams could 

be complex in nature, hence the need to develop robust parsers capable of executing 

complete extraction of artefacts from the model files of UML diagrams. Also lack of 

adequate coverage criteria has led to the generation of incomplete test cases. In the 

proposed method, an improved algorithm was developed to enhance faster and 

reliable generation of quality test cases, devoid of erroneous elements. Proposing 

efficient support tool for automatic generation of test cases has to do with accurate 

implementations of mapping and extraction rules; hence this research. 
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Figure1.1 Diagrammatic illustration of research problems 

 

  

 Based on the main research question, the following sub research questions 

(RQs) were formulated to aid the development of improved solutions to the 

problems identified.  

 

 

 

 

 
Problem 1 Motivation Cause  

Lack of support for 

more diagrams 

To support unit, 

integration and system 

testing  

Lack of methods of 

mapping elements 

across the diagrams   

Erroneous extraction of 

artefacts from model 

files 

Problem 2 Motivation 

To achieve high 

success extraction rate   

Cause  

Availability of 

inefficient parser  

Incomprehensive test 

cases 

Problem 3 Motivation 

Detects divergences 

between expected and 

actual output 

accurately  

Cause  

Inadequate coverage 

criteria and poor 

traversal operations  

Lack of support tool 

Problem 4 Motivation 

Aids automatic test 

case generation     

Cause  

High level of 

computational 

complexities   

References: Jena et al. 2014,Swain et al.(2012),Panthi and Mohapatra(2012) 

References: Li et al.(2013), Patel and Patil(2013) 

References: Schweighofer and Heričko(2014), Kulkarni and Joglekar(2014) 

References: Jena et al.(2014), García-Domínguez et al.(2013) 
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RQ1  How can the coverage for more UML diagrams be achieved?  

 

 With UML, developers design systems with varieties of diagrams (both 

structural and behavioural) to present different views of the system model. 

Therefore, UML diagrams can individually or collectively be used to model 

requirements and test cases must be generated from them. For example, statechart 

diagrams could be used for unit testing while activity and sequence diagrams could 

be used for integration or system testing. However, existing methods are not 

integrated with the various modeling diagrams; therefore, generated test cases do not 

tally with the artefacts from the software development document. Lack of such 

methods makes practical adoption of testing tools difficult and manual integration 

between tools results in high costs.  

 

 

RQ2  How can complete extraction of artefacts be achieved? 

 

 Artefacts from descriptive links of objects, states, activities, use cases and 

classes are expected to be visited once in an adequate extraction process. This 

ensures that all the artefacts associated with any two objects or entities are extracted. 

Thus, for each artefact; it is necessary to account for the corresponding test case. But 

existing methods are deficient in ensuring complete extraction of artefacts from the 

model files of UML diagrams. Therefore, rules that guides the identification and 

extraction of appropriate artefacts led to the specification of this research question. 

 

RQ3  How can erroneous or redundant generation of test cases be avoided?  

 

 Existing methods generate test cases with many erroneous elements which 

can lead to generation of misleading test cases. This causes vagueness and 

complicate decision making processes. Therefore, methods capable of correctly 

traversing contents of the dependency flow tree (DFT) that stores the extracted 

artefacts during test case generations are required in order to efficiently produce 

valid test cases.  
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RQ4  How can coverage criteria be combined to cover all model elements?  

 

 Typically, the complexity of UML diagrams lies in the nature of their 

objects, messages, states, activities, classes and interactions or transitions. As a 

result, complex behaviours are observed when related objects passes messages with 

each other within a scenario. Therefore, the essence of this research question is to 

determine how to incorporate well-known coverage criteria into the proposed test 

case generation method.  

 

RQ5  How can the quality of test cases be improved? 

 

 One of the major problems associated with existing methods is their inability 

to generate test cases with criteria that ensures test adequacy. A good test case 

should have the quality to cover more features of test objective. In other words, 

effectiveness of testing process relies on the quality of test cases not in the quantity 

of test cases. It is therefore important to generate an appropriate amount (or optimal) 

number of test cases to ensure quality. The aim of this research question is to 

propose a test case reduction method which is capable of computing or generating a 

small representative set of test cases that covers all testing properties of the SUT. 

 

 

1.4  Research objectives 

The aim of this research is to develop a systematic test case generation 

method with reliable mapper and extractor in order to stimulate generation of 

optimal test cases. To achieve this aim, the following research objectives were 

specifically defined: 
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(i) To propose an improved method that aids generation of test cases from more 

UML diagrams; 

(ii) To propose an improved method that supports accurate extraction of artefacts 

from model files of UML diagrams;  

(iii) To propose an improved method that enhances generation of quality test 

cases;  

(iv) To implement the improved methods and evaluate them based on accuracy 

and redundancy. 

1.5 Scope of the study 

The scope of this research is within the confines of the following: 

 

 The solution proposed is limited to UML diagrams. UML-based testing (UBT) is 

a subset of model-based testing (MBT) where test cases are derived from the 

diagrams used to model user’s requirements.  

 

 The diagrams utilized include activity, class, sequence, statechart, and use cases 

because, they can adequately represent functional requirements. These diagrams 

contain artefacts drawn from the user’s requirements expressed in any of the 

modelling tools like ArgoUML, Rational Rose or Magic Draw but the proposed 

method is limited to functional requirements only.  

 

 For this research, ArgoUML was used which supports UML 1.3, 1.4/XMI 1.0, 

1.1 and 1.2. The rationale for adopting this tool for usage is because it is open 

source. Depending on the version, ArgoUML has the capacity of importing 

XMIs from another tool which makes it really convenient.  
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1.6 Thesis structure    

The rest of this thesis consist of 6 chapters which are structured as follows:   

 

Chapter 2 discusses review of related literature and puts the work conducted 

in this thesis into context. It identifies existing testing paradigms which considers the 

utilization of specifications or user’s requirements expressed through UML diagrams 

to conduct testing. It analyzed the testing concepts, processes and features that are 

quite different from traditional testing techniques. This led to the identification of 

research gaps or limitations of existing methods which served as the basis for 

developing an improved one. 

 

Chapter 3 mainly described the methods employed to achieve the thesis 

objectives. It consisted of well-crafted research framework integrated into an explicit 

research process with a number of knitted phases. The chapter also described the 

detailed design of the conducted researches which has led to the development of 

improved methods. In addition, it enumerated the processes involved in testing the 

performance of the proposed method which were used to verify the accomplishment 

of the research objectives.    

 

Chapter 4 presented the design strategies for the mapper, extractor and 

generator. These consist of the components that constitute the design strategies with 

the accompanied algorithms for both structural and behavioural UML diagrams. The 

proposed method is customized and aimed at enhancing more diagram and test 

coverages during test case generation. 

 

 

Chapter 5 presented the implementation strategies for the designed mapper, 

extractor and generator. It mainly focused on the integration of the designed methods 

into tool with reference to the methodological component of mapped elements, 

extracted artefacts and generated test cases. It also described the methodological 

foundation and technical aspects of the tool which included test model construction, 

conversion into XMI formats, mapping of XMI elements, extraction of artefacts 
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from the XMI file, intermediate representation of the extracted artefacts and test case 

generation. 

 

Chapter 6 presented the results of the proposed methods with reference to the 

integrated tool. The results of the proposed tool were discussed, evaluated and 

benchmarked with existing ones. The chapter was initiated by presenting the 

proposed methods based on three main issues: mapped elements, extracted artefacts 

and generated test cases.   

 

Chapter 7 summarises and concludes the thesis. This chapter concludes this 

thesis by revisiting the original research contributions with further discussions and 

explored important open issues concerning areas for methodology improvement and 

research directions for future work. 
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