

AUTOMATIC MODEL-BASED TEST CASE GENERATION FOR UML

DIAGRAMS USING TREE TRAVERSAL ALGORITHM

OLUWAGBEMI OLUWATOLANI

UNIVERSITY TEKNOLOGI MALAYSIA

iv

 AUTOMATIC MODEL-BASED TEST CASE GENERATION FOR UML

DIAGRAMS USING TREE TRAVERSAL ALGORITHM

OLUWAGBEMI OLUWATOLANI

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Doctor of Philosophy (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

APRIL 2016

vi

Specially dedicated to God Almighty

The supplier of strength and grace.

I love you Lord!!!

iii

vii

ACKNOWLEDGEMENT

First and foremost, I thank God Almighty for giving me the required grace

and strength to carry out this research work; without Him, it would have been

impossible to achieve this task.

Secondly, I thank my supervisor; Dr Hishammuddin Asmuni whose constant

guidance and suggestions have led to the completion of this thesis. Your suggestions

were valuable and your guidance inestimable. I wish you long life and good health as

you strive to be an expert of high reckoning in this field of computing.

I am highly indebted to my lovely husband who baptized me into academics

and provided the necessary support and congenial atmosphere to achieve my

academic dreams. Furthermore, I thank my dear daughters Success and Peace

Achimugu who lost a lot of maternal cares during the time of undertaking this

research. Your patience immensely contributed to the timely completion of this

thesis and my love for you is immeasurable.

I must appreciate the kindness of Lead City University Ibadan, Nigeria where

I work for releasing me to proceed on study leave with pay. I specifically, thank the

Chairman, Governing Council, Vice Chancellor and Registrar for their support

throughout the study years.

I am indeed grateful to my parents through whose biological union brought

me to this world. They had suffered over the years to ensure that my future was

never thwarted. My siblings are worthy of my thanks for the love and concern we all

share with each other. I am also grateful to my parent and siblings in-law for their

love, support and prayers.

iv

viii

ABSTRACT

The foundation of any model-based testing (MBT) with Unified Modelling

Language (UML) diagrams is test case generation (TCG) which predicts the

expected functionalities of a system under test (SUT). However, problems associated

with existing test case generation methods are lack of integration with various UML

diagrams and tools, inability to cover all the model elements of UML diagrams,

failure to generate comprehensive test cases based on adequate coverage criteria and

lack of support tools for automatic generation of test cases. To address these

challenges, efficient mapping strategies for model elements that engenders effective

artefacts extraction and test case generation processes were proposed. The

methodology employed in this research comprised constructing relevant models and

algorithms as well as implementing with the use of Java programming language.

Specifically, an enhanced elements mapper, artefacts extractor (parser) and test case

generator were developed and integrated to produce the support tool. The elements

mapper yielded an accuracy result of 99.31%. The artefacts extractor recorded

99.64% accuracy while the test case generator recorded 100% accuracy. The

improved methods proved to be more robust and efficiently generated quality test

cases with eliminated redundancies based on all the descriptive attributes of UML

diagrams. Limitations of existing the methods were addressed in the proposed

method which is able to integrate more diagrams to generate quality test cases.

v

ix

ABSTRAK

Teras ujian berasaskan model (MBT) dengan gambar rajah Bahasa

Pemodelan Bersatu (UML) merupakan penjanaan kes ujian (TCG) yang meramalkan

fungsi jangkaan sistem di bawah ujian (SUT).Walau bagaimanapun, masalah yang

berkaitan dengan kaedah penjanaan kes ujian yang sedia ada adalah kurangnya

integrasi dengan pelbagai gambar rajah UML dan perkakasan, ketidakupayaan

meliputi kesemua unsur model gambar rajah UML, kegagalan untuk menjana kes

ujian yang komprehensif berdasarkan kriteria liputan yang memadai dan kekurangan

perkakasan sokongan bagi penjanaan kes ujian automatik. Bagi menangani cabaran

tersebut, strategi pemetaan yang cekap bagi unsur model yang diwujudkan oleh

pengekstrakan artifak berkesan dan proses penjanaan kes ujian telah dicadangkan.

Kaedah yang digunakan dalam kajian ini terdiri daripada pembinaan model yang

sesuai dan algoritma serta melaksanakannya dengan menggunakan bahasa

pengaturcaraan Java secara khusus, pemeta elemen yang dipertingkatkan,

pengekstrak artifak (penghurai) dan penjana kes ujian telah dibangunkan serta

bersepadu untuk menghasilkan perkakasan sokongan. Pemeta elemen menunjukkan

ketepatan hasil kajian sebanyak 99.31%. Pengekstrak artifak mencatatkan ketepatan

99.64%, manakala penjana kes ujian mencatatkan ketepatan 100%. Kaedah yang

dipertingkatkan ini terbukti lebih mantap dan secara cekap menjana kes ujian yang

berkualiti dengan menghapuskan pertindihan berdasarkan semua sifat deskriptif

gambar rajah UML. Had kaedah sedia ada dapat ditangani melalui kaedah yang

dicadangkan yang mampu untuk menyepadukan lebih banyak gambar rajah untuk

menjana kes ujian yang berkualiti.

vi

x

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION

 DEDICATION

 ACKNOWLEDGEMENT

 ABSTRACT

 ABSTRAK

 TABLE OF CONTENTS

 LIST OF TABLES

 LIST OF FIGURES

 LIST OF ABBREVIATIONS

 LIST OF APPENDICES

1 INTRODUCTION 1

 1.1 Overview 1

 1.2 Motivation 2

 1.3 Statements of problem 3

 1.4 Research objectives 6

 1.5 Scope of the study 7

 1.6 Structure of the thesis 8

vii

ii

iii

iv

v

vi

vii

xi

xiii

xv

xvii

xi

2 LITERATURE REVIEW 10

 2.1 Introduction 10

 2.2 Model-based testing 11

 2.3 UML-based testing 15

 2.3.1 Test case generation methods by diagrams

 2.3.1.1 Statechart diagram-based methods 17

 2.3.1.2 Use case diagram-based methods 23

 2.3.1.3 Sequence diagram-based methods 25

 2.3.1.4 Activity diagram-based methods 32

 2.3.1.5 Class diagram-based methods 38

 2.3.1.6 Combination of diagrams 40

 2.4 Existing extraction algorithms 42

 2.5 Tree traversal algorithms 47

 2.6 Evaluation of test cases 48

 2.7 Summary 51

3 RESEARCH METHODOLOGY 52

 3.1 Introduction 52

 3.2 Research framework 53

 3.3 Overall method for framework implementation 56

 3.4 Case study 62

 3.4.1 Case study 1: Library information system 62

 3.4.2 Case study 2: Students’ information system 63

 3.4.3 Case study 3: Bank ATM 64

 3.4.4 Case study 4: Ordering system 65

 3.4.5 Cellular phone software 66

 3.5 Formal methodological process 67

 3.5.1 Redundancy elimination algorithm 68

viii

 16

xii

 3.6 Test coverage criteria 74

 3.6.1 Element-flow criterion 75

 3.6.2 Decision-flow criterion 76

 3.6.3 Model-flow criterion 77

 3.7 Summary 78

4 PROPOSED METHODS FOR DESIGN OF THE

 MAPPPER, EXTRACTOR AND GENERATOR 79

 4.1 Introduction 79

 4.2 Elements mapper 80

 4.2.1 Formal method for elements identification 82

 4.2.2 Formal method for mapping process 87

 4.2.3 Mapping formalization 91

 4.3 Artefacts extractor (Parser) 96

 4.3.1 Artefacts extraction process (parsing) 96

 4.3.2 Components of the artefacts extractor 99

 4.3.2.1 ArrayList creator 99

 4.3.2..2 Stereotype transformer 103

 4.4 Test case generator 105

 4.4.1 Proposed test case generation method 105

 4.4.2 Components of the test case generator 107

 4.4.2.1 DFT generator 107

 4.4.2.2 Traversals 111

 4.5 Discussion 113

5 IMPLEMENTATION OF THE TOOL FOR

 GENERATING TEST CASES 114

 5.1 Introduction 114

 5.2 Implementation of the elements mapper 115

 5.3 Implementation of the artefacts extractor 118

 5.4 Implementation of test case generator 122

ix

xiii

 5.5 Metamodel of the integrated tool 126

 5.6 Discussion 129

6 RESULTS AND DISCUSSION 132

 6.1 Introduction 132

 6.2 Experimental set up of the mapper 133

 6.2.1 Experimental results of the mapper 134

 6.2.2 Comparison of the mapper 148

 6.2.3 Contributions of the elements mapper 150

 6.3 Experimental set up of the artefacts extractor 151

 6.3.1 Results of the proposed extractor 151

 6.3.2 Comparison of existing/proposed methods 157

 6.3.3 Contributions of the extractor 161

 6.4 Experimental set up of the test case generator 161

 6.4.1 Results of the proposed generator 162

 6.4.2 Benchmark results with existing works 175

 6.4.3 Contributions of the generator 177

 6.5 Discussion 178

7 CONCLUSION AND FUTURE WORK 179

 7.1 Introduction 179

 7.1.1 Research contributions 180

 7.1.2 Responses to research questions (RQs) 183

 7.1.2.1 Elements mapper (RQ1) 184

 7.1.2.2 Artefacts extractor (RQ2) 184

 7.1.2.3 Test case generator (RQ3&5) 184

 7.1.2.4 Integrated coverage criteria (RQ4)185

 7.2 Future work 185

REFERENCES 187

Appendices A-B 204-252

x

xiv

LIST OF TABLES

TABLE NO TITLE PAGE

2.1 Descriptive summary of statechart-based methods 20

2.2 Descriptive summary of use case-based methods 24

2.3 Descriptive summary of sequence-based methods 30

2.4 Descriptive summary of activity-based methods 35

2.5 Descriptive summary of class based methods 39

2.6 Combinational test case generation methods 41

2.7 Tree-based test case generation 45

2.8 Graph-based test case generation 46

2.9 Evaluation of test cases 49

3.1 Test artefacts for UML-based testing 57

4.1 Elements of UML diagrams 81

4.2 Mapped elements 93

4.3 Classes used to generate DFT 109

6.1 Mapped elements for ATM activity diagram 136

6.2 Elements mapper results for ATM software 143

6.3 Elements mapper results for Cellular system 144

6.4 Elements mapper results for Ordering system 145

6.5 Elements mapper results for Library system 146

6.6 Elements mapper results for Students’ system 147

6.7 Results of the existing and proposed mappers 149

6.8 Evaluation of artefacts based on UML elements 154

6.9 Evaluation of artefacts based on coverages 156

6.10 Benchmark with existing methods 159

6.11 Generated test cases based on coverage criteria 165

6.12 Evaluation of test cases based on coverage 169

xi

xv

6.13 Evaluation of test cases based on redundancy 170

6.14 Comparison of test coverage and redundancy results 172

6.15 Evaluation of test cases based on % coverage 173

6.16a Benchmark with existing methods (activity) 175

6.16b Benchmark with class and sequence diagrams 176

6.16c Benchmark with sequence diagram 176

6.16d Benchmark with statechart diagram 176

xii

xvi

LIST OF FIGURES

FIGURE NO TITLE PAGE

1.1 Diagrammatic illustration of research problems 4

2.1 Software testing taxonomy 14

2.2 DFS and BFS algorithms 47

3.1 Research framework 54

3.2 Dependency flow tree 69

3.3 Sample flowchart of the operation 72

3.4 Sample class diagram 73

4.1 Proposed method for mapping UML elements 85

4.2 Formalization components 85

4.3 Morphisms for elements in UML metamodel 86

4.4 Formal notations for mapping UML elements 86

4.5 The metamodel for mapping process 87

4.6 Process flow of the elements mapper 90

4.7 Mapper meta-model 92

4.8 Proposed extraction (parsing) process 97

4.9 Artefacts transformation process 99

4.10 Proposed flow of the ElementList creator 102

4.11 Proposed test case generation method 106

4.12 Meta-model of the test case generator 110

5.1 Meta-model for the integrated tool 127

5.2 Integrated tool implementation interface 129

6.1 Input of the mapper 135

6.2 Output of the mapper 135

6.3 Activity diagram for insert card 136

6.4 Activity diagram for insert PIN 137

xiii

xvii

6.5 Activity diagram for select transaction 138

6.6 Activity diagram for withdrawal 139

6.7 Activity diagram for check balance 140

6.8 Activity diagram for transfer 141

6.9 Output of the extractor 152

6.10a Implementation DFS 158

6.10b Implementation DFS 158

6.11 ATM activity diagram 163

6.12 Simulated activity diagram 164

6.13 Sample test cases with ATM activity diagram 168

xiv

xviii

LIST OF ABBREVIATIONS

AC - Activity Converter

ASSIST - Automatic State tranSItion teSTer

ATCGSGA - Activity Test Case Generation with Simple Genetic Algorithm

ATCUM - Automatic Test Case UML Model

AT - Artefacts Transformer

ATM - Automated Teller machine

BFS - Breadth-First-Search

CASE - Computer Aided Software Engineering

COM - Component Object Model

CORBA - Common Object Request Broker Architecture

DCOM - Distributed Component Object Model

DFT - Dependency Flow Tree

DFS - Depth-First-Search

EFSMs - Extended Finite State M

EVAG - Extended Variable Assignment Graph

FSM - Finite State Machine

GA - Genetic Algorithm

IBM - International Business Machines

IST - Invocation Sequence Tree

ITM - Intermediate Testable Model

IBT - Implementation-based Testing

IMR - Internal Model Representation

LHS - Left Hand Side

MBT - Model-Based Testing

MDA - Model Driven Architecture

MDD - Model Driven Design

MDE - Model Driven Environment

xv

xix

MOF - Meta Object Facility

M2T - Model-to-Text Transformation

MFG - Model Flow Graph

OMG - Object Management Group

OCL - Object Constraints Language

OOD - Object Oriented Design

PIM - Platform Independent Model

QoS - Quality of Service

QML - Qtronic Modeling Language

RHS - Right Hand Side

RUCM - Restricted Use Case Modeling

SBT - Specification-based Testing

SAD - State-Activity Diagram

SCOTEM - State Collaboration Test Model

SDLC - System Development Life Cycle

SeDiTeC - Testing Based on Sequence Diagram

SUT - System under Test

SVM - Support Vector Machine

TCG - Test Case Generation

TESTOR - Test Sequence Generator

TFG - Testing flow graph

TSGen - Test Scenario Generator

TDE - Transparent Data Encryption

TnT - Touch and Test

TECS - Test Environment for Complex Systems

UML - Unified Modeling Language

UBT - UML-Based Testing

UBTCG - UML Based Test Case Generator

UTG - UML Behavioral Test case Generator

UMLTGF - UML Test Generation Function

URI - Universal Resource Indicator

VAG - Variable Assignment Graph

XMI - XML Metadata Interchange

XML - Xtensible Mark-up Language

xvi

xx

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Case study diagrams 204

B Implementation codes 233

B1 Codes of elements mapper 234

B2 Codes of the artefacts extractor 241

B3 Array list creator 244

B4 Test case generator 250

xvii

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The fundamental activity of any black box testing is test case generation

(Ingle and Mahamune 2015). This type of testing is designed based on the

requirements specified and modelled for the software under test (SUT). Testing

based on design models have the advantage that, test cases remain valid even when

codes slightly changes (Kyaw and Min 2015). Design models are used as a basis for

test case generation (Shanthi and Mohan Kumar 2012) and the technical name for

this testing technique is known as Model Based Testing (MBT). However, the focus

of this research is UML-based testing which is a sub set of MBT. It utilizes only

UML diagrams for test case generation (Machado & Sampaio 2010).

UML based testing (UBT) consist of 3 flows of procedural events which

include: (i) the UML diagram used in modelling user’s requirements (ii) the parser

required in extracting artefacts from model files of UML diagrams and (iii) a test

case generation algorithm. The essence of creating models in UBT is to aid precise

and comprehensive description of user’s requirements (Sawant and Shah 2011;

Wehrmeister and Berkenbrock 2013). Parser aids the extraction of artefacts from the

model files of UML diagrams which could be in XMI or .MDL format and stored in

a tree or graph (Sawant and Shah 2012, Li et al. 2013) while test case generation

process consist of algorithms that traverses the storage mediums to generate test

cases (Priya and Sheba 2013).

2

The rest of the chapter is organized as follows: Section 1.2 discusses the

motivation for undertaking this research work. Section 1.3 articulates the research

problem statements while Section 1.4 deals with the research objectives. The scope

of the study is presented in Section 1.5 while Section 1.6 provides the thesis

structure.

1.2 Motivation

The complexities associated with testing have led to the need for automatic

generation of test cases. This is because, user’s requirements are becoming larger

and organizations are demanding for robust systems that can serve the needs of their

customers irrespective of their geographical locations. Therefore, testing a fully

implemented system with large requirements manually, can prove to be a difficult

task (Jena et al. 2014). With the constant increase in system sizes, the concept of

automatic generation of test cases is attracting serious research attention (Ingle and

Mahamune, 2015). Correctly generated test cases may not only detect errors in a

software system, but also minimizes the high cost and time associated with software

testing process (Kyaw and Min 2015). Furthermore, conducting testing from UML

diagrams have a major advantage; that is, testing can be initiated as soon as the

requirements/design documents becomes available; thus, saving time, cost, and

detecting errors early during the development span (Kyaw and Min 2015;

Schweighofer and Heričko 2014; Kulkarni and Joglekar 2014).

With these motivations, improved methods for test case generation based on

UML diagrams, considering adequate coverage criteria is proposed. Therefore, each

output of a coding exercise can be compared to the generated test cases in order to

determine whether the system under development is behaving as expected or not.

3

1.3 Statements of the Problem

The study was conducted in the area of test case generation with particular

emphasis on UML diagrams driven by the problems arising from existing methods

such as lack of integration with various UML diagrams and tools, inability to cover

all model elements of UML diagrams, failure to generate comprehensive test cases

based on adequate coverage criteria and lack of support tools for automatic

generation of test cases. In this study, the problems of existing test case generation

methods were addressed to ultimately provide mechanism of mapping generated test

cases to the modelled requirements so as to verify the correctness of the SUT.

Subsequently, the main research question of the study is:

How can test cases be systematically generated from UML diagrams?

Figure 1.1 shows the four basic problems that was addressed by this research.

The first problem has to do with lack of support for integrated generation of test

cases from various UML diagrams. This is very crucial because, requirements could

be modelled in structural or behavioural diagrams or both. Therefore, there is need to

develop a method that can support diagrams in both categories to execute testing at

various levels. The second problem has to do with the fact that UML diagrams could

be complex in nature, hence the need to develop robust parsers capable of executing

complete extraction of artefacts from the model files of UML diagrams. Also lack of

adequate coverage criteria has led to the generation of incomplete test cases. In the

proposed method, an improved algorithm was developed to enhance faster and

reliable generation of quality test cases, devoid of erroneous elements. Proposing

efficient support tool for automatic generation of test cases has to do with accurate

implementations of mapping and extraction rules; hence this research.

4

Figure1.1 Diagrammatic illustration of research problems

 Based on the main research question, the following sub research questions

(RQs) were formulated to aid the development of improved solutions to the

problems identified.

Problem 1 Motivation Cause

Lack of support for

more diagrams

To support unit,

integration and system

testing

Lack of methods of

mapping elements

across the diagrams

Erroneous extraction of

artefacts from model

files

Problem 2 Motivation

To achieve high

success extraction rate

Cause

Availability of

inefficient parser

Incomprehensive test

cases

Problem 3 Motivation

Detects divergences

between expected and

actual output

accurately

Cause

Inadequate coverage

criteria and poor

traversal operations

Lack of support tool

Problem 4 Motivation

Aids automatic test

case generation

Cause

High level of

computational

complexities

References: Jena et al. 2014,Swain et al.(2012),Panthi and Mohapatra(2012)

References: Li et al.(2013), Patel and Patil(2013)

References: Schweighofer and Heričko(2014), Kulkarni and Joglekar(2014)

References: Jena et al.(2014), García-Domínguez et al.(2013)

5

RQ1 How can the coverage for more UML diagrams be achieved?

 With UML, developers design systems with varieties of diagrams (both

structural and behavioural) to present different views of the system model.

Therefore, UML diagrams can individually or collectively be used to model

requirements and test cases must be generated from them. For example, statechart

diagrams could be used for unit testing while activity and sequence diagrams could

be used for integration or system testing. However, existing methods are not

integrated with the various modeling diagrams; therefore, generated test cases do not

tally with the artefacts from the software development document. Lack of such

methods makes practical adoption of testing tools difficult and manual integration

between tools results in high costs.

RQ2 How can complete extraction of artefacts be achieved?

 Artefacts from descriptive links of objects, states, activities, use cases and

classes are expected to be visited once in an adequate extraction process. This

ensures that all the artefacts associated with any two objects or entities are extracted.

Thus, for each artefact; it is necessary to account for the corresponding test case. But

existing methods are deficient in ensuring complete extraction of artefacts from the

model files of UML diagrams. Therefore, rules that guides the identification and

extraction of appropriate artefacts led to the specification of this research question.

RQ3 How can erroneous or redundant generation of test cases be avoided?

 Existing methods generate test cases with many erroneous elements which

can lead to generation of misleading test cases. This causes vagueness and

complicate decision making processes. Therefore, methods capable of correctly

traversing contents of the dependency flow tree (DFT) that stores the extracted

artefacts during test case generations are required in order to efficiently produce

valid test cases.

6

RQ4 How can coverage criteria be combined to cover all model elements?

 Typically, the complexity of UML diagrams lies in the nature of their

objects, messages, states, activities, classes and interactions or transitions. As a

result, complex behaviours are observed when related objects passes messages with

each other within a scenario. Therefore, the essence of this research question is to

determine how to incorporate well-known coverage criteria into the proposed test

case generation method.

RQ5 How can the quality of test cases be improved?

 One of the major problems associated with existing methods is their inability

to generate test cases with criteria that ensures test adequacy. A good test case

should have the quality to cover more features of test objective. In other words,

effectiveness of testing process relies on the quality of test cases not in the quantity

of test cases. It is therefore important to generate an appropriate amount (or optimal)

number of test cases to ensure quality. The aim of this research question is to

propose a test case reduction method which is capable of computing or generating a

small representative set of test cases that covers all testing properties of the SUT.

1.4 Research objectives

The aim of this research is to develop a systematic test case generation

method with reliable mapper and extractor in order to stimulate generation of

optimal test cases. To achieve this aim, the following research objectives were

specifically defined:

7

(i) To propose an improved method that aids generation of test cases from more

UML diagrams;

(ii) To propose an improved method that supports accurate extraction of artefacts

from model files of UML diagrams;

(iii) To propose an improved method that enhances generation of quality test

cases;

(iv) To implement the improved methods and evaluate them based on accuracy

and redundancy.

1.5 Scope of the study

The scope of this research is within the confines of the following:

 The solution proposed is limited to UML diagrams. UML-based testing (UBT) is

a subset of model-based testing (MBT) where test cases are derived from the

diagrams used to model user’s requirements.

 The diagrams utilized include activity, class, sequence, statechart, and use cases

because, they can adequately represent functional requirements. These diagrams

contain artefacts drawn from the user’s requirements expressed in any of the

modelling tools like ArgoUML, Rational Rose or Magic Draw but the proposed

method is limited to functional requirements only.

 For this research, ArgoUML was used which supports UML 1.3, 1.4/XMI 1.0,

1.1 and 1.2. The rationale for adopting this tool for usage is because it is open

source. Depending on the version, ArgoUML has the capacity of importing

XMIs from another tool which makes it really convenient.

8

1.6 Thesis structure

The rest of this thesis consist of 6 chapters which are structured as follows:

Chapter 2 discusses review of related literature and puts the work conducted

in this thesis into context. It identifies existing testing paradigms which considers the

utilization of specifications or user’s requirements expressed through UML diagrams

to conduct testing. It analyzed the testing concepts, processes and features that are

quite different from traditional testing techniques. This led to the identification of

research gaps or limitations of existing methods which served as the basis for

developing an improved one.

Chapter 3 mainly described the methods employed to achieve the thesis

objectives. It consisted of well-crafted research framework integrated into an explicit

research process with a number of knitted phases. The chapter also described the

detailed design of the conducted researches which has led to the development of

improved methods. In addition, it enumerated the processes involved in testing the

performance of the proposed method which were used to verify the accomplishment

of the research objectives.

Chapter 4 presented the design strategies for the mapper, extractor and

generator. These consist of the components that constitute the design strategies with

the accompanied algorithms for both structural and behavioural UML diagrams. The

proposed method is customized and aimed at enhancing more diagram and test

coverages during test case generation.

Chapter 5 presented the implementation strategies for the designed mapper,

extractor and generator. It mainly focused on the integration of the designed methods

into tool with reference to the methodological component of mapped elements,

extracted artefacts and generated test cases. It also described the methodological

foundation and technical aspects of the tool which included test model construction,

conversion into XMI formats, mapping of XMI elements, extraction of artefacts

9

from the XMI file, intermediate representation of the extracted artefacts and test case

generation.

Chapter 6 presented the results of the proposed methods with reference to the

integrated tool. The results of the proposed tool were discussed, evaluated and

benchmarked with existing ones. The chapter was initiated by presenting the

proposed methods based on three main issues: mapped elements, extracted artefacts

and generated test cases.

Chapter 7 summarises and concludes the thesis. This chapter concludes this

thesis by revisiting the original research contributions with further discussions and

explored important open issues concerning areas for methodology improvement and

research directions for future work.

187

REFERENCES

Aichernig, B. K., Ničković, D., and Tiran, S. (2015). Scalable Incremental Test-case

Generation from Large Behavior Models. Tests and Proofs (pp. 1-18). Springer

International Publishing.

Anand, S., Burke, E., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W., and Zhu,

H. (2013). An Orchestrated Survey on Automated Software Test Case

Generation. The Journal of Systems and Software, 86, 1978-2001.

Anbarasu, I. (2012). A Survey on Test Case Generation and Extraction of Reliable

Test Cases. International Journal of Computer Science & Applications, 1(10),

1-6.

Andrews, A., France, R., Ghosh, S., and Craig, G., (2003). Test Adequacy Criteria for

UML Design Models. Journal of Software Testing, Verification and

Reliability, 13(2), 95-127.

Alanen, M., and Porres, I. (2005). Model Interchange using OMG Standards.

Proceedings of the 2005 IEEE Software Engineering and Advanced

Applications Conference. 30 August - 3 September. Turku, Finland. IEEE, 450-

458.

Alhroob, A., Dahal, K., and Hossain, A. (2010). Automatic Test Cases Generation

from Software Specifications Modules. Journal of e-Informatica Software

Engineering, 4(1), 109-121.

Ali, S., L. C. Briand, M. J.-u. Rehman, H. Asghar, M. Z. Z. Iqbal, and A. Nadeem

(2007). A State-based Approach to Integration Testing based on UML Models.

Information Software Technology, 49 (11),1087-1106.

188

Aggarwal, M., and Sabharwal, S. (2012). Test Case Generation from UML State

Machine Diagram: A Survey. Proceedings of the 2012 IEEE Conference

on Computer and Communication Technology (ICCCT). 23-25 November

2012. Allahabad, India: IEEE, 133-140.

Ahmed, S. U., Sahare, S. A., and Ahmed, A. (2013). Automatic Test Case Generation

using Collaboration UML Diagrams. World Journal of Science and

Technology, 3(1), 4-6.

Arcaini, P., and Gargantini, A. (2014). Test Generation for Sequential Nets of Abstract

State Machines with Information Passing. Science of Computer Programming,

(1)94, 93-108.

Asthana, S., Tripathi, S., and Singh, S.K., (2010). A Novel Approach to Generate Test

Cases Using Class and Sequence Diagrams. Contemporary Computing,

(pp.155-167). Springer Berlin Heidelberg.

Bao-Lin, L., Zhi-shu, L., Qing, L., and Hong, C.Y., (2007). Test Case Automate

Generation from UML Sequence Diagram and OCL Expression. Proceedings

of the 2007 IEEE Conference on Computational Intelligence and Security

(CIS), 15-19 December 2007. Harbin, Heilongjiang, China: IEEE, 1048-1052.

Bandyopadhyay, A., and Ghosh, S., (2009). Test Input Generation using UML

Sequence and State Machines Models. Proceedings of the 2009 IEEE

International Conference on Software Testing, Verification, and Validation, 1-

4 April 2009. Denver, CO, USA: IEEE, 121–130.

Bandyopadhyay, A., and Ghosh, S., (2008). Using UML Sequence Diagrams and State

Machines for Test Input Generation, student paper, Proceedings of the 2008

IEEE International Symposium on Software Reliability Engineering, 10-14

Nov 2008. Seattle, Washington, USA: IEEE, 309-310.

Baudry, B., Le Traon, Y., and Sunyé, G. (2002). Testability Analysis of a UML Class

Diagram. Proceedings of the 2002 8th International Symposium on Software

Metrics, 2002, IEEE, 54-63.

Bertolino, A., amd Basanieri, F. (2000). A Practical Approach to UML-based

Derivation of Integration Tests. 4th International Software Quality Week

Europe and International Internet Quality Week Europe (QWE 2000), 92-110.

Bertolino, A., (2007). Software Testing Research: Achievements, Challenges, Dreams.

Proceedings of the 2007 IEEE International Symposium on Future of Software

Engineering. 23-25 May 2007. Minneapolis, Minnesota, USA: IEEE, 85-103.

189

Beizer, B. (1990). Software Testing Techniques. 2nd Edition, Van Nostrand Reinhold,

New York, USA.

Binder, R. (2000). Testing object-oriented systems: models, patterns, and tools.

Addison-Wesley Professional.

Biswal, B. N., Nanda, P., and Mohapatra, D. P. (2008). A Novel Approach for

Scenario-based Test Case Generation. Proceedings of the IEEE 2008

International Conference on Information Technology.17-20 December, 2008.

Bhubaneswar, India:IEEE, 244-247.

Biswal, B. N. (2010). Test Case Generation and Optimization of Object-Oriented

Software using UML Behavioral Models. MSc Thesis. India.

Blackburn, M., Busser, R., and Nauman, A., (2004). Why Model Based Test

Automation is different and what you should know to get started. Proceedings

of the IEEE 2004 International Conference on Practical Software Quality and

Testing (PSQT/PSTT), Washington, D. C. USA, 22-26.

Boberg, J., (2008). Early Fault Detection with Model-Based Testing. Proceedings of

the ACM 7th 2008 International Workshop on ERLANG (ERLANG), Victoria,

BC, Canada, 9-20.

Booch, G., Rumbaugh, J., Jacobson, I. (2005). The Unified Modeling Language User

Guide. 2nd Edition, Addison-Wesley.

Boghdady, P. N., Badr, N., Hashem, M., and Tolba, M. F. (2011). Test Case

Generation and Test Data Extraction Techniques. International Journal of

Electrical Computer Science,11(3), 87-94.

Buchs, D., L. Pedro, and L. Lucio (2006). Formal Test Generation from UML Models.

Dependable Systems: Software, Computing, Networks, 1(1),145-171.

Briand, L. and Y. Labiche (2002). A UML-based Approach to System Testing.

Software and Systems Modeling 1 (1), 10-42.

Briand, L.C., Penta, M.D., and Labiche, Y. (2004). Assessing and Improving State-

Based Class Testing: A Series of Experiments. Transactions on Software

Engineering, 30(11),770–793.

Briand, L.C., Cui, J., and Labiche, Y. (2003). Towards Automated Support for

Deriving Test Data from UML Statecharts. Proceedings of the IEEE/ACM 6th

2003 International Conference on the Unified Modeling Language: Modeling

Languages and Applications. 20-24 October. San Francisco, California, USA:

IEEE, 249-264.

190

Briand, L.C., Cui, J., and Labiche, Y. (2005). Automated support for deriving test

requirements from UML statecharts. Journal of Software and Systems

Modeling, 4(4),399-423.

Bruegge B. and Dutoit A. H., (2004). Object-Oriented Software Engineering Using

UML, Patterns, and Java. Prentice Hall, 2nd Edition.

Cavalli, A., Maag, S., Papagiannaki, S., and Verigakis, G., (2005). From UML Models

to Automatic Generated Tests for the dotLRN e-learning Llatform. Electronic

Notes in Theoretical Computer Science. 116(1),133-144.

Carvalho, G., Falcão, D., Barros, F., Sampaio, A., Mota, A., Motta, L., and Blackburn,

M., (2014). NAT2TESTSCR: Test Case Generation from Natural Language

Requirements Based on SCR Specifications. Proceedings of the 28th ACM

International Symposium on Applied Computing. 2014. New York, NY, USA:

ACM, 1217-1222.

Cavarra A., Crichton C., and Davies J., (2004). A Method for the Automatic

Generation of Test Suites from Object Models. Information and Software

Technology. 46(5), 309-314.

Cavarra, A. and J. Kuster-Filipe (2005). Combining Sequence Diagrams and OCL for

Liveness. Electronic Notes in Theoretical Computer Science. 115(1), 19-38.

Cechich, A., Piattini, M., and Vallecillo, A., (2003). Component-Based Software

Quality: Methods and Techniques. Lecture Notes in Computer Science. (pp.

2693). London: Springer-Verlag.

Chen, T. Y., Kuo, F. C., Merkel, R. G., and Tse, T. H. (2010). Adaptive Random

Testing: The Art of Test Case Diversity. Journal of Systems and

Software, 83(1), 60-66.

Chen, T., Mishra, P., and Kalita, D., (2010). Efficient Test Case Generation for

Validation of UML Activity Diagrams. Design Automation for Embedded

Systems. 14(2), 105-130.

Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., and Li, X. (2009). UML Activity

Diagram-based Automatic Test Case Generation for Java programs. The

Computer Journal, 52(5), 545-556.

Conrad, M., (2004). A systematic approach to testing automotive control

software. Proceeding of Convergence Transportation Electronics Association.

1(1):1-12.

191

Creswell, J.W., (2003). Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. Sage Publications Inc.

Dai, Z., and Chen, M. H. (2007). Automatic Test Generation for Database-Driven

Applications. (pp. 9-11).

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C. M., Patton, G. C., and

Horowitz, B. M. (1999). Model-based testing in practice. Proceedings of the

21st International Conference on Software Engineering. 1999. New York, NY,

USA: ACM, 285-294.

Dias-Neto, A. C., and Travassos, G. H. (2009). Model-based Testing Approaches

Selection for Software Projects. Information and Software Technology, 51(11),

1487-1504.

Dias Neto, A. C., Subramanyan, R.,Vieira, M., and Travassos, G. H. (2007). A survey

on Model-based Testing Approaches: A Systematic Review. Proceedings of

the 1st ACM International Workshop on Empirical Assessment of Software

Engineering Languages and Technologies: held in conjunction with the 22nd

IEEE/ACM International Conference on Automated Software Engineering.

2007. New York, NY, USA: ACM, 31-36.

Dias Neto, A.C., and Travassos, G. H. (2008). Supporting the Selection of Model-

based Testing Approaches for Software Projects. Proceeding of 3rd IEEE/ACM

ICSE International Workshop on Automation of Software Testing. 10-18 May

2008. Leipzig, Germany: ACM, 21-24.

Dinh-Trong, T., S. Ghosh, and R. France (2006). A Systematic Approach to Generate

Inputs to Test UML Design Models. Proceeding of the 17th International

Symposium on Software Reliability Engineering. 95-104.

Dhir, S. (2012). Impact Of UML Techniques In Test Case Generation. International

Journal of Engineering Science and Advanced Technology. 2(2): 214-217.

Dobing, B., and Parsons, J., (2006). How UML is Used. Communications of the ACM.

49(5):109-113.

Doungsaard, C., K. Dahal, A. Hossain, and T. Suwannasart (2007). Test Data

Generation from UML State Machine Diagrams using GAs. Proceedings of

International Conference on Software Engineering Advances. 25-31 August.

2007. Cap Esterel, France: IEEE, 47.

192

Doungsa-ard, C., Dahal, K., Hossain, A., and Suwannasart, T., (2008). GA-based

Automatic Test Data Generation for UML State diagrams with Parallel Paths.

Advanced Design and Manufacture to Gain a Competitive Edge. (pp.147-156).

London: Springer-Verlag.

Easterbrook, S., Singer, J., Storey, M. A., and Damian, D. (2008). Selecting Empirical

Methods for Software engineering Research. Guide to Advanced Empirical

Software Engineering (pp. 285-311). London: Springer-Verlag.

El-Far, I.K., and Whittaker, J.A., (2001). Model-based Software Testing. John J.

Marciniak (Ed), Encyclopedia of Software Engineering, 2nd Edition. Wiley.

Escalona, M. J., Gutierrez, J. J., Mejías, M., Aragón, G., Ramos, I., Torres, J., and

Domínguez, F. J. (2011). An Overview on Test Generation from Functional

Requirements. Journal of Systems and Software, 84(8), 1379-1393.

Fan, X., Shu, J., Liu, L., and Liang, Q.J., (2009). Test Case Generation from UML Sub

Activity and Activity diagram. Proceeding of the IEEE 2nd International

Symposium on Electronic Commerce and Security. 2009. 244-248. IEEE.

Farooq, U., Lam, C.P., and Li, H., (2008). Towards Automated Test Sequence

Generation. Proceeding of the 19th IEEE Australian Software Engineering.

Conference. 26-28 March 2008. Perth, WA, Australia: IEEE, 441-450.

Fowler, M., (2004). UML Distilled: A Brief Guide to the Standard Object Modeling

Language. 3rd Edition, Addison-Wesley.

Francisco, M.A. and Castro, L.M., (2012). Automatic Generation of Test Models and

Properties from UML Models with OCL Constraints. Proceedings of the 12th

Workshop on OCL and Textual Modelling. New York, NY, USA: ACM, 49-

54.

Frantzen, L., and Tretmans, J. (2007). Model-based Testing of Environmental

Conformance of Components. Formal Methods for Components and Objects

(pp. 1-25). Springer Berlin Heidelberg.

Fraikin, F., and Leonhardt, T., (2002). SeDiTeC-Testing Based on Sequence

Diagrams. Proceedings of the 17th IEEE International Conference on

Automated Software Engineering. 2002. Edinburgh, UK: IEEE, 261-266.

Gantait, A., (2011). Test Case Generation and Prioritization from UML Models.

Proceedings of the 2nd IEEE International Conference on Emerging

Applications of Information Technology. 19-20 Febuary 2011. Kolkata, India:

IEEE, 345-350. IEEE.

193

García-Domínguez, A., Medina-Bulo, I., and Marcos-Bárcena, M., (2013). An

Approach for Model-Driven Design and Generation of Performance Test Cases

with UML and MARTE. Software and Data Technologies (pp.136-150).

Springer Berlin Heidelberg.

Glenford J. M., (1779). Art of Software Testing. John Wiley & Sons, Inc., New York,

NY, USA.

Gordon, F., and Wotawa, F. (2006). Using model-checkers for mutation-based test-

case generation, coverage analysis and specification analysis. Proceedings of

the IEEE International Conference on Software Engineering Advances. 5

October 2006. Tahiti, French Polynesia: IEEE, 16-20.

Gulia, P., and Chillar, R. S. (2012). A New Approach to Generate and Optimize Test

Cases for UML State Diagram using Genetic Algorithm. ACM SIGSOFT

Software Engineering Notes. 37(3),1-5.

Grochtmann, M., and Grimm, K. (1993). Classification Trees for Partition Testing.

Software Testing, Verification & Reliability3(2): 63-82.

Gross, H. G., (2005). Component-Based Software Testing with UML. London:

Springer-Verlag.

Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D., and Zoitl, A., (2011). Test

Case Generation Approach for Industrial Automation Systems. Proceedings of

the 5th IEEE International Conference on Automation, Robotics and

Applications. 6-8 December 2011. Wellington, New Zealand: IEEE, 57-62.

Hartmann, J., Imoberdorf, C., and Meisinger, M., (2000). UML-based Integration

Testing. Proceedings of the 2000 ACM SIGSOFT International Symposium on

Software Testing and Analysis. 5 September 2000. New York, NY, USA:

ACM, 60-70.

Hartmann, J., M. Vieira, H. Foster, and A. Ruder (2005). A UML-based Approach to

System Testing. Innovations in Systems and Software Engineering. 1 (1), 12-

24.

Hartman, A., Katara, M., and Olvovsky, S. (2007). Choosing a Test Modeling

Language: A Survey. 2nd Proceedings of the 2006 International Haifa

Verification Conference. 23-26 October 2006. Haifa, Israel, Springer, 204-218.

194

Hasling, B., Goetz, H., and Beetz, K. (2008). Model Based Testing of System

Requirements using UML Use case Models. Proceedings of the 1st IEEE

International Conference on Software Testing, Verification, and Validation. 9-

11 April 2008. Lillehammer, Norway: IEEE, 367-376.

Heinecke, A., Bruckmann, T., Griebe, T., and Gruhn, V., (2010). Generating Test

Plans for Acceptance Tests from UML Activity Diagrams. Proceedings of the

17th IEEE International Conference on Engineering of Computer Based

Systems. 22-26 March 2010. Oxford, England: IEEE, 57-66.

Ingle, S. E., and Mahamune, M. R. (2015). An UML Based software Automatic Test

Case Generation: Survey. International Research Journal of Engineering and

Technology. 2(1), 971-973.

Javed, A.Z., Strooper, P.A., and Watson, G.N., (2007). Automated Generation of Test

Cases using Model-driven Architecture. Proceedings of the 2nd International

Workshop Automation of Software Testing. 20-26 May, Minneapolis, MN:

IEEE, 3.

Jena, A.K., Swain, S.K., and Mohapatra, D.P. (2014). A Novel Approach for Test

Case Generation from UML Activity Diagram. Proceeding of the International

Conference pn Issues and Challenges in Intelligent Computing Techniques. 7-8

Febuary 2014, Ghaziabad, India: IEEE, 621-629.

Kansomkeat, S. and W. Rivepiboon (2003). Automated-Generating Test Case using

UML Statechart Diagrams. Proceedings of the 2003 Annual Research

Conference of the South African Institute of Computer Scientists and

Information Technologists on Enablement through Technology. 296-300.

Kansomkeat, S., Offutt, J., Abdurazik, A., and Baldini, A., (2008). A Comparative

Evaluation of Tests Generated from Different UML Diagrams. Proceeding of

the 9th International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing. 6-8 August

2008. Phuket, Thailand: IEEE, 867–872.

Kaur, P., and Kaur, R., (2011). Approaches for Generating Test Cases Automatically

to Test the Software. International Journal of Engineering and Advanced

Technology (IJEAT), 2(3),191-193.

Kaur, A., and Vig, V. (2012). Systematic Review of Automatic Test Case Generation

by UML Diagrams. International Journal of Engineering, 1(6).

195

Khandai, M., Acharya, A.A., and Mohapatra, D.P., (2011). A Novel Approach of Test

Case Generation for Concurrent Systems using UML Sequence Diagram.

Proceedings of the 3rd International Conference on Electronics Computer

Technology. 8-10 April 2011. Kanyakumari, India: IEEE, 157-161.

Kim, Y., H. Hong, D. Bae, and S. Cha (1999). Test Cases Generation from UML State

Diagrams. IET Software 146 (4), 187-192.

Kim, H., Kang, S., Baik, J., and Ko, I., (2007). Test cases generation from UML

activity diagrams. Proceedings of the 8th International Conference on Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed

Computing. 3:556-561. IEEE.

Kosmatov, N (2006). A multi-point boundary value problem with two critical

conditions. Nonlinear Analysis: Theory, Methods & Applications. 65, 622–633.

Kundu, D., Sarma, M., Samanta, D., and Mall, R., (2009). System Testing for

Object‐oriented Systems with Test Case Prioritization. Software Testing,

Verification and Reliability, 19(4), 297-333.

Kundu, D., Sarma, M., Samanta, D., and Mall, R., (2013). Automatic Code Generation

from Unified Modelling Language Sequence Diagrams. IET Software, 7(1), 12-

28.

Kulkarni, P., and Joglekar, Y. (2014). Generating and Analyzing Test Cases from

Software Requirements using NLP and Hadoop. International Journal of

Current Engineering and Technology. 4(6), 3934-3937.

Kyaw, A. A., and Min, M. M., (2015). An Efficient Approach for Model Based Test

Path Generation. International Journal of Information and Education

Technology. 5(10), 763-767.

Meudec, C., (2001). ATGen: Automatic Test Data Generation using Constraint Logic

Programming and Symbolic Execution. Software Testing, Verification and

Reliability, 11 (2), 81-96.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The Art of Software Testing. John

Wiley & Sons.

Mouchawrab, S., Briand, L.C., and Labiche, Y. (2007). Assessing, Comparing, and

Combining Statechart-based Testing and Structural Testing: An Experiment.

Proceedings of the 1st ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement. 20-21 Sept 2007. Madrid, Spain,

IEEE, 41-50.

196

Mingsong, C., Xiaokang, Q., and Xuandong, L. (2006). Automatic Test Case

Generation for UML Activity Diagrams. Proceedings of the 2006 International

Workshop on Automation of Software Testing. 2006. New York, NY, USA.

ACM, 2-8.

Nayak, A., and Samanta, D., (2011). Synthesis of Test Scenarios using UML Activity

Diagrams. Software and Systems Modeling, 10(1), 63-89.

Nebut, C., Fleurey, F., Le Traon, Y., and Jezequel, J.M. (2006). Automatic Test

Generation: A Use case Driven Approach. IEEE Transactions on Software

Engineering, 32(3), 140-155.

Nebut, C., Fleurey, F., Traon, Y.L., and Jezequel, J.M., (2003). Requirements by

Contracts allow Automated System Testing. Proceeding of the 14th

International Symposium on Software Reliability Engineering. 17–20

November 2003. Denver, Colorado, USA. IEEE, 85-96.

Nogueira, S., Cartaxo, E., Torres, D., Aranha, E., and Marques, R. (2007). Model

Based Test Generation: An Industrial Experience. Proceedings of the 1st

Workshop on Systematic and Automated Soft. Testing-SBBD/SBES.

Nogueira, S., Cartaxo, E., Torres, D., Aranha, E., and Marques, R. (2007). Model

Based Test Generation: A case study. Proceedings of the 1st Brazilian

Workshop on Systematic and Automated Software Testing, Recife.

Lam, S.S.B., Raju, M.L., Ch, S., and Srivastav, P.R., (2012). Automated Generation of

Independent Paths and Test Suite Optimization using Artificial Bee Colony.

Procedia Engineering, 30(1), 191-200.

Lamancha, B. P., Polo, M., Caivano, D., Piattini, M., and Visaggio, G., (2013).

Automated Generation of Test Oracles using a Model-driven Approach.

Information and Software Technology, 55(2), 301-319.

Lédeczi, Á., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., and

Karsai, G. (2001). Composing Domain-Specific Design Environments.

Computer, 34(11), 44-51.

Li, L., Li, X., He, T., and Xiong, J. (2013). Extenics-based Test Case Generation for

UML Activity Diagram. Procedia Computer Science, 1(17):1186-1193.

Lim, S. L. (2011). Social networks and collaborative filtering for large-scale

requirements elicitation PhD Thesis, University of New South Wales,

Australia.

http://www.acm.org.ezproxy.psz.utm.my/publications

197

Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., and Guoliang, Z.

(2004). Generating test cases from UML activity diagram based on gray-box

method. Proceedings of the 11th Software Engineering Conference. 2004.

Asia-Pacific, IEEE, 284-291.

Lochau, M., and Goltz, U., (2012). Feature interaction aware test case generation for

embedded control systems. Electronic Notes in Theoretical Computer Science,

264(3):37-52.

OMG (2005): Unified Modeling Language Specification, Version 2.0, Object

Management Group, www.omg.org.

OMG (2007). Meta-Object Facility 2.0. OMG Document formal/2006-01-01.

OMG and Soley, R., (2000). Model-Driven Architecture. http://www.omg.org/mda.

Offutt, A., Z. Jin, and J. Pan (1999). The Dynamic Domain Reduction Procedure for

Test Data Generation. Software Practice and Experience. 29(2):167-193.

Offutt, J., S. Liu, A. Abdurazik, and Ammann, P., (2003). Generating Test Data from

State-based Specifications. Software Testing, Verification and Reliability, 13

(1), 25-53.

Oluwagbemi, O., and Asmuni, H., (2014). An Improved Model-Based Technique for

Generating Test Scenarios from UML Class Diagrams. Handbook of Research

on Emerging Advancements and Technologies in Software Engineering. Eds.

 Ghani, Imran and Wan Nasir Kadir. 434-448. IGI Global.

Tahiliani, S., and Pandit, P. A (2012). Survey of UML-Based approaches to Testing.

International Journal of Computational Engineering Research, 2(5), 1396-

1400.

Panthi, V., and Mohapatra, D. P. (2012). Automatic Test Case Generation using

Sequence Diagram. Proceedings of International Conference on Advances in

Computing. 2012. India, Springer. 277-284.

Patel, P., and Patel, N. N. (2012). Test Case Formation using UML Activity

Diagram. World Journal of Science and Technology, 2(3).

Patel, P.E., and Patil, N.N., (2013). Testcases Formation Using UML Activity

Diagram. Proceedings of the International Conference on Communication

Systems and Network Technologies. 6-8 April 2013, Gwalior, India: IEEE,

884-889.

Patton R., Software Testing. SAMS, 2nd Edition, 2005.

http://www.omg.org/

198

Pachauri, A. (2013). Automated test data generation for branch testing using genetic

algorithm: An improved approach using branch ordering, memory and

elitism. Journal of Systems and Software, 86(5), 1191-1208.

Paulish, D. J., Kazmeier, J., and Rudorfer, A. (2009). Software and Systems

Requirements Engineering: in Practice. New York: McGraw-Hill.

Pechtanun, K., and Kansomkeat, S., (2012). Generation of Test Case from UML

Activity Diagram based on AC grammar. Proceedings of the International

Conference on Computer and Information Science. 12-14 June 2012, Kuala

Lumpur, Malaysia: IEEE, 895-899.

Pezze, M., and Young, M., (2007). Software Testing and Analysis: Process, Principles,

and Techniques. John Wiley & Sons, New York City, United States.

Pilskalns, O., Andrews, A., Ghosh, S., and France, R., (2003). Rigorous Testing by

Merging Structural and Behavioral UML Representations. Proceedings of the

6th International Conference on the Unified Modeling Language. 20–24 Oct

2003. San Francisco, CA, USA: Springer, 234-248.

Pilskalns, O., Andrews, A., Knight, A., Ghosh, S., and France, R. (2007). Testing

UML Designs, Information and Software Technology, 49(8), 892-912.

Prasanna, M., Sivanandam, S. N., Venkatesan, R., and Sundarrajan, R. (2005). A

Survey on Automatic Test Case Generation. Academic Open Internet Journal,

15(6).

Prasanna, M., and Chandran, K. R. (2009). Automatic Test Case Generation for UML

Object Diagrams using Genetic Algorithm. International Journal of Advanced

Soft Computing Application 1(1), 19-32.

Prasanna, M., Chandran, K. R., and Thiruvenkadam, K. (2011). Automatic Test Case

Generation for UML Collaboration Diagrams. IETE Journal of research,

57(1),77.

Prasad, S., Jain, M., Singh, S., and Patvardhan, C. (2012). A Productive Method for

Improving Test Effectiveness. International Journal of Applied Information

Systems, 2(2), 9-17.

Pretschner, A., Slotosch, O., Aiglstorfer, E., and Kriebel, S., (2004). Model-based

Testing for Teal:The Inhouse Card Case Study. International Journal on

Software Tools for Technology Transfer, 5(2), 140-157.

https://en.wikipedia.org/wiki/New_York_City
https://en.wikipedia.org/wiki/United_States

199

Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sostawa,

B., Zölch, R., and Stauner, T., (2005). One Evaluation of Model-Based Testing

and its Automation. Proceedings of the 27th International Conference on

Software Engineering. 15-21 June 2005. St. Louis, MO, USA: ACM, 392-401.

Priya, S. S., and Malarchelvi, P. S. K. (2013). Test Path Generation Using

UMLSequence Diagram. International Journal, 3(4).

Rapos, E.J., and Dingel, J., (2012). Incremental Test Case Generation for UML-RT

Models Using Symbolic Execution. Proceedings of the 5th International

Conference on Software Testing, Verification and Validation. 17-21 April

2012. Montreal, QC, Canada: IEEE, 962-963.

Reales Mateo, P., and Polo Usaola, M., (2013). Automated test generation for multi-

state systems. Proceeding of the 15th Annual Conference Companion on

Genetic and Evolutionary Computation. 2002. New York, NY, USA: ACM,

211-212.

Riebisch, M., Philippow, I., and Götze, M., (2003). UML-based Statistical Test Case

Generation. Objects, Components, Architectures, Services, and Applications

for a Networked World. 394-411. Springer Berlin Heidelberg.

Robson, C. (2002). Real World Research. Oxford: Blackwell publishers.

Rumbaugh, J., Jacobson, I., and Booch, G., (2004). The Unified Modeling Language

Reference Manual. 2nd Edition, Addison-Wesley Object Technology Series,

Addison-Wesley.

Sabharwal, S., Singh, S. K., Sabharwal, D., and Gabrani, A. (2010). An Event-based

Approach to Generate Test Scenarios. Proceedings of the International

Conference on Computer and Communication Technology. 17-19 September

2010. Allahabad, Uttar Pradesh, India: IEEE, 551-556.

Samuel, P., Mall, R., and Sahoo, S., (2005). UML Sequence Diagram Based Testing

Using Slicing. Proceedings of the International Conference on Control,

Communicaitons and Automation. 11-13 December 2005. Chennai, India,

IEEE, 176–178.

Samuel, P., Mall, R., and Bothra, A. K. (2008). Automatic Test Case Generation using

Unified Modeling Language (UML) State Diagrams. IET software, 2(2), 79-

93.

http://www.acm.org.ezproxy.psz.utm.my/publications

200

Samuel, P., and Joseph, A.T., (2008). Test Sequence Generation from UML Sequence

Diagrams. Proceedings of the 9th International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing. 6-8 August 2008. Phuket, Thailand: IEEE, 879–887.

Samuel, P., Mall, R., and Kanth, P. (2007). Automatic test case generation from UML

communication diagrams. Information and software technology, 49(2), 158-

171.

Sapna, P. G., and Mohanty, H. (2010). Automated Test Scenario Selection based on

Levenshtein Distance. Distributed Computing and Internet Technology (pp.

255-266). Springer Berlin Heidelberg.

Sapna, P. G., and Mohanty, H. (2010). Clustering Test Cases to Achieve Effective Test

Selection. Proceedings of the 1st Amrita ACM-W Celebration on Women in

Computing in India. 2010. New York, NY, USA: ACM, 15.

Sarma, M., Kundu, D., and Mall, R. (2007). Automatic Test Case Generation from

UML Sequence Diagram. Proceedings of the International Conference on

Advanced Computing and Communications. 18-21 December 2007. Guwahati,

Assam, India: IEEE, 60-67.

Sawant, V., and Shah, K. (2011). Construction of Test Cases from UML Models.

Technology Systems and Management (pp.61-68). Springer Berlin

Heidelberg.

Schlick, R., Herzner, W., and Jöbstl, E., (2001). Fault-based Generation of Test Cases

from UML Models Approach and Some Experiences. Computer Safety,

Reliability, and Security (pp.270-283). Springer Berlin Heidelberg.

Schwarzl, C., and Peischl, B., (2010). Test Sequence Generation from Communicating

UML Statecharts: An Industrial Application of Symbolic Transition Systems.

Proceedings of the 10th International Conference on Quality Software. 14-15

July 2010. Zhangjiajie, China. IEEE, 122-131.

Schweighofer, T., and Heričko, M., (2014). Approaches for Test Case Generation from

UML Diagrams. Proceedings of the 3rd International Workshop on Software

Quality Analysis, Monitoring, Improvement and Applications. 19-22

September 2014. Lovran, Croatia: 91-98.

Seifert, D., Helke, S., and Santen, T, (2003). Test Case Generation for UML

Statecharts. Perspectives of System Informatics, (pp.462-468). Springer

Berlin Heidelberg.

201

Seifert, D., (2008). Conformance Testing based on UML State Machines: Automated

Test Case Generation, Execution and Evaluation. [Technical Report] 2008.

Shamsoddin-Motlagh, E. (2012). A Review of Automatic Test Cases Generation.

International Journal of Computer Applications, 57(13).

Shanthi, A. V. K., and Kumar, D. G. M. (2011). Automated Test Cases Generation For

Object Oriented Software. Indian Journal of Computer Science and

Engineering, 2(4).

Sommerville, I., (2001). Software Engineering. Addison-Wesley.

Sokal, R. R. and Michener, C. D. (1958). A statistical method for evaluating

systematic relationships. University of Kansas Science Bulletin, 38, 1409-

1438.

Soley, R. (2000). Model Driven Architecture. OMG white paper, 308, 308.

Sokenou, D. and G. GmbH (2006). Generating Test Sequences from UML Sequence

Diagrams and State Diagrams. Informatik: Informatik fur Menschen 2 (94),

236-240.

Sokenou, D., (2006). Generating Test Sequences from UML Sequence Diagrams and

State Diagrams. GI Jahrestagung (2), 236-240.

Shirole, M., Suthar, A., and Kumar, R. (2011). Generation of Improved Test Cases

from UML State Diagram using Genetic Algorithm. Proceedings of the 4th

India Software Engineering Conference. New York, NY, USA: ACM , 125-

134.

Swain, S. K., and Mohapatra, D. P. (2010). Test case generation from Behavioral

UML Models. International Journal of Computer Applications, 6(8), 5-11.

Shanthi, A. V. K., Parthiban, D., and MohanKumar, G. A Survey of UML-Based

Automatic Test Cases Generation for Software Testing.

Sharma, N. K., and Saxena, D. Study of Approaches For Generating Automated Test

Cases By UML Diagrams. International Journal of Engineering Research &

Technology, 2(6), 3028-3034.

Sharma, A., and Singh, M. (2013). Generation Of Automated Test Cases Using UML

Modeling. International Journal of Engineering, 2(4).

Singh, S. K., Sabharwal, S., and Gupta, J. P. (2012). A Novel Approach for Deriving

Test Scenarios and Test Cases from Events. Journal of Information

Processing Systems, 8(2), 213-240.

Spivey, J.M., (1992). The Z Notation: A Reference Manual, 2nd Ed.

http://www.acm.org.ezproxy.psz.utm.my/publications

202

Spivey, J. M., and Abrial, J. R. (1992). The Z Notation (p. 90). Hemel Hempstead:

Prentice Hall.

Strauss, A., and Corbin, J., (1994). Grounded Theory Methodology. Handbook of

Qualitative Research, 273-285.

Sun, C.A., Zhang, B., and Li, J., (2009). TSGen: A UML Activity Diagram-Based

Test Scenario Generation Tool. Proceedings of the International Conference

on Computational Science and Engineering, 2, 853-858. IEEE.

Swain, S. K., Mohapatra, D. P., and Mall, R. (2010). Test Case Generation Based on

Use case and Sequence Diagram. International Journal of Software

Engineering, 3(2), 21-52.

Thomas, J. O. and Balcer, M. J. (1988). The Category-partition Method for Specifying

and Generating Functional Tests. Communications of the ACM, 31(6), 676-

686.

Tseng, W.H., and Fan, C.F., (2013). Systematic Scenario Test Case Generation for

Nuclear Safety Systems. Information and Software Technology, 55(2), 344-

356.

Warmer, J., and Kleppe, A, (2003). The Object Constraint Language: Getting Your

Models Ready for MDA. 2nd Edition, Addison-Wesley Professional.

Uhl, A. (2008). Model-Driven Development in the Enterprise. IET Software, 25(1),

46-49.

Utting, M., (2005). Model-Based Testing. Proceedings of the Information Federation

for Information Processing Working Conference. The VSTTE Conference-

Verified Software Theories, Tools, Experiments, ETH, Zurich, Switzerland,

10-13.

Utting, M., Pretschner, A., and Legeard, B., (2007). A Taxonomy of Model-based

Testing. Technical Report 04/2006, Department of Computer Science, The

University of Waikato, Hamilton, New Zealand, 17 pages. [TR online]

http://www.cs.waikato.ac.nz/pubs/wp/2006/uow-cs-wp-2006-04.pdf,

Accessed Wed 30 December 2014.

Utting, M., and Legeard, B., (2006). Practical Model-Based Testing: A Tools

Approach. Morgan Kaufmann Publishers/Elsevier.

Utting, M., Pretschner, A., and Legeard, B. (2012). A Taxonomy of Model‐based

Testing Approaches. Software Testing, Verification and Reliability, 22(5),

297-312.

203

Wang, Y., Bai, X., Li, J., and Huang, R. (2008). Ontology-based Test Case Generation

for Testing Web Services. 8th International Symposium on Autonomous

Decentralized Systems. IEEE, 43-50.

Weißleder, S. (2010). Test Models and Coverage Criteria for Automatic Model-Based

Test Generation with UML State Machines. Doctoral thesis, Humboldt-

University Berlin, Germany.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A.,

(2000). Experimentation in Software Engineering: An Introduction. Kluwer

Academic Publishers. Boston, MA USA.

Wu, Y., Chen, M.H., and Offutt, J., (2003). UML-Based Integration Testing for

Component-Based Software. Proceedings of the 2nd International Conference

on COTS-Based Software Systems, 10-12 Feb 2003. Ottawa, Canada:

Springer: 251-260.

Yue, T., Ali, S., and Briand, L., (2011). Automated Transition from Use cases to UML

State Machines to Support State-based Testing. Modelling Foundations and

Applications. 115-131. Springer Berlin Heidelberg.

Zander, J., Schieferdecker, I. and Mosterman, P.J. (2011). Model-based testing for

embedded systems. CRC press.

Zhang, W., and Liu, S., (2013). Supporting Tool for Automatic Specification-Based

Test Case Generation. Structured Object-Oriented Formal Language and

Method, 12-25. Springer Berlin Heidelberg.

Zeng, F., Chen, A., Cao, Q., and Mao, L., (2009). Research on Method of Object-

Oriented Test Cases Generation Based on UML and LTS. Proceedings of the

1st International Conference on Information Science and Engineering. IEEE,

5055-5058.

Zheng, W., and Bundell, G., (2007). Model-based Software Component Testing: A

UML-based Approach. Proceedings of the 6th IEEE/ACIS International

Conference on Computer and Information Science. 11-13 July 2007.

Melbourne, Qld, Australia. IEEE, 891-899.

Zheng, W. (2012). Model-Based Software Component Testing. PhD Thesis. The

University of Western Australia, Australia.

