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The understanding of the explosion phenomenon is essential for an effective 

and safe engineering practice, particularly in refinery and chemical plants. Explosion 

venting technology is one of the effective techniques in protection measures against 

accidental internal gas explosions by relieving the pressure generated within the 

volume. The factors governing to the explosion development such as geometry, 

ignition position and vent burst pressure have been extensively studied. However, the 

details physical and dynamic mechanism responsible for the generation of significant 

pressure peaks during vented explosions is insufficient, making it difficult for 

designing the accurate explosion reliefs in practical situations. The primary 

motivation of this research was to better understand the turbulent flame propagation 

in vented gas explosion using modelling approach.  Computational Fluid Dynamic 

(CFD) analyses using ANSYS Fluent is adopted to study the vented gas explosions 

process. Computations of the deflagrating flames were run in small-scale combustion 

chambers with two different volume sizes of 0.02 m
3
 and 0.0065 m

3
, closed at the 

one end and open at the opposite face. Only stoichiometric concentration of 

hydrogen, propane and methane-air mixtures were considered with different ignition 

positions (end and central ignition) and vent static burst pressure (Pv). The condition 

of the analysis was following experimental data done from previous researcher. From 

the findings, end ignition gave higher reduced overpressure on simulation results, 

about 1.4 times higher compared to central ignition due to the larger flame surface 

area attained. Thus, the time flame needed to reach the venting area became longer. 

The vents inclusion in the enclosures caused the reduction on the peak overpressure. 

As the Pv was further increased, i.e. from 98 mbar to 424 mbar, the venting 

effectiveness became lesser by 24 % for the methane explosion but not to the vented 

propane explosion in simulation analysis. This work confirmed that fuel reactivity 

gave important role on determining the venting effectiveness as stoichiometric 

hydrogen attained higher reduced explosion pressure (Pred) of 4.150 bar compared 

that of stoichiometric methane and propane vented explosion, 0.945 and 1.045 bar, 

respectively, if ignited at central location. It can be said that the distance from the 

location of ignition to the vent area, the fuel reactivity and Pv have significant roles 

to determine the duration of the pressure build up and the amount of vented mass, 

which describes the external explosion intensity.  
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Pemahaman asas tentang fenomena letupan adalah penting untuk amalan 

kejuruteraan yang berkesan dan selamat, terutama dalam loji penapisan dan loji 

kimia.  Teknologi pelepasan letupan adalah salah satu kaedah yang berkesan sebagai 

langkah perlindungan daripada letupan gas di dalam tangki dengan melepaskan 

tekanan yang dihasilkan dalam saluran atau paip.  Faktor-faktor yang mengawal 

perkembangan letupan antaranya ialah geometri, kedudukan pencucuh dan tekanan 

ledakan pelepas telah dikaji secara meluas.  Walau bagaimanapun, perincian 

mekanisma fizikal dan dinamik yang bertanggungjawab dalam penjanaan tekanan 

puncak bererti semasa pelepas letupan masih lagi tidak mencukupi, menyebabkan 

kesukaran mereka bentuk alat pelepasan letupan dengan tepat dalam situasi sebenar.  

Tujuan utama kajian ini adalah untuk mendapatkan pemahaman yang lebih baik 

dalam perambatan nyalaan yang bergelora dalam pelepasan letupan gas dengan 

pendekatan pemodelan.  Pengkomputeran Dinamik Bendalir (CFD) dianalisa dengan 

menggunakan ANSYS Fluent untuk mengkaji proses asas pelepasan letupan gas.  

Proses pengkomputeran mengenai nyalaan deflagrasi gas ini dikaji di dalam kebuk 

letupan yang berskala kecil dengan dua saiz isipadu yang berbeza iaitu 0.02 m
3
 dan 

0.0065 m
3
, yang mana satu di bahagian hujung yang tertutup dan satu di bahagian 

terbuka yang bertentangan.  Hanya campuran hidrogen, propana dan metana pada 

kepekatan stoikiometri yang dikaji pada kedudukan pencucuh yang berbeza (di 

hujung dan tengah pencucuh) dan tekanan statik pelepasan letupan (Pv).  Keadaan 

analisa ini berdasarkan kajian yang telah dilakukan oleh pengkaji yang lepas.  

Daripada kajian, kedudukan pencucuh yang berada dihujung saluran memberikan 

tekanan yang lebih tinggi dalam simulasi, lebih kurang 1.4 kali lebih tinggi 

berbanding dengan kedudukan pencucuh yang berada di tengah saluran disebabkan 

oleh penghasilan permukaan nyalaan yang lebih besar. Jadi, masa yang lebih lama 

diperlukan oleh nyalaan untuk tiba di kawasan pelepasan. Dengan meletakkan 

pelepasan di dalam saluran menyebabkan pengurangan yang ketara ke atas tekanan.  

Apabila Pv meningkat, daripada 98 mbar ke 424 mbar, kecenderungan untuk 

pengurangan tekanan semakin kurang berkesan sebanyak 24 % untuk letupan metana 

tetapi tiada kesan terhadap letupan propana di dalam analisis simulasi. Kajian ini 

membuktikan bahawa keaktifan bahan bakar merupakan faktor penting dalam 

menentukan keberkesanan pelepasan kerana hidrogen stoikiometrik mencapai 

tekanan letupan terturun (Pred) yang tinggi sebanyak 4.150 bar berbanding dengan 

metana dan propana stoikiometrik, masing-masing, 0.945 dan 1.045 bar, sekiranya 

dicucuh di tengah saluran. Ini bermakna, jarak dari lokasi pencucuh ke kawasan 

pelepas, keaktifan bahan bakar dan Pv memainkan peranan yang penting dalam 

menentukan tempoh tekanan yang ditokokkan dan jumlah jisim yang dilepaskan, 

yang mana menyifatkan keamatan letupan luaran. 
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 CHAPTER 1

 

 

 

INTRODUCTION 

1.1 Background of Research 

In vented gas explosions, the turbulent flow field, vessel geometry and 

unsteady interaction of flame propagation drives the mechanisms and phenomena in 

order to determine the explosion damage at different initial/operating conditions and 

geometrical parameters.  In a chemical industries and processing plant, the accidental 

explosion of pressure vessel often occur in a confined area within the vessel, pipes, 

channels or tunnels. That equipment was used as a transportation of the reactive or 

combustible material from one section to another section for storage purposes.  

Zubaidah (2015) reported that, the explosive accidents in pipes or vessels can be 

caused by uncontrolled leaks; even a very tiny pin hole leak of combustible material 

into air could leads to the development of internal gas explosions.  

The understanding of the explosion phenomenology explosions is important 

for an effective and safe engineering practice, i.e., for selecting the key conditions 

and parameters in the design and operation of refinery and chemical plants.  In order 

to prevent the destructive damage to plants in industries, several techniques have 

been developed such as venting.  Explosion venting technology is one of the 

effective and widely used methods in protection and mitigation measures against 

accidental internal gas explosions, by discharging hot burned gases out of vessel and 
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relieving the pressure generated within the volume, thus minimizing the vessel or 

pipe from explosion impact (Bauwens et al., 2011).  

The technique of studying discharge technology in vessel have extensively 

been studied by experimental works (Chippett, 1984; Jun et al., 2001; Daubech et al., 

2013; Kasmani et al., 2013 and Zhao and Zheng, 2015), theoretical analysis 

(Simpson, 1986 and Li et al., 2012) and numerical simulation (Xilin et al., 2009; 

Bingyan et al., 2012 and Skjold, 2014).  There are numerous influencing factors 

governing to the explosion development that have been carried out includes the type 

of hydrocarbon/fuel-air mixture, vessel geometry, ignition position, vent burst 

pressure, initial pressure and ignition temperature (Molkov et al., 2000; Kasmani et 

al., 2013; Fakandu et al., 2015 and Guo et al., 2015).  However, the study on 

mechanism of combustion, physical and dynamic process of explosion is still scarce 

due to insufficient information on the main parameters and of mechanism involved 

contributing to explosion hazards. 

The experimental investigation is constrained with site condition and test 

methods as there are great difficulties on theory analysis.  Analytical models and 

empirical correlations (Bradley and Mitcheson, 1978; Tamanini, 1993 and Molkov, 

1999) also often have conflict agreements among the practitioners due to the nature 

complexity, and influencing factors that could affect the peak overpressure, i.e. 

geometry of the enclosure, the mixture reactivity, type of vent and congestion or 

obstacle inside the chamber. The comparison of Computational Fluid Dynamics 

(CFD) simulations of vented explosions with experimental data (Bimson et al., 1993; 

Watterson et al., 1998;  Molkov et al., 2006 and Tulach et al., 2015), have shown 

that it is a challenge to adequately model the major physical phenomena involved in 

vented gas explosion. 

Numerical simulation by computational fluid dynamics (CFD) is finite 

volume software and one of the alternative methods of studying vessel explosion and 

design criteria instead of experimental and theoretical. CFD could give better 

understanding on the micro mechanism instead of macro perspective on experimental 
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work. Besides, the advantage of using numerical simulation is easily control and 

repetitive simulation.  Thus, the numerical simulation on venting explosion process 

in this project was built based on Computational Fluid Dynamic analyses using 

ANSYS Fluent software in order to fulfil the primary motivation of this research; to 

acquire extensive understanding of turbulent flame propagation associated with 

vented gas explosion, with a view to develop better models and techniques for 

assessing explosion risks in the process industries.  Computational Fluid Dynamic 

(CFD) analyses using ANSYS Fluent was adopted in order to investigate the 

phenomenology underlying vented gas explosions. 

1.2 Problem Statement 

The potential gas explosion hazard caused by the deflagration to detonation 

transition of gas in processing system has raised a crucial concern among the 

researchers and practitioners in order to improve the safer inherent design plants and 

the process equipment.  If this potential hazard is not properly addressed, the impact 

would be catastrophic to life, equipment and properties.  Explosion venting is one of 

the effective method or protective techniques applied widely in industry to protect 

equipment, pipes, and buildings, by relieving the high pressure burned and unburned 

gas to the external air for avoiding internal gas explosions (Bauwens, et al., 2011 and 

Guo et al., 2015).   Thus, it is crucial to forecast the mode of flame propagation and 

combustion behaviour and pressure development along the pipe or vessel in order to 

recognize the worst-case explosion phenomenon, which would correspond to the 

installation of appropriate protection and mitigation measures systems. 

Explosion venting is commonly installed to minimize gas explosion risk due 

to deflagration to detonation transition, and has been widely studied experimentally 

and numerically, by given correlations offered in NFPA 68 and European Standard 

as  references for sizing the vent. A research was performed extensively from 

laboratory scale tests (Cooper et al., 1986) and to large-scale tests (Zalosh, 1980; 
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Wingerden, 1989; and Bimson et al., 1993). Numerical studies of vented explosions 

have been reported by several researchers such as Watterson et al. (1998); Molkov et 

al. (2006); Xilin et al. (2009); Bauwens et al. (2011); Bingyan et al. (2012) and 

Skjold, (2014). Meanwhile, the empirical correlations have been developed by 

Bradley and Mitcheson (1978a, b); Molkov, (1999) and Molkov et al. (1999).  

However, the studies on the physical and dynamic process of explosion 

development during the venting to ambient air is yet not well understood since it 

involved many parameters governing to the overall mechanism.  In this study, the 

understanding of the flame propagation in vented gas explosion will be explored by 

carrying out the numerical simulation using ANSYS Fluent and the result will be 

compared to experimental data (Kasmani, 2008) for validation.   The aim of this 

work is to numerically predict the pressure development profiles, flame acceleration 

behaviour of fuel-air mixtures explosion and possible event for transition to 

detonation using ANSYS Fluent.  

1.3 Objective of Research 

The research work is involved only the simulation work, using software 

Ansys FLUENT version 14.  The objectives of the work research are: 

 

 

i. to correlate the explosion parameters such as maximum reduced overpressure, 

Pmax, flame propagation and combustion behaviour in different length of 

vessel with the influence of fuel concentration and fuel reactivity to 

experimental data (Kasmani, 2008). 

 

ii. to determine the influence of volume vessel and vent bursting pressure, Pv on 

physical and dynamic of vented explosion mechanism. 
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1.4 Scopes of Study 

The scopes of this research cover: 

i. Two different length, L and diameter, D of pipe were used; L = 1.000 m, D = 

0.162 m (Test vessel 1) and L = 0.315 m with D = 0.162 m (Test vessel 2). 

This configuration was based on experimental work done by Kasmani (2008) 

in order to validate the numerical investigation for this vented explosion 

analysis.  

ii. The numerical explosion test was simulated in a vented vessel using ANSYS 

Fluent at ambient condition.  The ignition source was allocated at end and 

centre of vessel for Test vessel 1 and only end ignition was considered for 

Test vessel 2. 

iii. Different premixed fuel-air mixture of hydrogen, propane and methane-air 

mixtures with different concentrations or equivalence ratio,, were used to 

quantify the explosion characteristics to the explosion development. 

iv. The value of vent bursting pressure from experimental data (Kasmani, 2008) 

which Pv = 0.098, 0.178, 0.209 and 0.424 bar were used to investigate the 

effect of different Pv on maximum overpressure.  

1.5 Research Limitation 

ANSYS Fluent has its own limitation which is, the result did not show a good 

agreement for reactive fuel like hydrogen. In this case, ANSYS CFX would be 
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recommended rather than normal ANSYS Fluent operation. The model in ANSYS 

Fluent did not include the significant parameters such as the complete kinetic 

mechanism of the hydrocarbons/fuels in order to get the best result for complex 

hydrocarbon such as hydrogen and propane. 

1.6 Significance of Study 

The study focuses on quantifying the vented gas explosion mechanism on two 

different vessel configurations. The factors influencing the explosion development 

have been emphasised by quantifying the explosion parameters to its physic and 

dynamics mechanisms. Simulation results obtained from this work gave valuable 

information on the dynamics of explosion mechanism in term of  different vessel 

sizes, fuel reactivity and concentration and ignition locations.
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