
 

 

 

 

 

MODIFIED TWO-STEP METHOD FOR STOCHASTIC DIFFERENTIAL 

EQUATION’S PARAMETER ESTIMATION 

 

 

 

 

 

 

 

 

 

 

 

NUR HASHIDA BINTI MD. LAZIM 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNOLOGI MALAYSIA 

 

 

 

 



 

 

 

 

 

MODIFIED TWO-STEP METHOD FOR STOCHASTIC DIFFERENTIAL 

EQUATION’S PARAMETER ESTIMATION 

 

 

 

 

 

NUR HASHIDA BINTI MD. LAZIM 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of  

Master of Philosophy 

 

 

 

 

 

Faculty of Science 

Universiti Teknologi Malaysia 

 

 

 

 

 

JANUARY 2017 

 



iii 

 

 

 

 

 

 

 

To my beloved father and mother 

Md. Lazim Bin Ismail and Zainun Bt. Ahmad 

 

 

 

Respected Supervisor and co-Supervisor 

Dr. Haliza Abd. Rahman and Dr. Arifah Bahar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 

 

 

Alhamdulillah.  All praise belongs to Allah The Lord of the universe. 

This thesis would not have been possible without the guidance and the help of 

several individuals who, in one way or another, contributed and extended their 

valuable assistance in the preparation and completion of this study.  First and 

foremost, I would like to take this opportunity to express my deepest thanks to my 

supervisor Dr. Haliza Abd. Rahman and my co-supervisor Dr. Arifah Bahar for their 

valuable guidance, motivation and continuous support.   

I gratefully acknowledge the funding sources of my Masters, Universiti 

Malaysia Perlis (UNIMAP) and Ministry of Higher Education (MOHE) which 

approve my study leave and awarding me a SLTPA scholarship that made my 

Masters work possible. 

Special thanks to my parents and my friends for their love, understanding and 

moral support who had assisted me in completing the thesis.  Thank you very much 

for the help and support. 

 

 

 

 

 

 

 



v 

 

 

 

 

 

 

ABSTRACT 

 

 

 

 

A previous study introduced two-step method of Stochastic Differential 

Equations (SDEs) for estimating the parameters of SDEs models where the selection 

of optimal knot is required when regression spline is used in the first step of this 

method.  However, the choice of optimal knot is considered only for single optimal 

knot since it is suitable for a selected case study.  Thus, modified two-step method of 

SDEs as an alternative to the limitation and computational difficulties in choosing 

optimal knot is proposed.  A new non-parametric estimator which is Nadaraya-

Watson (NW) kernel regression estimator is applied to replace regression splines in 

the first step of modified two-step method.  The NW kernel regression model is later 

utilised in the second step to estimate the parameters of one-dimensional linear SDEs 

models.  The outcome indicates a modification of two-step method providing better 

estimates for SDEs model compared to two-step method.  The performance of 

modified two-step method is compared with the well-known established classical 

methods, particularly Simulated Maximum Likelihood Estimation (SMLE) and 

Generalised Method of Moments (GMM) by using simulated data.  Results indicate 

GMM method is the best parameter estimation method since it outperforms other 

methods in terms of percentage of accuracy and computational times.  Nevertheless, 

the differences of percentage of accuracy were not too great, and therefore, modified 

two-step method could be considered comparable for practical purposes.  The 

computational time of modified two-step method is faster than SMLE method 

although not as good as GMM method.  This however verifies that modified two-step 

method serves as a good alternative to the existing classical methods because it 

excludes the difficulty of finding transition density, moment functions and optimal 

knot.  
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ABSTRAK 

 

 

 

 

Kajian sebelum ini memperkenalkan kaedah dua langkah Persamaan 

Pembezaan Stokastik (SDEs) untuk menganggar parameter model SDEs di mana 

pemilihan simpulan optimum diperlukan apabila splin regresi digunakan dalam 

langkah pertama.  Walau bagaimanapun, pemilihan simpulan optimum hanya untuk 

simpulan optimum tunggal kerana ia sesuai untuk kajian kes yang dipilih.  Oleh itu, 

kaedah dua langkah diubahsuai sebagai alternatif kepada had dan kesukaran 

pengiraan dalam pemilihan simpulan optimum dicadangkan.  Satu penganggar tak 

berparameter baharu iaitu penganggar regresi kernel Nadaraya-Watson (NW) 

digunakan untuk menggantikan splin regresi dalam langkah pertama kaedah dua 

langkah diubahsuai.  Kemudian model regresi kernel NW digunakan dalam langkah 

kedua untuk menganggar parameter model SDEs linear satu dimensi.  Hasil 

menunjukkan kaedah dua langkah yang diubahsuai memberikan anggaran yang lebih 

baik untuk model SDEs dibandingkan dengan kaedah dua langkah.  Prestasi kaedah 

dua langkah diubahsuai dibandingkan dengan kaedah klasik yang terkenal, 

terutamanya kepada Anggaran Kebolehjadian Maksimum Simulasi (SMLE) dan 

Kaedah Momen Umum (GMM) menggunakan data simulasi.  Keputusan 

menunjukkan kaedah GMM adalah kaedah penganggaran parameter terbaik kerana ia 

mengatasi kaedah lain dari segi peratusan ketepatan dan masa pengiraan.  Namun, 

perbezaan peratusan ketepatan tidak terlalu besar, oleh itu kaedah dua langkah 

diubahsuai boleh dianggap setanding untuk tujuan praktikal.  Masa pengiraan 

menggunakan kaedah dua langkah diubahsuai lebih cepat daripada kaedah SMLE, 

walaupun tidak sebaik GMM.  Ini juga mengesahkan bahawa kaedah dua langkah 

diubahsuai menjadi alternatif yang baik kepada kaedah klasikal sedia ada kerana ia 

tidak termasuk kesukaran mencari ketumpatan peralihan, fungsi momen dan 

simpulan optimum.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

For the past thirty years, Stochastic Differential Equations (SDEs) is applied 

in a variety of fields.  One of the largest fields is mathematical finance, where SDEs 

are also essential for many of modern finance theory and have been broadenly 

applied in modelling the behavior of main variables, such as asset returns, 

instantaneous, asset prices and short-term interest rate (Sundaresan, 2000).  The good 

of using SDEs is that the actual states in the model are evaluated from data and this 

provide the prediction to stay close to data even when the parameters in the model is 

inaccurate (Leander et al., 2014).  From an applied perspective, SDEs can be loosely 

described as a field of mathematics.  Most of the mathematical modelling is not 

considering the existence of noise term that can be described as an Ordinary 

Differential Equations (ODEs).  SDEs come from the necessity to include random 

noise term and unpredictable factors into ODEs.  There are two widely used types of 

stochastic calculus, It�̂� and Stratonovich SDEs.  Gardiner (2009) claims that the It�̂� 

SDEs is mathematically the most sufficient, but it is not often the most natural choice 

physically.  While, the Stratonovich SDEs is the natural choice for an interpretation.  

This study considers only It�̂� one-dimensional linear SDEs model and it will be 

discussed in Chapter 2 

. 
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1.2 Research Background 

One of the major applications in SDEs is the parameters estimation of SDEs  

models.  Previously, there are various studies on parameters estimation methods of 

SDEs called classical parameter estimation methods, involving Simulated Maximum 

Likelihood Estimation (SMLE), Generalised Method of Moments (GMM), Least 

Squares Estimation (LSE), non-parametric method, Kalman filtering and others.  We 

need to solve likelihood function to get estimated parameters of SDEs model when 

using Maximum Likelihood Estimation (MLE) method.  Unfortunately, the 

drawback for the MLE method is obviously more demanding, because the transition 

density term in likelihood function must be estimated.  Usually, the transition density 

is unknown and difficult to obtain analytically (Hurn, Jeisman and Lindsay, 2006).  

Thus, there are various numerical approximation methods in estimating the transition 

density.  One of them is SMLE which provides direct approximation of the 

likelihood function (Lacus, 2009).  He mentions that this method is needed to 

simulate many times trajectories of the process using Monte Carlo method in order to 

integrate the transition density.  This work may take a lot of time if this 

approximation method has to be applied in obtaining maximum likelihood estimates 

of the parameters.  Furthermore, Picchini (2006) states that SMLE method is 

computationally intense and poorly accurate.  

 The disadvantage of the GMM method is the necessity of the moment 

functions which is infeasible in certain demand SDEs models.  There are two cases in 

GMM, particularly just-identified case and overidentified case.  The number of 

moment functions is same to the number of unknown parameters in just-identified 

case,  while the number of moment functions exceeds the number of unknown 

parameters for the overidentified case.  Imbens (2002) describes that just-identified 

case normally possible in getting the estimated parameter by putting the sample 

average of the moments exactly equivalent to zero.  Nonetheless, this is not feasible 

for overidentified case.  In order to face this problem, Hansen (1982) proposes 

alternative approach by setting a linear combination of the sample average of the 

moment functions equivalent to zero, with the dimensions of the linear combination 

equivalent to the number of unknown parameters.  However, this approach is 
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inefficient to estimate the optimal linear combination.  Many researchers have 

studied the small-sample properties of GMM estimators in too distinct contexts and 

summarise that this GMM estimators perhaps are extremely biased and extensively 

dispersed in small samples (Jondeau, Bihan and Gall�́�s, 2004) 

In these circumstances, Rahman, Bahar and Rosli (2013) suggest two-step 

method of SDEs as an alternative to classical parameter estimation methods of SDEs.  

They use spline technique, primarily regression spline in their method which is 

considered quite distinct from previous works.  Budiantara (2006) prefers non-

parametric spline regression than smoothing spline for the selection of optimal knots 

because this spline method is simpler and can be computed with the optimisation of 

ordinary least squares.  In the first step of two-step method of SDEs, Rahman et al. 

(2013) estimates parameters of regression spline using Bayesian approach where this 

technique requires selection of the optimal knot.  The smallest value of Generalised 

Cross Validation (GCV) indicates the best number and location of knots of the fitted 

spline.  But, the selection of optimal knot for this two-step method of SDEs is 

considered only for single optimal knot since it is suitable for the selected case study.  

For the second step, the estimated drift and diffusion parameters are obtained by 

using criterion introduced by Varah (1982) and new proposed criterion by (Rahman 

et al., 2013).   

1.3 Problem Statement 

Most of the SDEs parameter estimation methods do not have analytical 

solution, and numerical method provides a tool in handling this problem.  As 

mentioned in previous section, classical methods have their own deficiencies.  In 

SMLE method, the transition density is acquired, but difficult to estimate and 

unavailable for some models.  While, the GMM requires moment functions which is 

infeasible in certain cases.  As an alternative to classical parameter estimation 

methods of SDEs, two-step method of SDEs is suggested where the preliminary 

proposal of this method applied regression spline with truncated power series basis in 

the first step.  Previous studies are using heuristic selection to choose suitable knots 
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which is based on the visual inspection of scatter plots of the data based on the 

change of slope or the location of the local maxima, minima or inflection points of 

the data.  Unfortunately, this optimal knot selection technique tends to be subjective, 

waste of time and can sometimes be tedious and confusing.  In two-step method of 

SDEs, new algorithm is presented to find optimal knot by choosing the least value of 

Generalised Cross Validation (GCV) as the best number and location of knots of the 

fitted regression spline.  For a chosen case study, the selection of a single optimal 

knot is found suitable to be applied.  However, the case is not suitable for multiple 

knot.  Other than that, the order of spline need to be determined before finding the 

optimal knot that causes the use of spline regression become more complicated. 

Due to the difficulty and limitation in the existing classical parameter 

estimation methods and two-step method of SDEs with regression spline as a non-

parametric estimator, a modified two-step method is introduced in this study.  In the 

first step of modified two-step method of SDEs, we apply Nadaraya-Watson kernel 

regression estimator as a new non-parametric estimator to replace regression splines 

with truncated power series basis.  Therefore, this new non-parametric estimator is 

expected to be very beneficial and simpler since it does not involve the 

computational difficulties encountered by such methods, very straight forward to use, 

suitable for many cases and can easily be adapted to accommodate different demand 

models.  Thus, the modified two-step method of SDEs is considered as another 

option in estimating the parameters of SDEs models.  The estimated parameters of 

one-dimensional linear SDEs models are computed using three methods such as 

modified two-step method, SMLE and GMM and the performances of each method 

will be compared in terms of percentage of accuracy and computational time 

1.4 Research Objectives 

This study embarks on the following objectives: 

i) to choose the best kernel bandwidth selection method to be applied in 

Nadaraya-Watson kernel regression estimators when employing in 

modified two-step method. 
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ii) to compare the performances of two-step method and modified two-step 

method of SDEs in terms of percentage of accuracy and computational 

time using ten number of sample paths. 

iii) to compare the performances of modified two-step method, SMLE and 

GMM in terms of percentage of accuracy and computational time using 

simulated data. 

iv) to assess the reliability of modified two-step method in estimating each 

one-dimensional linear SDEs model by evaluating Cronbach’s alpha. 

v) to apply modified two-step method of SDEs to the Johnson & Johnson’s 

stock price data. 

 

 

 

 

1.5 Research Scope 

This study focuses on one-dimensional linear It�̂� SDEs model namely 

Bachelier, Black-Scholes and Ornstein-Uhlenbeck models.  Besides, drift and 

diffusion parameters of each model will be estimated using modified two-step 

method of SDEs and two classical parameter estimation methods, particularly SMLE 

and GMM.  In the first step of modified two-step method, we are choose Nadaraya-

Watson (NW) kernel regression estimator as a non-parametric estimator and apply 

two kernel bandwidth selection methods in NW kernel regression estimator, which 

are Asymptotic Mean Integrated Square Error (AMISE) for optimal bandwidth and 

Maximum Likelihood Cross Validation (MLCV) technique.  The estimated 

parameters of one-dimensional linear SDEs model is evaluated using the modified 

two-step method, SMLE and GMM.  The performance of each method is compared 

in terms of percentage of accuracy and computational time using simulated data.  

Furthermore, observed data from Johnson and Johnson’s stock price data are also 

applied to the modified two-step method. 
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1.6 Significance of Research 

In this research, modified two-step method is presented where this method 

reduces the complexity and difficulty of computational aspect of such an approach 

because it excludes the finding of transition density in SMLE, the derivation of 

moment functions in GMM and the choosing of the optimal knot in two-step method 

of SDEs.  Modified two-step of SDEs is proposed by considering new non-

parametric estimator which is Nadaraya-Watson (NW) kernel regression estimator to 

replace regression spline in the first step of this method.  Beneficially, NW kernel 

regression estimator avoids the selection of optimal knot in regression spline and 

improves the limitation of two-step method of SDEs which is only suitable for one 

optimal knot in selected case study.  This study provides comparative analysis of the 

parameter estimation methods in highlighting the advantages and disadvantages of 

each parameter estimation method of SDEs, based on the chosen SDEs model. 

 

 

 

 

1.7 Thesis Organisation 

Organisation of the thesis is as follows. 

 

Chapter 1:  This chapter discusses the introduction, research background, 

problem statements, research objectives, research scope,  significances of research 

and thesis organisation.  

Chapter 2:  This chapter highlights the literature reviews of one-dimensional 

linear SDEs models followed by the past literature reviews of parameter estimation 

methods of SDEs and application of each method. 

Chapter 3:  This chapter discusses the existing methodolgy which are two-

step method of SDE, Simulated Maximum Likelihood Estimation (SMLE) and 

Generalised Method of Moments (GMM).  Moreover, modified two-step method of 

SDEs with Nadaraya-Watson (NW) kernel regression estimator as a new non-
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parametric approach also be included in this chapter. 

Chapter 4:  This chapter discusses the properties of one-dimensional linear 

SDEs models used in our study.  Comparison between two-step method and modified 

two-step method are included.  Besides, the results of estimated parameters of one-

dimensional linear SDEs models by using modified two-step method, SMLE and 

GMM are provided.  Then, all the results obtained will be compared and included in 

this chapter. 

Chapter 5:  This chapter discusses the application of Johnson and Johnson’s 

historical stock price data.  This data will be applied to one-dimensional linear SDEs 

model and the parameters will be estimated using modified two-step method. 

Chapter 6:  This chapter discusses the conclusion of the study.  Some 

suggestions for future research are enclosed. 
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