
iii 

 

 

 

SPATIAL VARIABILITY ASSESSMENT OF LOCAL CHLOROPHYLL-A 

ESTIMATION USING SATELLITE DATA 

NOR ZAFIRAH AB.LAH 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Master of Science (Remote Sensing) 

Faculty of Geoinformation and Real Estate 

Universiti Teknologi Malaysia 

OCTOBER 2016



v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family, especially my beloved husband and son 

 



vi 

 

 

 

ACKNOWLEDGEMENT 

 

 

 

 

 Firstly, I would like to express my sincere gratitude to my supervisor Dr. 

Mohd Nadzri Md Reba, for his patience and immense knowledge. His guidance 

helped me throughout the time of research and writing of this thesis. Besides, I 

would like to thank my former supervisor Dr. Eko Siswanto for his time to answer 

all my doubt and questions regarding this research. 

 

 The research of this thesis was financially supported by a grant from the 

Ministry of Higher Education flagship with Universiti Teknologi Malaysia under 

project vote number Q.J130000.2527.03H21 and many thanks to Dr. Katsuhisa 

Tanaka from Japan International Research Centre for Agriculture Science (JIRCAS) 

with collaboration of Penang Fish Research Institute (FRI) for sharing the in-situ 

data for my study. 

 

 My sincere thanks also go to my fellow friends whom always cheer me and 

giving me moral support and especially my bestfriend Mimi, who always accompany 

me during the sleepless night in the laboratory and during the hard time completing 

this thesis.  

 

 Last but not least, I’m thankful to my family for supporting me directly or 

indirectly and financially throughout all my studies at University and as their prayers 

always with me. Also, thanks to my husband Mohd Firdaus Abdullah for giving me 

all the support and understanding throughout writing this thesis and my pregnancy.



vii 

 

 

 

 

ABSTRACT 

 The estimation of Chlorophyll-a (Chl-a) for optically complex water from 

satellite is challenging. Moderate Resolution Imaging Spectroradiometer (MODIS) is  

an ocean colour satellite which has low spatial resolution and this has led to bias 

estimate and scale effect that eventually induced errors in Chl-a retrieval using local 

ocean colour algorithm. Studies on Chl-a variation, assessment of MODIS data and 

development of local ocean colour algorithm are less for Malacca Straits water.  The 

aim of this study is to locally calibrate and validate the Chl-a derived from MODIS 

standard Chl-a algorithm (OC3M) on the latest R2013 data within the acceptable 

error tolerance at the Absolute Percentage Difference (APD) below 35%  and to test 

the algorithm’s applicability.  Iterative regression method with weighted function 

(WFd) namely Iterative Conditional Regression Model (ICRM) is introduced to 

reduce the spatial bias in the Chl-a estimate.  Locally calibrated OC3M algorithm 

with in-situ data taken at two static stations and kernel 7×7 size named as OCms1 

(calibrated with in-situ Case-1 water) and OCms2 (calibrated with in-situ Case-2 

water) remarkably reduced the Chl-a bias with APD of 37% and 30% from 54% and 

116% respectively. Then, using the ICRM, the APD of OCms1 WFd and OCms2 

WFd is 26% and 29% respectively. Results of OCms WFd and OCms (with and 

without weighted function respectively) are combined for mapping the Chl-a in 

Case-1 and Case-2 waters. Result of applicability test and statistical analysis shows 

that OCms WFd ocean colour algorithm provides statistically highest accuracy for 

Chl-a estimation. The development of local Chl-a algorithm is essential for accurate 

Chl-a retrieval and it is significant to other marine studies such as in primary 

production and algal bloom in Malacca Strait water. 
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ABSTRAK 

 Anggaran klorofil-a (Chl-a) untuk perairan yang kompleks secara optikal 

daripada satelit adalah mencabar. Pengimejan spectroradiometer resolusi sederhana 

(MODIS) adalah satelit warna lautan yang mempunyai resolusi spatial yang rendah 

dan membawa kepada anggaran bias dan kesan skala yang akan memberi ralat dalam 

dapatan Chl-a dengan menggunakan algoritma warna lautan tempatan. Kajian 

mengenai variasi Chl-a, penilaian data MODIS dan pembangunan algoritma warna 

lautan tempatan adalah kurang untuk kawasan perairan Selat Melaka. Tujuan kajian 

ini adalah untuk membuat kalibrasi tempatan dan pengesahsahihan Chl-a  yang 

diperolehi daripada algoritma Chl-a piawaian MODIS (OC3M) ke atas data R2013 

yang terkini dengan toleransi ralat yang diterima pada perbezaan peratusan mutlak 

(APD) di bawah 35% dan untuk menguji kebolehgunaan algoritma tersebut. Kaedah 

regresi secara lelaran dengan fungsi pemberat spatial (WFd) iaitu Model Regresi 

Lelaran Bersyarat (ICRM) diperkenalkan untuk mengurangkan bias spatial dalam 

anggaran Chl-a. Algoritma OC3M yang dikalibrasi secara tempatan dengan data 

lapangan yang diambil pada dua stesen cerapan statik dan saiz tetingkap 7x7 yang 

dinamakan sebagai OCms1 (dikalibrasi dengan data lapangan untuk perairan Kes-1) 

dan  OCms2 (dikalibrasi dengan data lapangan untuk perairan Kes-2) telah 

mengurangkan bias Chl-a dengan ketara sebanyak 37% dan 30% daripada 54% dan 

116%. Seterusnya dengan menggunakan ICRM, APD untuk OCms1 WFd dan 

OCms2 WFd adalah masing-masing 26% dan 29%.  Keputusan OCms WFd dan 

OCms (dengan fungsi pemberat dan sebaliknya) digabungkan untuk memetakan Chl-

a bagi perairan Kes-1 dan Kes-2. Keputusan untuk ujian kebolehgunaan dan analisis 

statistik menunjukkan algoritma warna lautan OCms WFd memberi ketepatan yang 

tinggi secara statistik untuk penganggaran Chl-a. Pembangunan algoritma Chl-a 

tempatan adalah penting untuk memperoleh Chl-a yang tepat dan boleh digunakan 

dalam kajian lautan yang lain seperti produktiviti primer dan letusan alga di perairan 

Selat Melaka. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introduction 

 Phytoplankton is a marine photosynthetic microorganisms formed by the 

green biomass called chlorophyll-a (Chl-a) which is the primary molecule of 

chlorophyll pigment and responsible for the photosynthesis process.  Phytoplankton 

plays major role in the oceanic food chain and has become the oxygen production 

agent to ocean bio-creatures and the environment regulator in the ocean carbon 

cycle.  Phytoplankton intrinsically helps to regulate the world climate and by 

knowing the spatial and temporal attributes would improve understanding of its 

influences to the world climate pattern.  Measuring phytoplankton in the ocean is 

literally a tedious and complicated practice.  However, by the advancement of 

satellite remote sensing the phytoplankton estimation is plausible thanks to 

spectroscopic measurement, through that the Chl-a optical properties can be 

determined as a function of the absorption and scattering representing the magnitude 

of concentration and spatio-temporal distribution of phytoplankton abundant.  In fact 

the optical properties variant provide synoptic and continuous mapping of Chl-a at 

promising resolution in time and space. 

 

 Optically sensing Chl-a applies the electromagnetic radiance (EMR) to define 

the colour or spectral related feature of Chl-a in the bio-optical model and this 

application literally known as ocean colour remote sensing is very prevalent in 



2 

 

 

 

marine biological research.  Satellite based ocean colour bio-optical model has 

evolved to cope with different mapping scales and various ocean climate and as a 

result, different algorithm and application have been demonstrated.  Remote sensing 

image is composed of pixels representing the water optical properties that 

geometrically registered to earth coordinates.  To estimate the remotely sensed Chl-

a, two ocean colour model have been devised.  First, the empirical model in which 

statistical regression is applied between sea truth Chl-a and satellite derived apparent 

optical properties (AOP) (e.g, the remote sensing reflectance, Rrs) by assuring both 

measurements are highly correlated in time and space.  The most favourable 

empirical model depends on the spectral bands (typically by blue and green bands) 

and the water types (Case-1 and Case-2 water).  Secondly is the analytical model 

which based on the inversion of a forward radiance model.  Other than that, 

integration of both modelling schema was also devised (known as semi-analytical 

model) but requires theoretical AOP estimation optimized by in-situ inherent optical 

properties (IOP) (all definition of AOP and IOP are described in the glossary). The 

present thesis discusses on the application of empirical model to estimate the Chl-a 

due to the fact this model is straightforward and no dependent to ocean and 

geophysical parameters but completely dependent to satellite remote sensing 

products.. 

 

 To study potential of the empirical model in Chl-a estimation, Malacca Strait 

is chosen in this thesis. Malacca Strait is one of the marginal seas in the Peninsular 

Malaysia and has significant value to Peninsular Malaysia as one of the productive 

fishing grounds (692,985 metric tons of fishes which valued at RM2.263 billion per 

year) as reported by Kasmin (2010) and the prominent ocean trade network in the 

Silk Road. This area is surrounded by different water types, receiving continuous 

water disposal from the major river outlets and experiencing distinctive seasonal 

climate every year which make it the best ocean water to examine the quality of 

satellite derived Chl-a by empirical model and assses the impact of spatial variation. 
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1.2 Background of Study 

 Optical satellite remote sensing basically equipped by passive sensor to 

observe all reflected and emitted EMR coming from the ocean surface at visible to 

near infra-red (NIR) wavelength.  The NASA Earth Observation System (EOS) 

program has commissioned series of passive ocean colour remote sensing in space 

such as Coastal Zone Colour Scanner (CZCS) (Gordon et al., 1980); Sea-Viewing 

Wide Field-of-View Sensor (SeaWIFS) (Hooker et al., 2000); Moderate Resolution 

Imaging Spectroradiometer (MODIS) (Esaias et al., 1998); Visible and Infrared 

Imager/Radiometer Suite (VIIRS) (Feldman, 2015), and Medium Resolution 

Imaging Spectrometer (MERIS) (Le et al., 2013).  Amongst them, MODIS is 

currently the most distinctive ocean colour mapping sensor that provides continuous, 

long-term and the most reliable Chl-a related products for ocean and atmospheric 

studies in the last decade.  Prior to MODIS mision, the SeaWiFS brought 8 spectral 

bands ranging from 412 to 865 nm to collect global optical data at 4 km spatial 

resolution but the mission was completely shut down in 2010. MODIS offers 36 

spectral bands at higher spatial resolution of 1km. The spectral bandwidth is 

narrower and more sensitive to the variation of bio-optical signatures because of the 

signal-to-noise ratio (SNR) is 2-4 times higher than the SeaWiFS (Hu et al., 2012).  

The recent MODIS data taken by Aqua platform (hereafter denoted as MODISA) 

has been released since 2013 (R2013 version) and the quality is greater owing to the 

higher SNR derived from the in-depth radiometric correction at band 8 and 9 (412 

and 413nm respectively) (Feldman, 2014). However, it has yet a study that 

demonstrates the impact of using MODISA R2013 data for the Chl-a estimation in 

Malacca Strait. 

 

 Ocean colour retrieval algorithm is specifically designed either for Case-1 or 

Case-2 water in bio-optical model, (Morel & Prieur, 1977).  The Case-1 water has 

the water optical properties that are mainly induced by the phytoplankton and the co-

varying in-water constituents.  For the Case-2 water, the water optical properties are 

relatively more dominated by other non-co-varying in-water constituents either in 

the form of organic or inorganic particles than the phytoplankton.  The empirical 

Chl-a estimation is complicated to be applied simultaneously for Case-1 and Case-2 
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that leads to inherent bias.  In case of Malacca Strait, different water types would 

exist in a field-of-view (FOV) of EOS ocean color satellite representing Chl-a in a 

single pixel because in 1km x 1km areal pixel there are active nutrient rich sediment 

discharge from the nearby river outlets and continuous upwelling and downwelling 

currents from various depth variation at near and off the coast that diversified the 

ocean salinity and temperature rate. 

 

 Technically, correlated satellite derived Chl-a is based on the concept of  

ratio of the remote sensing reflectance at blue to green band (Tassan, 1981).  This 

rationale lies on the fact that the photosynthetic pigment of Chl-a absorbs much blue 

and red radiance than of the green and reflects much radiance in blue to green.  The 

hypothesis is that band ratio increases as the amount of the Chl-a abundant being 

sensed is higher.  Though, the band ratio sometimes impaired by the lower band ratio 

value (i.e., in the case of 443/555 nm) when the higher Chl-a abundant escalates the 

Rrs at 555nm (Lee & Carder, 2000; Martin, 2014). Therefore, the maximum band 

ratio (MBR) is introduced and taking advantage of significant SNR remains as high 

as possible even over a broad range of Chl-a concentration. The above mentioned 

band ratio methods completely rely on the Rrs at different ocean color bands 

(Dierssen, 2010) and this has proved that two bands (OC2), three bands (OC3) and 

four bands (OC4) have been applied in EOS missions.  In the present thesis, three 

ocean color bands was used in MODIS Chl-a estimation and commonly known as 

OC3M. The significant usage of OC2, OC3 or OC4 was discussed thoroughly in 

O’Reilly et al. (1998).  To date, there are other latest empirical algorithm have been 

devised such as color index (CI) (Hu et al., 2012), normalized difference chlorophyll 

index (NDCI) (Mishra & Mishra, 2012), and semi-analytical algorithm (SAM_LT) 

(Pieri et al., 2015), however, those variants are mainly introduced to optimize the 

typical band ratio algorithm for estimating Chl-a concentration in oligotrophic water 

and turbid water area in low Chl-a concentration (below 1 mm
3
/mg). 

 

 Empirical Chl-a algorithms such as OC4v4 and OC3M devised for SeaWiFS 

and MODIS respectively have been proved as the global Chl-a algorithm.  Though, 

the satellite derived Chl-a may differ if these algorithms are applied locally (within 1 

pixel or 9 pixels) or regionally (more than 9 pixels) because the Chl-a diversity in the 
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ocean is exceptionally dynamic.  It is a need to calibrate and thus validate the global 

Chl-a algorithm by downscaling the Chl-a at local scale which have been done by 

several studies (Cannizzaro & Carder, 2006; Lee & Hu, 2006; Le et al., 2013).  The 

OC3M algorithm was designed to estimate the Chl-a for Case-1 water and this would 

yield misleading Chl-a if it was applied in Case-2 water (Gordon & Clark, 1981; 

Moses et al., 2009; Yang et al., 2010). Calibration and validation exercise (Cal/Val) 

is therefore compulsary to apply on the satellite derived Chl-a in all cases of water as 

long as the absolute percentage difference (APD) is less than 35% (accuracy set by 

the NASA). However, this accuracy is nearly hard to achieve on OC3M and 

SeaWiFS OC4v4 algorithm particularly for Case-2 water (Esaias et al., 1998; 

Darecki & Stramski, 2004; Volpe et al., 2007). 

 

 The Asian monsoon strongly influences the spatial distribution of Chl-a in 

Malacca Strait and satellite observation has proved as the most practical tool to 

measure the impact (Tan et al., 2006).  Interannual Chl-a variation in the northern, 

middle and southern part of Malacca Strait was majorly associated with the El-

Nino/Southern Oscillation (ENSO) and river runoff as reported in (Siswanto & 

Tanaka, 2014).  The study shows that the Chl-a variation was influenced by the 

north-east (December to January) and south-west (May to August) monsoon 

however the impact of local Chl-a algorithm towards spatial variability was not 

presented. 

1.3 Problem Statement 

Based on the background study, issues of this study can be drawn as follows: 

1. Studies by Ab.Lah et al. (2014) and Darecki (2004) on proved that the 

MODISA empirical Chl-a algorithm (OC3M) exhibits fairly acceptable Chl-a 

estimates with the APD <= 35% for off coast (mostly by Case-1 water) but 

higher (APD >90%) near the coast water (probably by Case-2 water). By the 

recent MODISA R2013 data released, the empirical Chl-a estimation can be 

improved and performed at local scale. To date no study has been locally 
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conducted to test applicability and accuracy of the R2013 on the Strait 

Malacca water. 

 

2. MODIS pixel that matchs up with the corresponding in-situ point is needed 

for the empirical OC3M algorithm. To perform the pixel matching, different 

kernel window (starting from 3x3 kernel) is possible to use. Yet, size of 

kernel is limited because the Chl-a representing in the pixel varies with the 

corresponding in-situ Chl-a.  Pixel averaging is commonly practiced but this 

would lead to spatial bias as the Chl-a concentration is fairly homogeneous 

within the 0.1 m
2
 water column and it is arguable to compare the averaged 

MODIS Chl-a concentration of one pixel in approximate 1 km
2
 water 

column.  In this case, the spatial variability impact may reduce the correlation 

of OC3M with the in-situ (Chen et al., 2013). 

 

3. Calibration and validation exercise (Cal/Val) requires at least 30 match-up 

samples (to achieve normal distribution) that are sparsely located in the study 

area. Yet, match-up samples are located at two independent in-situ stations 

where continuous daily Chl-a was measured in this study. No study was 

conducted to assess the spatial impact on Cal/Val by means of static sample. 

1.4 Research Objectives 

The aim of this study is to calibrate and validate the Chl-a derived from empirical 

Chl-a model using the latest reprocessed MODISA R2013 data for Malacca Straits.  

The objectives are the followings; 

 

1. To develop local empirical model for estimating satellite derived Chl-a 

over Malacca Strait by means of MODISA R2013 data and global 

OC3M; 

 

2. To compare the performance of local Chl-a estimation using MODISA 

R2010 and R2013 data; 
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3. To assess the impact of spatial variability on local Chl-a algorithm by 

means of the estimation accuracy in different kernel window size and 

distance of pixel to in-situ point; and  

 

4. To test the applicability of the new calibrated Chl-a algorithm in the 

Malacca Strait water in regard to the impact of seasonal monsoon, coastal 

outputs and precipitation. 

1.5 Significant of Study 

Retrieving accurate Chl-a estimate by using remote sensing over Malacca 

Strait water is worthwhile as this technique conveys reliable information of 

phytoplankton and nutrient at larger scale and faster acquisition. Synoptic Chl-a 

mapping implies the intensity distribution and origins of nutrient along the coast of 

Peninsular Malaysia and Sumatra Indonesia. Massive suspended sediment loading 

from rivers outlets in Peninsular Malaysia and Sumatra that caused variation of 

phytoplankton can be determined by map of Chl-a concentration derived from this 

study. Information of nutrient is essential to determine the degree of marine 

biological production in Malacca Strait. All these marine substances significantly 

influence the spatio-temporal variability of phytoplankton and hence the Chl-a 

density in Malacca Strait. 

 

Knowing the accurate Chl-a estimation in marginal seas is essential to 

understand the global ocean production. Study on spatio-temporal Chl-a variability is 

foreseen in future research to improve nowcasting of ocean climate change and algal 

bloom prediction model. This thesis shows the quality assessment procedure on local 

MODIS Chl-a algorithm for Malacca Straits that accounted impact of spatial 

variability of low spatial resolution. 
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The state-of-the-art and accurate local Chl-a algorithm with low impact of 

spatial variability induced by low spatial resolution in MODIS pixel. The new 

calibrated Chl-a MODIS could help any future research of marine biology in 

Malacca Straits (Tan et al., 2006) and to promote the application of MODISA R2013 

in marine research. Besides, the MODIS R2013 Chl-a product could support the 

development of marine database of Malaysia National Oceanographic Data Centre 

(MyNODC). 

 

 Cal/Val exercise needs well-distributed in-situ to increase more match-up 

sample with satellite observation and this could be carried out by using vessel or by 

number of scattered bouys to sample Chl-a over the study area. Yet, it becomes more 

troublesome when the satellite data was hampered by cloud cover or limited number 

and distribution in-situ points were exist. This could no longer be the issue in this 

study as the new Chl-a algorithm demonstrates straightforward Cal/Val at promising 

results with static distribution of in-situ point. The procedure exhibits an alternative 

way to reduce spatial variability when the option of using the enormous pixel kernel 

size is needed. 

1.6 Study Area 

The Malacca Strait has relatively shallower in depth (absolute depth of 300 to 400 

meter) than in the South China Sea (60 to 5500 meter depth from the margin to the 

northeast basin) but both marginal seas contain diverse salinity, temperature and 

optical water properties due to its geographical features and seasonal climatology. 

The Malacca Strait is one of the most productive waters in the Malaysia with high 

nutrient inputs discharged from the rivers (Ali Yousif, 2009) and this in turn 

intensifies the level of Chl-a abundant.  Besides, its coastal water region typically 

exhibits higher temporal and spatial variations of Chl-a concentration induced from 

the climatic, biological, physical and chemical condition ( Thia-Eng et al., 2000; 

Abdul Hadi et al., 2013; Haldar et al., 2013).  Two in-situ data stations in Malacca 

Strait measures continuous daily Chl-a located at Payar Island, Kedah (ST1) and 

Bagan Nakhoda Omar reservoir, BNO, Selangor (ST2).  All in-situ Chl-a 
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measurements are provided by Japan International Research Centre for Agriculture 

Science (JIRCAS) and Penang Fish Research Institute (FRI) for this study.  The in-

situ Chl-a was measured based on the method proposed by Suzuki & Ishimaru 

(1990).  Figure 1.1 showed the study region with two static in-situ stations and main 

rivers along the coast of Malacca Strait which are Kerian river (Sg. Kerian), 

Selangor river (Sg. Selangor), Klang river (Sg. Klang), and Langat river (Sg. Langat) 

where the river discharge inputs to the Malacca Straits.  Malacca Straits has been 

divided into three sections which are, 1) north, 2) middle and 3) south, because the 

north and south region are very different in terms of water optical properties, 

physical oceanography (Andaman Sea water influence northern region and South 

China Sea water influence southern region), and its bathymetry where north is deep 

and wide compare to south which is shallow and narrow.  
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Figure 1.1  Map of Malacca Strait showing two stations, Station 1, ST.1 (northern part) and 

Station 2, ST.2 (southern part) where the in-situ Chl-a data were taken, three section of 

Malacca Strait (1-North, 2-Middle, 3-South) and 4 main rivers along the coast of the strait. 

1.7 Scope of Study 

 This study will mainly focus on assessing the spatial variability of the local 

Chl-a estimation in terms of algorithm statistical analysis, Chl-a estimation bias, and 

local Chl-a algorithm applied map.  The empirical algorithm (OC3M) was used to 

retrieve the Chl-a and it was calibrated using the in-situ data at two stations in 

Malacca Strait to achieve the objective of developing the locally-tuned OC3M 

algorithm using the latest MODISA R2013.  The primary data used in this study is 

the MODISA Level 2 with the resolution of 1km.  In this study, the MODISA data 
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was preferred instead of MODIS-Terra because of the 1km and 250m of the 

MODIS-Terra data has lower SNR and its application mission is not suitable for 

ocean studies (Xiaoxiong et al, 2005). 

 

 To establish the empirical model, the nonlinear regression with reduced 

major axis (RMA) method is applied. The fitting method presented in this study was 

implemented for the data sample that met the limitation of the study, which is data 

sample less than 40 match-up points and the in-situ data was from few static stations 

that were sparsely distributed.  Throughout the Cal/Val process, the standard Chl-a 

algorithm was locally-tuned in the Case-1 and Case-2 water separately and also in 

combined water cases.  This is to determine the best way that the local-tuned Chl-a 

algorithm give the best result for the estimated Chl-a value in the study area.   

 

In the accuracy analysis, error of fitting is assessed based on the result of the 

confidence interval (CI), sum of squares error (SS) and goodness of fit test (gof) and 

error of data (i.e., induced by spatial variability of MODISA pixel) is evaluated by 

absolute percentage difference (APD), relative percentage difference (RPD), root 

mean square error (RMSE), mean normalized bias (MNB) and the correlation of 

determination R
2
.  This study sets the APD lower than 35% the positive R

2  
as the 

major argument as the correlation of satellite pixels established with the static in-situ 

station.  Practically, the satellite oceanography processing requires well-distributed 

in-situ points to increase match-up with synoptic satellite coverage, and this is not 

the case applied in this study.  Correlation to static in-situ introduces spatial 

variability of MODISA Chl-a, therefore the assessment of this spatial variability 

impact is carried out by different different sizes of pixel kernels (e.g., 3x3, 5x5 and 

7x7) and in turn, optimizing the chances of number of match-ups.  To compensate 

the variability impact, the spatial weight function is employed to the Rrs satellite-

retrieved and consideration on the temporal window for satellite acquisition to in-situ 

measurement time is also taken into account.  
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 Malacca Strait is categorize as eutrophic water and in order to test the 

applicability of the derived locally tuned Chl-a model, the Malacca Strait water was 

divided into 3 parts (i.e., Northern part which basically is the Case-1 water, Middle 

part which is basically dual-classification waters and Southern part which is the 

Case-2 water).  Applicability test encompasses estimation of p-value and statistical 

analysis of the related geophysical parameters (i.e., river discharge, rainfall rate, in-

situ SST and suspended sediment) to help in understanding the Chl-a variation 

during the study period. 
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