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ABSTRACT 

 

 

 

 

Rapid fall of the fossil fuels and their implication towards environment can be 

reasonably resolved with the exploration of the efficient materials having the ability 

to convert wasted heat into electricity. In this regard, half-Heusler materials are 

reported as one of the promising class of the thermoelectric materials. In this 

research, mainly the investigations on the thermoelectric properties of half-Heusler 

XMgN (X=Li, Na, K) are done. The total energy calculations are performed using 

the full potential linearised augmented plane wave (FP-LAPW) method framed 

within density functional theory (DFT) and embodied in WIEN2k package, where 

the calculations of the thermoelectric properties are carried out by the same DFT 

based computational approach followed by the semi-empirical Boltzmann theory. 

However, to incorporate exchange-correlation energy/potential part, local density 

approximation (LDA) by Perdew and Wang (PW), parameterized generalized 

gradient approximation (GGA) of Perdew-Berke-Ernzerhof (PBE) and modified 

Becke-Johnson (mBJ) exchange potential by Trans-Blaha are used. From the 

calculations, it is found that the obtained results of lattice parameters are in good 

agreement with the previous calculations. From the electronic band structure 

analysis, LiMgN and NaMgN are found to be direct band gap materials whereas 

KMgN exhibits its indirect band gap make-up. The investigations for thermoelectric 

properties cover the Seebeck coefficient, electrical conductivity, thermal 

conductivity, power factor and figure of merit (ZT) of the investigated materials at 

different temperatures such as 300K, 600K, and 900K. The calculated results of the 

ZT parameter for the LiMgN, NaMgN and KMgN (nearly equal to one i.e. ~1) reveal 

that all the investigated materials could be useful for thermoelectric applications. 
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ABSTRAK 

 

 

 

 

Kejatuhan mendadak bahan api fosil dan kesannya terhadap alam sekitar boleh 

dibendung dengan penerokaan bahan yang mempunyai kebolehan untuk menukarkan 

tenaga haba terbuang kepada tenaga elektrik. Dalam hal ini, bahan separuh Heusler 

telah dilaporkan sebagai bahan termoelektrik yang berpotensi. Dalam penyelidikan 

ini, terutamanya kajian terhadap sifat termoelektrik separuh Heusler XMgN (X=Li, 

Na, K) telah dilaksanakan. Pengiraan jumlah tenaga dilakukan dengan menggunakan 

kaedah potensi penuh gelombang satah linear (FP-LAPW) yang dirangka dalam teori 

fungsian ketumpatan (DFT) dan terkandung dalam pakej WIEN2K, dimana 

pengiraan sifat termoelektrik dijalankan dengan DFT yang sama berdasarkan 

pendekatan pengkomputeran diikuti dengan teori semi-empirikal Boltzmann. 

Bagaimanapun, bagi menggabungkan bahagian tenaga/potensi pertukaran kolerasi, 

penghampiran ketumpatan setempat (LDA) oleh Perdew dan Wang (PW), 

penghampiran kecerunan teritlak berparameter (GGA) Perdew-Berke-Ernzerhof 

(PBE) dan pengubahsuaian Becke-Johnson (mBJ) oleh Trans-Blaha telah digunakan. 

Daripada pengiraan, didapati keputusan yang diperoleh terhadap parameter kekisi 

adalah sangat bertepatan dengan pengiraan sebelum ini. Daripada analisis struktur 

jalur elektronik, didapati LiMgN dan NaMgN menjadi jurang jalur langsung 

manakala KMgN mempamerkan jurang jalur tidak langsung. Kajian bagi sifat 

termoelektrik meliputi pekali Seebeck, kekonduksian elektrik, kekonduksian terma, 

faktor kuasa dan angka merit (ZT) bagi  bahan yang dikaji pada suhu yang berlainan 

iaitu 300K, 600K dan 900K. Keputusan pengiraan bagi parameter ZT bagi LiMgN, 

NaMgN dan KMgN (menghampiri satu atau ~1) mendedahkan bahawa semua bahan 

yang dikaji berpotensi dalam aplikasi termoelektrik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

 Human activities, automotive exhaust, industrial processes and emission of 

CO2 are causing severe climate changes. Moreover, during all these processes, most 

of the energy is converted into waste heat because nearly 90% of the world power is 

produced by heat engines operated by the fossil fuels whose efficiency is around 30-

40%. In addition, the demand for energy is day by day increasing worldwide 

because, in this technological era, energy is a key factor to run any economy. 

According to the report of "international energy agency, world energy outlook 2012" 

(Cozzi et al. 2012), from 1990 approximately 35% of the energy use has been 

increased and is expected the same trend in the coming years as well. At present, 

81% of the energy demands are fulfilled with fossil fuels. In this way, up to 2035, the 

world energy demand will approach equivalent to 15 billion ton oil per year, where 

the reserve of fossil fuels are limited. In this scenario, efficient use of the energy and 

to find renewable or sustainable energy resources is urgently demanded. One of the 

ways out is efficient thermoelectrics (TE) because TE can  convert waste heat into 

electricity and make it valuable by following the process called as "thermoelectric 

effect" (Snyder et al. 2008). 

 

 

 Presently, solar heat utilization, waste heat recovery, temperature-controlled 

seats and portable picnic coolers are some of the applications of thermoelectric effect 

(Li et al. 2010). This approach can be further exploited to achieve multipurpose 
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sustainable/alternative energy resource (to convert waste heat into electricity), to 

overcome worldly energy crisis, to realize the dream of green energy or technology, 

to reduce our dependence on fossil fuels and greenhouse gas emission, and to control 

global warming which is badly impacting the weather conditions and disturbing the 

eco-system etc. However, this all needs the availability of the highly efficient 

thermoelectric materials. Hence, the development of highly performing TE materials 

has become more important.  

 

 

 The efficiency of the thermoelectric materials in devices is determined by the 

value of its dimensionless parameter called ‗figure of merits‘, ZT, depending on the 

transport properties (Seebeck Coefficients, electric and thermal conductivities) of the 

TE materials (Rowe et al. 1995). There are many classes of the materials which have 

shown their potential to convert heat energy into electricity such as skutterudites, 

clathrates, sulfide, selenide, chalcogenide, Bi2Te3- and PbTe-based (Goncalves et al. 

2014). 

 

   

 Although some of the materials of these classes have reached to more than '1' 

value of the figure of merit, most of these TE materials are expensive due to the 

rareness of their constituents elements, for example, Pb, Te, Ge, Yb, Co (Qiu et al. 

2014). Therefore, a lot of efforts are going on to search for materials consisting of 

earth-abundant elements, eco-friendly, and has the ability to sustain against 

aggressive environments. In this regard, half-Heuslers compounds or alloys have 

been attracted the considered attention of the researchers because of showing low 

toxicity of their constituents elements and promising TE properties. Furthermore, the 

half-Heusler materials are also of interest because of exhibiting their potential for 

medium and high-temperature TE properties (Melnyk et al. 2000).  

 

 

 

 

1.2 Problem Statement 

 

 

The mounting use of the fossil fuels and its implication towards environment like 

global warming could be resolved with the right way exploitation of the waste heat. 
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This needs materials that have the ability to convert waste heat to electricity. 

Although different classes of TE materials have been explored, half-Heusler 

materials are being considered more promising TE materials because of showing 

their stability over a wide range of the temperature and offering the opportunity of 

alloying which can result in lesser thermal conductivity as a result of mass 

fluctuation (Yadav et al. 2015). Furthermore, these materials are easy to synthesize 

and more environmental friendly rather than others, for example, PbTe-based 

materials. These features have received much attention of researchers and motivating 

further to explore other half-Heusler compounds or alloys with appropriate TE 

properties. Thus, in the present work, DFT-based computational approaches are used 

to investigate the half-Heusler alloys, XMgN (X = Li, Na, K) as the study of their 

thermoelectric properties is lacking. Moreover, DFT approaches do not require prior 

knowledge about the materials except basic parameters and are considered to be 

suitable for the atomic scale fundamental understanding of the properties which are 

not yet explored well.  

 

 

 

 

1.3 Objectives 

 

 

The main purpose of this research project is to study thermoelectric properties of 

half-Heusler alloys XMgN (X = Li, Na, K) by employing the state of the art first-

principles DFT based FP-LAPW computational approach embodied in WIEN2k 

computational packages. 

 

 

The objectives of this study are: 

1. To optimize the simulated geometrical structure of the half-Heusler alloys 

XMgN (X = Li, Na, K).  

2. To determine structural parameters of the XMgN (X = Li, Na, K) alloys. 

3. To investigate the electronic properties of these materials. 

4. To calculate the thermoelectric properties of these alloys. 
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1.4 Scope of Study 

 

 

In this work, the structure of half-Heusler alloys XMgN (X = Li, Na, K) are 

optimized correspond to a DFT-based approach called ―full potential linearized 

augmented plane wave (FP-LAPW)‖ methodology as implemented in the WIEN2k 

computational package. The approach is used for the investigations of the physical 

properties of above-mentioned half-Heusler alloys. For the investigation of electronic 

properties, LDA and PBE-GGA are used as exchange-correlation energy of 

electrons. Furthermore, these exchange-correlation functional are also used to 

determine the band structure calculations. In order to obtain more accurate band gaps 

values, the modified Becke-Johnson (mBJ) exchange potential is also used as its 

accuracy has been established in many studies similar to very expensive GW 

calculations (Blaha et al. 2001). For investigations of thermoelectric properties, the 

BoltzTrap code implemented within WIEN2k is used to calculate the transport 

properties. Once the transport properties are calculated, all the parameters to 

determine a figure of merit (ZT) can be obtained. ZT value is indicated as the 

efficiency of TE performance. 

 

 

 

 

1.5 Significance of Study 

 

 

This study is mainly a way forward to approach and improves the ongoing research 

on thermoelectric materials. The study of physical properties with various exchange-

correlation potential provides an opportunity in opting for an appropriate exchange-

correlation potential to determine electronic properties. In addition, this work is 

conducted through the state of the art ab initio methods based on DFT. This research 

work could be a good contribution to the advancement of knowledge about the 

conversion of waste heat to electrical power generation. In addition, this research 

also could provide promising TE materials that might provide a strong footing to the 

experimentalist, academicians, and industrial scientists in the construction of TE 

technology with more economical and environment-friendly that are beneficial to the 

country and community. 
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the understanding of thermoelectric properties of the studied materials, and to realize 

their potential, for their thermoelectric applications experimental studies are also 

recommended. 
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