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ABSTRACT: 
 
The evaluation of pavement conditions is an important part of pavement management. Traditionally, pavement condition data are 
gathered by human inspectors who walk or drive along the road to assess the distresses and subsequently produce report sheets. This 
visual survey method is not only time consuming and costly but more importantly it compromises the safety of the field personnel. 
With an automated digital image processing technique, however, pavement distress analysis can be conducted in a swifter and safer 
manner. Pavement distresses are captured on images which are later automatically analysed. Furthermore, the automated method can 
improve the objectivity, accuracy, and consistency of the distress survey data. This research is aimed at the development of an 
Automated Pavement Imaging Program (APIP) for evaluating pavement distress condition. The digital image processing program 
enables longitudinal, transverse, and alligator cracking to be classified. Subsequently, the program will automatically estimate the 
crack intensity which can be used for rating pavement distress severity. Advancement in digital photogrammetric technology creates 
an opportunity to overcome some problems associated with the manual methods. It can provide a low-cost, near real time 
geometrical imaging through digital photogrammetry without physically touching the surface being measured. Moreover, digital 
photogrammetry workstation (DPW) is user-friendly, less tedious and enables surface conditions to be represented as ortho-image, 
overlay contour with ortho-image, as well as digital elevation model. The algorithms developed in this study are found to be capable 
of identifying type of cracking and its severity level with an accuracy of about 90% when compared to the traditional method. This 
is to show that the combination of the photogrammetric approach and APIP is a viable system to be used in pavement evaluations. 
 
 

1. INTRODUCTION 

Pavement distresses are visible imperfections on the surface of 
the pavements. Therefore, the evaluation of pavement condition 
is an important part to provide information to keep pavements 
in good condition. Accurate evaluations would result in a better 
chance that resources will be distributed normally. Thus, 
yielding a better service condition (Kim, 1998). Pavement can 
be evaluated through the different types of distress experienced, 
such as cracking, disintegration and surface deformation. At 
present, there are various methods of conducting distress 
surveys, recording and analysing distress survey data (Cheng 
and Miyojim, 1998). Pavement engineers have long recognized 
the importance of distress information in quantifying the quality 
of pavements. This information has been used to document 
present pavement condition, chart past performance history, and 
predict future pavement performance.   
 
 

2. PROBLEM STATEMENT  

Manual visual inspection of pavement surface condition is 
costly and time consuming.  In many cases, work has to be done 
along fast moving traffic.  Such condition would endanger the 
safety of the personnel involved.  In the wake of tedious manual 
measurements and safety issues, various types of automated 
equipments have been developed for the purpose of pavement 
monitoring and evaluation.  
 
Visual observation of pavement distress is the most common 
method for monitoring pavement surface condition.  This has 

been traditionally performed by trained engineers who work or 
drive along the road and counts the distresses (Oh, 1998).  
However this method of field inspection poses several 
drawbacks, such as: 

(i) Slow, labour intensive and expensive. 
(ii) Subjective approach generating inconsistencies   

and inaccuracies in the determination of pavement 
condition. 

(iii) Inflexible and does not provide an absolute 
measure of the surface. 

(iv) Has poor repeatability since the assessment of 
given pavement section may be differ from one 
survey to the next. 

(v) Could expose a serious safety hazard to the 
surveyors due to high speed and high volume 
traffic. 

 
Numerous system users believe that there is a need to minimise 
the drawbacks listed above, replacing manual data collection 
system with automated systems.  In response to these demands, 
various studies have been conducted to apply new technologies 
in pavement monitoring. Among these technologies, close-
range digital photogrammetry is seen as a possible approach in 
providing accurate, consistent data and easy visualisation for 
pavement distress studies. Furthermore, a combination of a 
close-range digital photogrammetry data collection system with 
a suitable image processing analysis would result in a system 
that is reliable and dependable. Therefore, this study looks at 
developing a photogrammetric based pavement evaluation 
approach by utilising ortho-images and image processing 
techniques.   
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3. RESEARCH APPROACH  

An overview of the research procedure developed for pavement 
distress evaluation is presented. A combination of close-range 
photogrammetric and image processing metrology were 
developed in various stages and is illustrated in Figure 1 and 6, 
respectively.  
 
3.1 Photogrammetric System 

In the first stage, a stereovision measurement technique is 
developed to evaluate and monitor the pavement conditions. To 
achieve this, several processes were conducted. These processes 
were categorized as, camera calibration, ground control, image 
acquisition and digital photogrammetry workstation (VirtuoZo) 
processing. The following sections describe these processes.   

 
3.1.1 Ground Control 

Ground control is currently provided by means of a frame that 
was calibrated in the laboratory. This arrangement was chosen 
because it is convenient to be used in the field.  
 
 

 
 

Figure 1. Schematic diagram of the photogrammetric system 
 

3.1.2 Image Acquisition 

Ten pairs of stereo images were captured using the same digital 
camera with its axis perpendicular to the road surface. Stereo 
vision technique showed great potential for metrology 
application in pavement condition monitoring. 
 
3.1.3 PW (VirtuoZo) Processing 

DPW processing was carried out using the VirtuoZo NT system 
(version 3.2) running on a workstation. The process has two key 
steps (1) Requirement and parameter setup for VirtuoZo and (2) 
Running VirtuoZo software. VirtuoZo, which is low user 
interaction software, had proved highly flexible and is easy to 
use in terms of preparation modules (for example, creating 
image overviews and automatic image orientation) for ortho-
image and digital elevation model generation.  
 

3.1.4 Ortho-image and Contour 

After performing the steps in VirtuoZo digital photogrammetry 
workstation, ortho-image and contour overlay as well as 3D 
DEM data was generated.  Figures 3 and 4 show the ortho-
image and contour overlay of pothole (disintegration) distress 
respectively.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3.  Relative orientation of stereo image 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4. Ortho-image and contour overlap of pothole 
 

3.1.6 Severity Classification 

3D DEM coordinates output from VirtuoZo became the input 
data for SURFER software and MATLAB to produce contour 
plotting and cross section plotting respectively. SURFER 
consisted of three programs: QGRID, TOPO and SURF. 
QGRID takes irregular data from ASCII file and created a 
regularly spaced ‘grid’. The reformatted file was then entered 
into a graphics programs, TOPO or SURF. TOPO created 
topographic maps and SURF created three dimensional terrain 
surfaces. The 3D surface as shown in Figure 5 shows that the 
Y-axis coordinates were positive in the direction of traffic 
movement; the X-axis coordinates represented the 
measurements crossing the road; and the Z-axis coordinates 
area were positively upward.   
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Figure 5.  3D model and contour plots generated by SURFER 
 
The SURFER menu offered a variety of options for 
manipulating data. The options ranged from minor editing of 
graphics such as smoothing relief to the choice of mathematical 
procedures for determining volume, area and elevation.  
 
Negative surface area of 3D model shown in figure was 
assumed as the bowl shaped cavity in the pavement surface 
(area of pothole). Volume and area of pothole was then 
calculated at about 0.00354 m3 and 0.1182 m2 respectively, 
with the help of the program SURFER. Consequently, depth of 
the distress of about 29.95 mm could be easily determined by 
dividing the volume with the area.  The severity of pothole was 
classified according to the DEM data based on guidelines set by 
the Public Works Department (JKR) of Malaysia.  Based on 
Table 1, the pothole was classified as a moderate level.  
 

 

 
Table 1. Severity level of pothole (JKR, 1992) 

    
3.2 Matlab Environment  

The second stage is to develop an Automated Pavement 
Imaging Program (APIP). The APIP for pavement crack 
analysis involved six major steps: image enhancement, image 
thresholding, morphology closing, thinning, distress 
classification and distress quantification.   

 
3.2.1 Image Acquisition 

The first step involved in the automated image processing is the 
acquisition and digitization of the image.  The height from 
digital camera (5.4mm) lens to the pavement was about 1.00 
meter.  The digitized array size was 640 by 480 pixels, which 
resulted in 480 lines vertically and 640 elements horizontally.  
The original image was a mathematical representation of a 
colour image in a 24-bit per pixel size format.  This colour 
image consisted of a combination of three 8-bit arrays, and 8 bit 
arrays contained brightness value for red, green and blue, 
respectively.  To facilitates image processing and manipulation 
of the image, a brightness level of each pixel, assigned at a 
value between 0 (black) and white (255) is needed to convert 
the colour image to gray scale image.  Thus, the 24-bit per pixel 

format was converted to a 8-bit per pixel format, and this 
reduced the file space required for storage by two-thirds.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Schematic diagram of the Matlab environment 
 
3.2.2 Image Enhancement Algorithm 

Image enhancement was applied in an attempt to remove noise 
in pavement images.  Median filtering was therefore applied as 
pavement image enhancement technique in this research.  It is 
similar to using an averaging filter, in that each output pixel is 
set to an average of the pixel values in the neighborhood of the 
corresponding input pixel.  The size of the neighborhood used 
for filtering is 3-by-3.  However, with median filtering, the 
value of an output pixel is determined by the median of the 
neighborhood pixels, rather than the mean. The median is much 
less sensitive than the mean to extreme values.  Median filtering 
is therefore better able to remove these outliers without 
reducing the sharpness of the image.   
 
3.2.3 Image Thresholding Algorithm 

The spatial and light intensity information on the image is 
usually combined with a thresholding technique for the 
improved image segmentation.  The segmentation relates the 
threshold for a given image to the mean and standard deviation 
value of the corresponding gray scale histogram through an 
equation.   
 
Once the optimal threshold value was determined, the pixels 
with gray level below the threshold were referred to as distress 
pixels and pixels whose gray level value exceeded the threshold 
were referred to as background.  The selection of an appropriate 
value played a very important role in the entire process since it 
was the value that ultimately defined the mapping of the 
distress features in the binary image. It is found that the simple 
image enhancement algorithm worked well in predicting the 
presence or absence of distress features on the image as shown 
in Figure 7.  Figure 8 show the binary image obtained from 
proposed segmentation algorithm 
 
 
 
 

 AREA (m2) 
DEPTH (mm) < 0.1 0.1 - 0.3 > 0.3 

< 25 Low Low Moderate
25 - 50 Moderate Moderate High 

> 50 Moderate High High 
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Figure 7. Original image of pavement cracks 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Binary image (proposed algorithm) 
of pavement cracks   

 
3.2.4 Morphological Closing 

Figure 9, which is a segmented image of Figure 7, shows how 
some noise cluster occupies open space corresponding to the 
background. Noise removal at the threshold of 10 pixels was 
applied, followed by performing morphological closing with 
structural element of size 5, than producing another binary 
image.  The resulting aspect is shown in the sample of Figure 
10, where it can be noticed that some of the noises have been 
removed and some holes being filled with object pixels. 
 
3.2.5 Thinning Algorithm 

The binary image with clusters was not useful enough and had 
to be further processed by thinning.  After thinning, a generic 
source image had the appearance as shown in Figure 11.  Crack 
length was determined using the thinning algorithm based on 
the central lines with one pixel wide. Then, the average width 
of crack was obtained by dividing the area and the length. 
These parameters were found to be very beneficial for cracking 
quantification. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Figure 9. Image segmented of Figure 3 before closing 
and noise removal 

 

 
 

Figure 10. Image segmented of Figure 7 after closing 
and noise removal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 11. Image of Figure 6 after thinning 
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Technique Mean (m3) S.D t tα
Manual 0.001341 0.001243

Photogrammetry 0.001246 0.001196

Technique Mean (m2) S.D t tα
Manual 0.0642 0.0398

Photogrammetry 0.066 0.0387

Technique Mean (mm) S.D t tα
Manual 17.28 8.26

Photogrammetry 15.4 8.3

0.104 1.332
(c) Analysis of Depth

0.509 1.332

(a) Analysis of Volume

0.175 1.332
(b) Analysis of Area

3.2.6 Classification 

 A simple rule-based classification approach was developed, 
taking into account four distress types: longitudinal cracking, 
transverse cracking, alligator cracking and non-cracking. 
Subroutines were implemented with decision rules that compare 
the several parameter in x and y-array extracted from the binary 
image.  
 
From the characteristics of summed gray level graphs for a 
number of pavement images with the different types of 
distresses, the following was found to be true.  Different 
distresses will give distinctly different summed array profiles.  
For alligator crack, the distress zones in two arrays are 
relatively wide.  For a longitudinal and transverse crack, the 
narrow and sharp peak of summed gray level is always found in 
the x-array and y-array respectively, whereas the summed gray 
level in the other array should not show noticeable peaks 
 
3.2.7 Quantification 

Another deterministic approach in APIP is to classify distress 
severity level based on “A Guide to Visual Assessment of 
Flexible Pavement Surface Condition” (JKR, 1992).  The 
manual explains how to measure and give the unit of 
measurement for each type of crack.  Alligator cracking is 
measured in square meters.  Longitudinal cracking and 
transverse cracking are measured in linear meters.  The severity 
levels of each type of crack are classified as low, moderate, or 
high.  For example, a moderate severity of longitudinal 
cracking is described as “cracks with moderately severe 
spalling; meaning unsealed crack width greater than 3 mm; 
sealant material in bad condition” (JKR, 1992). 
 
The standard crack density concept can be readily and logically 
implemented in pavement image processing (Lee and Oshima, 
1994).  The standard crack density is determined by multiplying 
the extent with the average crack width. The standard crack 
density concept is at an advantage for use in image processing 
analysis since it takes into consideration both extent and width 
of cracks simultaneously.   
 
A simple concept of determining length, area, average width 
and extent of crack is developed. Area (A) of distress can be 
calculated from the total number of pixels from distress area 
and multiplied by the pixel size. Length (l) will be determined 
based on the polylines of one pixel width. Then, the average 
crack width (CW) can be derived from area by dividing the 
length. To illustrate the computation of cracking quantification 
in APIP, rule-based classification of severity level was 
programmed and severities of each type of crack are mainly 
referred to crack density and average width.  
 
 

4 RESULTS  AND ANALAYSIS 

The accuracy of the system performance was determined by 
using t-test.  This is required in order to determine how close an 
observation matches the accepted reference value or the 
assumed true value.  For comparison purposes, visual field 
surveys were adopted as the true values or reference values.  
Therefore, the observed data from the photogrammetric system 
and Automated Pavement Imaging Program (APIP) were 
compared with the data from the visual field inspection.    
 
4.1 Photogrammertric System 

Ten pavement distresses, including five potholes and five 
delaminations were randomly selected at fields and processed 
through the photogrammetric system. The final estimations of 
volume, area and depth resulted from manual inspection along 
with the values from the photogrammetric system were 
calculated.   
 
The t-test was performed to determine whether the mean of 
photogrammetric system was different from the mean of manual 
method.  At a significance level of 0.20, the computed tα value 
was found to be 1.332 with 18 degrees of freedom. To examine 
the relationship between the evaluations, t statistic values were 
determined using the calculated data.  As indicated in Table 2, 
we do not reject the null hypothesis since the computed t 
statistic (volume), t statistic (area) and t statistic (depth) were 
not greater than the tα value.  Therefore,  the mean of the 
volumes, areas and depths obtained from the photogrammetric 
system are not significantly different from those of the visual 
field surveys. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 2.  Paired t-test for manual and photogrammetric system 

 
Sam. 
No. Manual Photogram.
1 Pothole Low Low 100
2 Pothole Low Low 100
3 Pothole Low Low 100

4 Pothole Moderate Moderate 100
5 Pothole Moderate Moderate 100
6 Delamination Moderate Moderate 100
7 Delamination Low Low 100
8 Delamination Low Low 100
9 Delamination Low Low 100
10 Delamination Low Low 100

100

Distress Type
Severity Level

Accuracy

Total Accuracy  
 
Table 3. Severity level comparison (Manual vs. Photogram.) 

using ten samples 
 
Table 3 summarizes the severity rating results from the 
photogrammetry and manual approaches.  It can be clearly seen 
that, in all the samples testes, the severity level detected by the 
photogrammteric method is in total agreement with the level 
obtained from manual method.   
 
4.2 Automated Pavement Imaging Program 

The validation of the Automated Pavement Imaging Program 
(APIP) algorithms is discussed in this section. Firstly, proper 
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constant values of A (1.8 and 2.0) were selected for the image 
segmentation (thresholding) algorithm. This is followed by 
comparing the crack width (CWs) and cracking density (CDs) 
obtained from the automated rating against those from the 
manual rating. Twenty-eight image samples collected from 
various road segments were used for the analysis.   
 
4.2.1 Crack Width and Cracking Density 
 
To evaluate the APIP performance using the on-field 
measurement approach, the results had to be analysed by using 
statistical approaches. The results of the paired t-test are 
summarized in Tables 4 and 5.  The statistic t-values from the t-
test are listed in two categories, i.e., CWs and CDs. 
 
 

Technique Mean (mm) S.D t tα
Manual 6.077 2.271
APIP 6.08 2.503

Technique Mean (cm/cm2) S.D t tα
Manual 0.0422 0.428
APIP 0.0516 0.0415 0.841 2.004

(A) Analysis of Average Crack Width

0.363 2.004
(B) Analysis of Average Cracking Density

 
 
Table 4: Statistic test for Manual and APIP (A=1.8) inspection 
 
As shown in Table 4, all statistic t-values were lower than the tα 
at the significance level α = 0.20.  Thus, t-distribution indicated 
that there were no significant differences between the overall 
crack width and cracking density for the 1.8_APIP and the field 
inspections.  In Table 4, test for 2.0_APIP also showed higher 
tα-values than the statistic t-values at the 0.20 significance level.  
This indicates that the mean difference between each data was 
not significantly different.   
 

Technique Mean (mm) S.D t tα
Manual 6.077 2.271
APIP 5.735 2.41

Technique Mean (cm/cm2) S.D t tα
Manual 0.0422 0.428
APIP 0.0444 0.0373 0.206 2.004

(A) Analysis of Average Crack Width

0.222 2.004
(B) Analysis of Average Cracking Density

 
 
Table 5.  Statistic test for Manual and APIP (A=2.0) inspections 
 
4.2.2 Cracking Type Prediction  

The APIP was then tested to determine whether it could 
distinguish between several types of crack and images without 
crack.  Using additional three actual pavement images without 
crack, the automated imaging algorithms correctly identified 
most of them.  
 
From the results, APIP worked very well in predicting the 
presence or absence of distress features on the image. Of the 25 
images with distress features, the 1.8_APIP correctly predicted 
23 images that had distress features while 2.0_APIP correctly 
predicted 24 images. Only 2 images out of 25 images with 
distress features were incorrectly categorized by using 
1.8_APIP. However, 2.0_APIP had only wrongly categorised 1 
image. Of the 3 distress-free images, both 1.8_APIP and 
2.0_APIP correctly categorised them all as non-crack distress.  

Therefore, the overall predictions were found to be 92.86 % 
accurate for 1.8_APIP and 96.43% accurate for 2.0_APIP.  
 
4.2.3 Severity Level Classification  

Severity comparisons indicated that the APIP algorithms were 
mainly in the range of 88%. However, in a few cases, severity 
appeared to be lower by using the automated system. The lower 
classifications of the severity indicated similar concerns that 
were present during any of the survey at fields, which resulted 
from interpretations of the severity level from person to person.  

 
 

5 CONCLUSIONS 

It has been shown that the combination of a digital 
photogrammetric system and APIP allows complete automation 
with near real-time measurement of pavement distresses. More 
importantly however, the accuracy of this system in identifying 
pavement distress meets the standards of set out by the road 
authority for pavement evaluation.  From the ten tested samples, 
the photogrammetric system produced very reliable and 
objective results. The output from APIP will be in a form of a 
report detailing the type, extent and severity of the various 
types recognized.  To date, the overall system has been found to 
be about 90 percent accurate.   
 
Even though there were some limitations, the system is 
expected to provide a user-friendly approach to local 
transportation agencies as well as the government sector.  An 
integration of several image processing algorithm in one 
Automated Pavement Imaging program has the capability of a) 
processing the image to isolate the distress features, b) 
displaying the binary image, c) reporting the type and severity 
of that image in an output report. It is anticipated that the 
distress quantification will be effectively and conveniently done 
without physically touching the pavement area, thus reducing 
the risk of traffic movement interference.   
 
Whilst the application developed in this research was focused 
towards pavement evaluation, the concept derived from non-
contact, close-range digital metrology and the image processing 
algorithms are clearly independent of the specific application. 
The methods utilized in this study could be applied to many 
other civil engineering fields.   
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