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ABSTRACT 

 

 

 

 

 This research introduces and analyzes the famous Lorenz equations which are a 

classical example of a dynamical continuous system exhibiting chaotic behavior. This 

system is a three-dimensional system of first order autonomous differential equations 

and their dynamics are quite complicated. Some basic dynamical properties, such as 

stability, bifurcations, chaos and attractor are studied, either qualitatively or 

quantitatively. The visualization of the strange attractor and chaotic orbit are displayed 

using phase portrait and also the time series graph. A way to detect the chaotic behavior 

of an orbit is by using the Lyapunov exponents which indicate chaoticity if there is at 

least one positive Lyapunov exponent. The Lyapunov dimension called Kaplan-Yorke 

dimension of the chaotic attractor of this system is calculated to prove the strangeness by 

non-integer number. Several visualization methods are applied to this system to help 

better understand the long time behavior of the system. This is achieved by varying the 

parameters and initial conditions to see the kind of behavior induced by the Lorenz 

equations. The mathematical algebra softwares, Matlab and Maple, are utilized to 

facilitate the study. Also, the compound structure of the butterfly-shaped attractor named 

Lorenz attractor is also explored. 
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ABSTRAK 

 

 

 

 

 Kajian ini memperkenalkan dan menganalisis persamaan Lorenz yang terkenal di 

mana ianya merupakan contoh klasik sistem selanjar dinamik yang mempamerkan 

tingkah laku kelam kabut. Sistem ini adalah sistem tiga dimensi peringkat pertama 

persamaan pembezaan autonomi yang dinamiknya agak rumit. Sesetengah sifat dinamik 

asas, seperti kestabilan, bifurkasi, kelam kabut dan attraktor dikaji, sama ada secara 

kualitatif atau kuantitatif. Visualisasi attraktor pelik dan orbit kelam kabut juga 

dipaparkan dengan menggunakan fasa potret dan juga graf siri masa. Cara untuk 

mengesan kelakuan kelam kabut edarannya adalah dengan menggunakan nilai Lyapunov 

yang menunjukkan keadaan kelam kabut jika terdapat sekurang-kurangnya satu nilai 

positif Lyapunov. Dimensi Lyapunov yang dipanggil juga sebagai dimensi Kaplan-

Yorke dikira untuk membuktikan keanehan attraktor dengan wujudnya nombor bukan 

integer. Menggunakan kaedah visualisasi yang berbeza untuk bantuan sistem ini supaya 

lebih memahami tingkah-laku jangka masa panjang bergantung kepada nilai-nilai 

parameter yang berbeza dan syarat awal sistem Lorenz untuk menggambarkan tingkah-

laku oleh persamaan Lorenz. Perisian matematik algebra, Matlab dan Maple, digunakan 

untuk memudahkan kajian ini. Selain itu, struktur sebatian attraktor berbentuk rama-

rama yang dinamakan Lorenz attraktor juga diterokai. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background of Study 

 

Ordinary differential equations are divided into linear and nonlinear systems. 

Linear systems have only one equilibrium point at the origin. This is in contrast with 

nonlinear systems which may have many equilibrium points. According to Hirsch 

(2004), some nonlinear systems have no solutions to a given initial value problem and 

some systems have infinitely many different such solutions. Systems of nonlinear 

differential equations play an important part in subjects as diverse as meteorology, 

oceanography, optics, economics, biology, etc. Such dynamical systems are rarely have 

exact analytical solutions, and numerical modeling is frequently required to supplement 

experimental research. Nonlinear systems are found to exhibit some interesting 

behaviors, including chaos. 

 

There are several difficulties in dealing with nonlinear dynamical system. Firstly, 

greater number of possible cases can occur, and the number increases with the 

dimension of the system. Secondly, it is not easy to plot accurate and understandable 

trajectories in a phase space of higher than two dimensional systems. The higher the 

number of dimensions, the harder it will be. Lastly, third order system or higher 

dimensions will sometimes produce different phenomena and behavior which one 

cannot find in one or two-dimensional system.  
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This research tries to explore some of these phenomena by investigating a three 

dimensional autonomous system involving Lorenz equations. We will see how these 

simple equations can give so many surprising behaviors such as chaos and strange 

attractor. We will be exposed on what is meant by chaos, attractors and how the attractor 

is known to be strange. Before we analyze Lorenz behavior, we start by studying the 

general properties of Lorenz system such as finding the equilibrium points, identifying 

the stability of the equilibrium points and how to linearize the system which involve a 

Jacobian matrix. The existence of bifurcations such as Pitchfork and Hopf which only 

exist at certain parameter r will be studied in the system.  

 

The analysis of Lorenz system will be made by varying the parameter r within a 

certain range and we can observe that there is a change in behavior depending on the 

value of r chosen. Lorenz attractor exists at a certain state and this creates a beautiful 

butterfly which emerges when the solution is plotted in the phase portrait. The solution 

is very sensitive to the initial conditions and can result a big change with just a small 

change. The chaotic behavior of the Lorenz system will be measured by Lyapunov 

exponent and Kaplan-Yorke Dimension to detect the strangeness. This is done with the 

help of mathematical software tools such as Matlab and Maple. 

 

1.2 Problem Statement 

 

The behavior of nonlinear dynamical systems can differ completely from that of 

linear dynamical systems. The linear systems always exhibit straightforward, predictable 

behavior and eliminate any possibility of chaotic behavior. So, to find chaotic behavior, 

we need to look at nonlinear, higher dimensional systems which in this research is 

Lorenz equations. Lorenz as a vastly oversimplified model of atmospheric convection, 

produces what has come to be known as a strange attractor. 
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This research is done by focusing on research questions such as what are the 

properties of Lorenz system? What are the equilibria and how do they relate to stability? 

How does a change in value of a parameter r in the Lorenz system affect the behavior of 

the system in phase portrait? Does the chaotic behavior of the Lorenz system always 

exist? When do the bifurcation and attractor exist? How to measure chaos and how to 

detect strangeness in the attractor? 

 

1.3 Objectives of study 

 

1) To study the historical survey of Lorenz system, general properties, equilibria 

and their stability. 

2) To explore the behavior of the Lorenz system by analyzing the phase portrait 

by changing the value of the parameter r in Lorenz equation. 

3) To analyze the whole system of Lorenz including its stability, bifurcation, 

chaos and attractors. 

4) To investigate the chaoticity of the system using Lyapunov exponent and 

Kaplan-Yorke dimension to detect strangeness. 

 

1.4 Scope of Study 

 

This research will focus on the behavior of Lorenz system based on qualitative 

tools as well as on some numerical experiment. 
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1.5 Significant of Study 

 

This research can enhance our knowledge on dynamical systems especially on 

nonlinear autonomous of three-dimensional systems. This will expose us to some new 

environment of three-dimensional systems instead of two-dimensional systems which 

are always used in a particular problem. Furthermore, it can give us a better 

understanding on Lorenz system and the chaotic behavior of the system. By exploring 

their behavior in the phase portrait, we can see the presence of the Lorenz attractor 

producing the interesting butterfly effect under certain condition and this leads to chaos 

which involves in many of our real life applications. Last but not least, it also can widen 

our knowledge in the field of Mathematics and Engineering. 
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