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ABSTRAK 

 

 

 

 Projek in dilakukan bertujuan untuk mengkaji penggunaan pengesan anomali, 

terutamanya carta kawalan untuk sampel individu, untuk mengawal kualiti data yang 

dijana oleh sistem pengurusan risiko di dalam industri kewangan. Empat carta kawalan 

dikaji iaitu carta kawalan individu, carta kawalan jarak bergerak (MR), carta kawalan 

purata bergerak (MA) dan carta kawalan purata begerak dengan wajar eksponen 

(EWMA). Kuantitatif dan kualitatif prestasi keempat-empat carta kawalan ini dikaji 

untuk dua keadaan: aliran lansung dan kajian data. Keputusan kajian dibandingkan 

dengan anomali yang telah dikenalpasti oleh pakar sistem. Melalui kajian yang 

dilakukan, carta kawalan individu merupakan pengesan terbaik untuk keadaan aliran 

lansung dan carta kawalan MR merupakan pengesan terbaik untuk keadaan kajian data. 

Secara kualitatif, carta kawalan merupakan pengesan yang ringkas, mesra pengguna dan 

mudah diautomasi sepenuhnya dan dibawa ke produksi berbanding pengesan anomaly 

yang terdapat di dalam kajian-kajian lain. Di sampling itu, satu kualiti data jaminan dan 

kawalan dicadangkan berdasarkan keputusan kajian ini. 
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ABSTRACT 

 

 

 

 The purpose of this project is to investigate the application of anomaly detection, 

particularly control charts for individual sample, to control data quality of a risk 

management system in a financial industry. Four control charts are investigated, namely 

individual control chart, moving range (MR) control chart, moving average (MA) control 

chart and exponentially weighted moving average (EWMA) control chart. The 

quantitative and qualitative detection performance of these control charts is analyzed on 

two scenarios: live stream and data profiling. Results are compared with expected 

anomalies determined by system experts. It is discovered that individual control chart 

performed best for live stream scenario, while MR control chart performed best for data 

profiling scenario. Qualitatively control charts are simple, user-friendly and easy to fully 

automate and implement when compared with other detection methods available in 

literature. In addition, a suitable data quality assurance and control program using the two 

control charts is suggested. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

This chapter begins with section 1.2, a background of the project, where readers 

are introduced with the concept of Basel. Thereafter, section 1.3, section 1.4, section 1.5, 

section 1.6 define the problem statement, research question, scope and significance of the 

project, respectively. Subsequently, the organization of this report is presented in section 

1.7 and conclusion in section 1.8. 

 

 

 

1.2 Background 

 

 The background consists of explanatory introduction on Basel accord and its 

relationship with the financial institution, in section 1.1.1, Basel accord implementation 

and its relationship with data, in section 1.1.2, and the fundamentals to understand the 

concept of calculating the regulatory requirement of the Basel accord. 
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1.2.1 Basel Accord and Financial Institution 

 

 The Basel Accord was initially drafted in 1988 to improve the safety and the 

soundness of the global banking system by enhancing the risk measurement and capital 

adequacy within banks. The Basel committee on Banking Supervision (BCBS) released 

the first accord in 1988 to increase the focus on risk mitigation by stipulating a required 

risk weighted capital ratio (RWCR) of at least 8% of Risk Weighted Assets (RWA) for 

capital provision [1]. Prior to the Basel Accord the progression of capital level was 

decreasing from more than 10%-20% in the early 1900s to 4.5%-6% in the 1980s 

[2][3][7].  

 

 In 2004, Basel II was issued to provide more flexibility in calculating the 

regulatory capital mentioned in Basel I of 1988 [4]. The new version of the accord also 

increases risk sensitivity by providing a more comprehensive approach to measure and 

managed risk. It incorporates supervisory review and market discipline, which was not 

present in Basel I [4][5]. The capital (quantitative) requirement, supervisor review and 

market discipline becomes the 3 pillars of the Basel II framework, seen in Figure 1.1, 

covers various risks faced by financial institutions: insurance, market, credit, liquidity 

and operational and other risks such as legal and reputations risks [4]. 
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Figure 1.1: Basel II Framework  

 

 In the aftermath of the global financial crisis in 2008 and 2009, BCBS proposed 

Basel III in response. The proposal revises capital standards, stronger capital definition 

and provided a newer framework for liquidity risk [7][8]. These changes are expected to 

strengthen the capital requirement, which enables financial institution to absorb 

unexpected losses arising from financial and economic stress [8][12]. This in turn would 

reduce the risk of spillover effect of financial sector to a country’s economy, which 

happened in the late 2000s crisis, and increase the resiliency of banks [5][8]. 

 

 The adoption of the accord is mainly intended for the G10 and G20s [4][8]. 

However many countries are adopting a version of the Basel accord because it provides 

best practices in the areas of risk management, risk measurements and capital allocation 

[4]. As much as 88 non-G10 countries intend or are currently implementing Basel II [12]. 

In Malaysia, Bank Negara Malaysia (BNM) currently mandates financial institutions to 

adopt Basel II [9]. However, BNM does consider to progressively adopt Basel III, as 

shown in Table 1 below, beginning 2013 and to be completed by 2019 [10][11]. 
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Table 1.1: Progressive Adoption of Basel III in Malaysia 

Date Areas of Basel III framework to be implemented 

June 2012 Report leverage ratio position calculated based on Basel III 

regulations to BNM 

2012 – 2015 Increase Tier 1 capital ratio from 4% to 6% and common 

equity Tier-1 capital ration to 4.5% 

2015 – 2018 Consider enhancing liquidity coverage ratio and implement 

stable funding ratio, which banks are expected to meet the 3% 

leverage level 

2016 – 2019 Asserting 2.5% capital conservation buffer over and above the 

regulatory requirement (BNM also considers to introduce 

countercyclical capital buffer between 0-2.5% of RWA) 

Date has yet to be 

decided 

Asserting additional loss-absorbency requirement ranging from 

1% to 3.5% common equity 

 

 

 

1.2.2 Data and Basel Accord Implementation 

 

Basel accords are based on sophisticated risk assessments models that pose 

various technical challenges during implementation both for the banks and banks 

supervisor. Challenges can vary from the limited expertise, banking culture that is less 

aware of risks, tight implementation schedule, lack of data availability, less developed 

risk management systems to high implementation costs [12] [14][17].  

 

However, the degree of these challenges varies across developing and developed 

countries, as shown in Figure 2 below, because banks in developed countries are more 

risk-aware and have more sophisticated risk measurement management processes and 

systems compared to its developing counterparts [4][15] [16][17]. In addition, a bank that 

adopts the Internal Ratings Based (IRB) approach rather than the standardized approach 
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in order to comply with the Pillar 1 requirements faces greater complexities due to the 

complicated models and calculation methods it imposed [15]. 

 

In implementing the Pillar 1, data constraints are common for banks across the 

globe. An enhance data infrastructure is required to allow banks to extract required 

information across the various systems in a bank [17][14]. This also includes having the 

capability to obtain a single and consolidated view of borrowers or group of borrowers 

that would enable effective monitoring of borrowers and segmentation of exposures [14] 

[18]. Accomplishing a single view would require systems to be fully integrated between 

borrowers, exposures and collateral management systems [18]. These requirements are 

feat given the complex nature of banking systems, as shown in Figure 1.2 below. 

 

 
Figure 1.2: The complexity of banking systems [Federal New York Reserve] 
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In addition to system requirements, various types of data are required and 

depending on the banks business practices these data might not be available in the banks 

systems. Data gap analysis addresses this problem by identifying the required information 

a bank needs to conform to the Basel accord [12]. The types of data that a bank may 

require include the granular details of borrowers’ financial statements, collateral, liquidity 

and borrowers details [12] [18]. To obtain an adequately robust model for calculations, 

storing historical data for a full economic cycle data, which is typically a minimum 

period of 10 years, is also advisable [18].  

 

To ensure the delivery of good model performance, sound data management 

processes and procedures are critical to ensure data collected are of good quality. A 

sound data management includes the practice of data governance, metadata, data 

standardization, reference data unification, data archiving and data stewardship [13] [18]. 

And a good quality data includes its availability, completeness, accuracy and consistency 

across the banks information systems [12][13] [19]. Ensuring high data quality and 

integrity standards that are observed at all times requires clear lines of authority and 

accountability, which can only be achieved when quality is a business culture 

acknowledge both by the top management and business units. [18] 

 

 

 

1.2.3 Foundation for Capital Requirement in Basel 

 

 In financial institutions, capital provisions provide buffers against bank loses, 

protect creditors in the event banks fails and curbing the culture of excessive risk taking 

and shirking by shareholders and top managers [3][20]. Banks losses occur constantly, 

losing capital and interest in the form of borrowers defaulting from obligations. This type 

of loss is called expected losses (EL) and financial institutions view this loss as a cost 

component of doing business and are covered by the bank through the use of provisioning 

and pricing policies. The actual value of EL is not possible known but it can be 

reasonably estimated based on business experience. 
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In addition to EL, less frequently, financial institutions experience unexpected 

losses (UL), which are of higher value than EL, as shown in Figure 1.3. Examples of UL 

are operations loss due to mishandling of payment operations due to bank mergers, 

massive speculating trading or lack of internal control. The exact timing of UL 

occurrence and the severity is not known and when the severity is considerable, it is 

possible that the market cannot sufficiently cover the losses [20]. In this case capital is 

required to cover the losses.  

 

 
Figure 1.3: The relationship between EL and UL and their frequency of occurrence [20] 

 

 

  Even though holding capital would allow banks to absorb losses, minimizing the 

capital provision would allow banks to use its capital resources for profitable 

investments. This conflicting role of capital needs to be carefully balanced. The Basel 

accord only provides a framework for the minimum values of capital provision for UL a 

bank should hold, which is 8% of RWA, calculated based on formula 1.1 and 1.2 [20]. 

Probability of default (PD), exposure at default (EAD) and loss given default (LGD) are 

the random factors of EL experienced by banks, which represent the unknown variable of 

actual loss rate, and exact number of defaults in a given year exact amount outstanding. 

 

RWA = K *12.5 * EAD              (1.1) 
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 (1.2) 

 

 

 

1.3 Problem Statement 

 

Delta Bank Bhd (DB)1 is a financial institution that operates commercial banking, 

investment banking and insurance banking to both consumers and businesses in 

Malaysia. Regulated under BNM, DB is required to conform to the Basel II requirements 

both for the purpose of capital adequacy and improvement in risk management. Since its 

implementation, DB has constantly provided more than the required minimum RWCR of 

8% and has set a higher capital ratio in preparation to implement Basel III requirements 

and actively practice risk management as a strategic function of the company.  

 

However, like any other financial institution, data constraints remain a 

challenging factor in implementation of Basel, especially data quality. Table 2 

summarizes the condition of quality that feeds into the risk management system used to 

calculate capital provision. It is important to note that data quality is hard to quantify 

because identifying error requires knowledge of the true nature of the data. Given the 

massive amount of data  (millions of data) feeding into the analytics system, it is 

impossible to constantly determine the exact nature of data. The table below only 

provides an adequate reflection of the condition of the data for known error based on 

rejected data or flagged error.  It is expected that the actual percentage is considerably 

lower. 

 
                                                
1 Although DB is a fictitious name, the research was conducted at an actual company 
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Table 1.2: The percentage of good quality data entering the risk management system 

Function Average % of Good Data 

Deposit 99.2 

Loan 92.4 

Customer 81.4 

Collateral 76.3 

Treasury 93.4 

Hire Purchase 87.1 

Credit Card 82.5 

Insurance 95.6 

 

 

The effects of poor quality data onto regulatory capital can be significant. For 

example, when data is missing the analytics system resorts to using conservative 

estimates, which can potentially avoid the uplift of regulatory capital. In addition, 

misclassification of assets due incorrect counterparty details, missing ratings or missing 

product details can also results in retaining potential provision, which is not reflective of 

the actual risk. This form of over-estimation of capital requirement can hinder the use of 

capital for more profitable activities. For DB bank this unnecessary reservation due to 

poor data quality can freeze millions of Ringgits. 

 

To address the quality issue of the data, DB has established data governance and 

quality programs, which helps to improve front-end systems. However, data undergoes 

various transformations along the way before it reaches the risk management system and 

this gap of poor quality data within the information chain has yet to be addressed by DB. 

Nevertheless, for the risk management system itself, a team of 20 business analysts and a 

team of 5 IT specialists maintain it. About 45% of the resource time and effort is spent on 

addressing data quality issues, where 20% is spent on detection, 60% on root cause 

analysis and 20% on rectification. 
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 In addition, it is not unusual for quality issues detected in the risk management 

system to be trickled down the other departments. This is because the risk management 

system is the end user of data from front-end systems, data warehouse and operational 

data warehouses. This adds the workload of departments responsible for these systems. In 

addition, because of priority differences between departments, often the analysts will 

result to interim solution to improve the quality of data in the risk management system. 

This leads to the complexity of the information system; not just the risk management 

system but also the bank’s itself. 

 

 

 

1.4 Research Question 

 

 The research objective is to improve the quality of capital provisioning by 

providing a method that can identify unusual and unexpected behaviors in the output of 

the calculation of the analytical system, namely RWA of each portfolio in the system. 

 

i. What are the anomaly detection methods that can be used for this application? 

ii. How effective is the selected anomaly detection method in detecting anomaly 

in a live data stream? 

iii. How effective is the selected anomaly detection method in detecting data 

anomalies during data profiling? 

iv. What are the qualitative advantage and disadvantage of selected detection 

method? 

v. How would the selected detection method be implemented as a part of 

existing data quality management program? 
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1.5 Scope 

 

 The risk management system is a system that contains millions of portfolios. This, 

to limit the scope of the research, the study will focus on the top 26 portfolio that the 

bank constantly analyzed. This project also focuses on reducing the time analysts spend 

on detection, through the use of identifying anomalies in quality of the output of the risk 

management system through the use of automation. 

 

In addition, the scope of this study focuses on the RWA figure. The reason for 

selecting this variable is because even though regulatory framework has changed, RWA 

remains an important and dependent variable for determining capital provision. The 

RWA provides a common measure for bank’s risk, ensure the capital allocated is 

commensurate with the risks and has the potential to highlight where destabilizing asset 

class bubbles are arising [21]. In addition, RWA also provides a figure to assess the 

strengths of banks and a figure, which policy makers, banks, and financial institution 

supervisors can refer to in order to provide solutions in the event of financial crisis [21]. 

 

 

 

1.6 Significance 

 

 The main significance of this research is that the financial institution would have 

an appropriate method to improve the quality of the RWA, which could not be addressed 

effectively using existing methods available in the bank. The outcome of this research 

would help analyst to detect anomalies automatically and faster, subsequently, reducing 

the resources spent on ensuring RWA and data quality. On a corporate level and in the 

long-term, a better quality data will help the financial institution to make well-informed 

risk management decisions. 
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1.7 Organization 

 

The remainder of this report is organized as follows. In the next chapter, a 

literature review of a selection of papers dealing with anomaly detection and its 

application in data quality control and assurance is given. Hereafter, chapter 3 explains 

the methodology of this research. Thereafter the results of the research will be analyzed 

and discussed in the subsequent chapter 4. The final chapter, chapter 5, concludes the 

paper with a summary, implication, limitation and future work of the research. 

 

 

 

1.8 Conclusion 

 

The Basel Accord, Basel I, Basel II and Basel III were drafted to improve the 

safety and the soundness of the global banking system by enhancing the risk 

measurement and capital adequacy within banks. Many countries are adopting the Basel 

Accord and Malaysia is currently adopting Basel II with the initiative to slowly adapt 

Basel III. Under the Basel Accord, banks are required to set aside capital provision to 

cover losses from UL. Because UL is unknown, it is estimated by exaggerating the EL of 

assets defaulting. And according to the accord, at least 8.5% of this exaggerated figure, 

the RWA, should be set aside.  

 

To determine the capital provision requirement of the Basel Accord is a technical 

challenge. There are various challenges, which are dependant on the bank’s risk culture, 

country and methods used for modeling its risk under the Basel Accord. However, data 

constraint is one of the challenges faced by all banks, particularly in the area of 

information system, data availability and data quality. In the case of DB bank, data 

constraints, particularly data quality, is a major challenge in conforming the Basel 

requirement. 
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For DB bank, the effect of poor quality data causes the models to use conservative 

estimates, which leads to retaining potential provision for profitable investments that are 

not reflective of the actual risks faced by the bank. About 45% of the analysts and IT 

personal of the system, which are used to model the risk for Basel, are used to address 

data quality issue. Estimated of this 45%, 20% is used for anomaly detection, 60% for 

analyzing and 20% for rectifying at their end. It is not abnormal for issues to be trickled 

down to other departments, where they are also required to analyzed data and rectify 

related issues at their respective end. 

 

The scope of the project is to improve the time spent on addressing data quality 

issues, by expediting and automating the process of detection. In addition, the scope of 

this project is limited to the top assets portfolio of the bank. The research questions of the 

project includes: the quantitative and qualitative effectiveness of the detection method for 

two scenarios: data profiling and live stream, and the suggestion of implementing the 

detection method in the context of the bank’s data quality management initiatives. 
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