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ABSTRACT 

Arc welding is a method that is widely used for fixed joining process. TIG is 

most commonly used to weld thin sections of stainless steel and light metals such as 

aluminum, magnesium, and copper alloys. The process grants the operator greater 

control over the weld than competing procedures. For this study, the influences of 

parameters of tungsten inert gas arc welding on the morphology, microstructure, 

hardness and tensile property, and fracture of welded joints of two kind of material 

including 316 stainless steel pipe and 316L stainless steel plate have been studied. 

Results show that the increase of welding current bring about the large amount of 

heat input in the welding pool, the enlargement of width and deepness of the welding 

pool, cumulative sigma phase in the matrix of both materials and reducing the 

chromium carbide percentage in 316 stainless steel welded joint. Arc current of 100A 

has also been identified as the most suitable arc current used to weld the two and half 

inches 316 stainless steel pipe. Since it gives the lowest defects and brings the 

highest value of hardness compared to others. For welding 316L stainless steel plate 

joint, the most suitable current was identified by 110A since it give the lowest 

defects and highest value of tensile strength compared to others. However, the value 

of Hardness is slightly lower than130A.  
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ABSTRAK 

Kimpalan Arc adalah kaedah yang digunakan secara meluas untuk tetap 

proses penyambungan . TIG adalah yang paling biasa digunakan untuk mengimpal 

bahagian nipis daripada keluli tahan karat dan logam ringan seperti aluminium, 

magnesium, dan aloi tembaga. Proses ini memberi pengendali kawalan yang lebih 

besar ke atas kimpalan daripada prosedur yang bersaing. Untuk kajian ini, Pengaruh 

parameter tungsten lengai kimpalan arka gas morfologi , struktur mikro , harta tanah 

tegangan dan patah sendi dikimpal daripada dua jenis bahan termasuk 316 paip keluli 

tahan karat dan 316L plat keluli tahan karat telah dikaji. Keputusan menunjukkan 

peningkatan kimpalan membawa semasa kira-kira jumlah yang besar input haba 

dalam kolam kimpalan, pembesaran lebar dan deepness kolam kimpalan, sigma fasa 

terkumpul dalam matriks kedua-dua bahan dan mengurangkan peratusan karbida 

dalam 316 keluli tahan karat bersama dikimpal. Arc semasa 100A juga telah dikenal 

pasti sebagai semasa arka yang paling sesuai digunakan untuk mengimpal dua 

setengah inci 316 paip keluli tahan karat. Sejak ia memberikan kecacatan paling 

rendah dan membawa nilai tertinggi kekerasan berbanding dengan orang lain . Untuk 

kimpalan keluli tahan karat 316L plat bersama, semasa yang paling sesuai telah 

dikenal pasti oleh 110A kerana ia memberi kecacatan paling rendah dan nilai 

tertinggi kekuatan tegangan berbanding dengan orang lain . Walau bagaimanapun , 

nilai kekerasan adalah than130A rendah sedikit. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

Welded components and structures are widely used in almost all industries. 

Current engineering industry relies heavily on welded components and structures. 

Therefore, weld integrity becomes important for adequate and reliable performance 

of components, structures, and plants. Weld integrity is dependent on the base 

material, specifications, and welding processes. With the ever-increasing 

sophistication of processes, materials, and specifications, one must have a broad, 

comprehensive knowledge of the metallurgy and welding processes. Tungsten Arc 

Welding (GTAW) also known as Tungsten Inner Gas (TIG) involves striking an arc 

between a non-consumable tungsten electrode and the work piece. The weld pool and 

the electrode are protected by an inert gas, usually argon, supplied through a gas cup 

at the end of the welding gun, in which the electrode is centrally positioned. TIG 

welding can also be used for welding with filler material, which is applied in rod 

form by hand similar to gas welding. Tools for mechanized TIG welding are used for 

applications such as joining pipes and welding tubes into the end plates of heat 

exchangers. Such automatic welding tools can incorporate many advanced features, 

including mechanized supply of filler wire. The advantages of the process are stable 

arc and excellent control of the welding result. The main application for TIG welding 

is welding of stainless steel, welding of light metals, such as aluminum and 

magnesium alloys, and the welding of copper. It is also suitable for welding all 
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weldable materials, apart from lead and zinc, with all types of joints and in all 

welding positions. 

However, TIG welding is best suited to thin materials, from about 0.5 mm up 

to about 3 mm thick. (For more thickness must use multi passes welding) (Blondeau, 

2013; Storjohann et al., 2005). 

Austenitic stainless steel type 316 is an austenitic chromium nickel stainless 

steel containing molybdenum. This addition of Mo increases general corrosion 

resistance, improves resistance to pitting from chloride ion solutions, and provides 

increased strength at elevated temperatures. Type 316L is an extra-low carbon 

version of type 316 that minimizes harmful carbide precipitation due to welding. 

Typical uses include exhaust manifolds, furnace parts, heat exchangers, jet engine 

parts, pharmaceutical and photographic equipment, digesters, tanks and parts 

exposed to marine atmospheres. This type is used extensively for weldments where 

its immunity to carbide precipitation due to welding assures optimum corrosion 

resistance. The weld microstructure of this alloy is mainly composed of delta ferrite 

and austenite as a dominant phase(Silva et al., 2009). It is well known that the cycle 

of rapid heating and cooling occurring during welding affects the microstructure, 

mechanical properties and surface composition of welds (Yong, A, 2009). 

The influences of parameters of tungsten inert gas (TIG) arc welding, such as 

welding current, welding speed, impulse frequency, weld remelting number and 

grooves are so important on the morphology, microstructure, tensile property and 

fracture of welded joints of 316 and 316L stainless steel. Arc current as a one of 

welding parameters plays an important role on morphology and mechanical 

properties of welded joint (Blondeau, 2013). 

1.2 Problem statement 

Welding current  of tungsten inert gas (TIG) arc welding effects on the 

morphology, microstructure, tensile property and fracture of welded joints of 

austenite stainless steel due to heat input, optimized processing Arc current are 
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significant , which provide experimental guidance for the application of stainless 

steel (Juncai, 2007; Wang et al., 2011). 

At present, there exist some processing problems, which affect the quality 

and property of welded joint, in the welding of grade 316 and 316L structural 

components. The problems like hot cracking, carbide precipitation phase and sigma 

phase can reduce significantly the mechanical property of this welded joint. 

Therefore, selection suitable welding parameters (arc current) and proper material is 

so important to control the mentioned problems (Lothongkum et al., 2001; Minghui, 

2006; Zhang et al., 2005). 

Therefore, that needs to find the optimization current as a one of welding 

parameters for TIG welding on 316L stainless steel to reduce welding effect and to 

achieve best mechanical properties. 

1.3 Research objective 

To investigate the effect of current on characteristic for welded joint between 

316 and 316L stainless steel: microstructure and mechanical properties. 

1.4 Scope of the study 

The scopes of this research consist of: 

 Literature review on the 316L and 316 stainless steel. 

 Literature review on TIG welding principle and the welding parameters of 

the method chosen. 

 Perform TIG welding on 316L stainless steel plate 316 stainless steel pipe 

with different Arc current as a variable value. 

 Specimen preparation. 

 Microstructure and metallurgical fractography analysis of welded 316L 

stainless steel plate 316 stainless steel pipe stainless steel by using 

Optical, XRD, FESEM-EDX and SEM microscopes.  
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 The mechanical properties test conducted are tensile and Vickers hardness 

tests. 

 Evaluate the effect of Arc current shift and type of material on welded 

316L stainless steel plate  and welded 316 stainless steel pipe in terms of  

microstructure and mechanical properties of the welded joints. 
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