
978-1-4244-2328-6/08/$25.00 © 2008 IEEE

An Evaluation of Current Approaches for Web Service Composition

Sayed Gholam Hassan Tabatabaei Wan Mohd Nasir Wan Kadir Suhaimi Ibrahim
Department of Software Engineering, Faculty of Computer Science and Information Systems,

University of Technology Malaysia (UTM), 81310 Skudai, Johor, Malaysia
gtsayed2@siswa.utm.my wnasir@utm.my suhaimiibrahim@utm.my

Abstract

Since many organizations recently decide to
implement and publish their applications over Internet,
the number of Web services has dramatically
increased. In many cases, a single service is not
sufficient to respond to the user's request. In order to
tackle this problem, services have to be combined
together. Therefore, composition of Web services is
one of the recent critical issues. Several approaches
have been presented, to tackle this problem. In this
paper, we classify these approaches into four
categories namely Workflow-based, AI-planning
based, Syntactic-based, and Ontology-based. Then, we
describe and compare these approaches using some
criteria (like QoS, scalability, and correctness). The
overall results indicate that some AI-planning and
Ontology based approaches like HTN-DL and WSMO
satisfy most of the criteria.

1. Introduction

The term “Web services” has been used very often
nowadays. According to W3C, "A Web service is a
software system identified by a URI [1], whose public
interfaces and bindings are defined and described
using XML. Its definition can be discovered by other
software systems. These systems may then interact with
the Web service in a manner prescribed by its
definition, using XML based messages conveyed by
Internet protocols "[2]. Another definition of Web
service is provided by IBM [3], A Web service is a
software interface that describes a collection of
operations that can be accessed over the network
through standardized XML messaging. It uses
protocols based on the XML language to describe an
operation to execute or data to exchange with another
Web service.

Basically, Web service operation can be described
as follows. First of all, a client program via a yellow

page (UDDI) [3] finds a Web services server that can
fulfill certain requirements, and acquire a detailed
specification from WSDL [4] about the service. Then,
the client sends a request to the server through a
standard message protocol (SOAP) [5], and in return
receives a response from the server. With interpreting
XML tags, applications can interpret the operations and
data much easier than conventional programming
interface.

Nowadays, an increasing amount of companies and
organizations implement their applications over
Internet. For example, if a user wants to participate on
one international conference, it is not sufficient to
register, but he should also take care of booking a
flight, reserving a hotel, renting a car, and so on. Thus,
the ability to efficiently and effectively select and
integrate inter-organizational and heterogeneous
services on the Web at runtime is an important step
towards the development of the Web service
applications. Recent research studies how to specify
them (in a formal and expressive enough language),
how to (automatically) compose them, how to discover
them (on the Internet) and how to ensure their
correctness. We focus on Web Service composition
(WSC).

When no atomic Web service (WS) can satisfy the
user’s requirements, there should be a possibility to
combine existing services together in order to
accomplish the request. This trend has inaugurated a
considerable number of research efforts on the WSC
both in academia and in industry.

A composite service, in many ways, is similar to a
workflow [6]. The definition of a composite service
includes a set of atomic services together with the
control and data flow among the services. Similarly, a
workflow has to specify the flow of work items. The
dynamic workflow approaches provide the means to
bind the abstract nodes with the concrete resources or
services automatically. Some approaches based on AI
planning, consider WS as a software component that

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

takes the input data (preconditions) and produces the
output data (effects). Since the WS alters the state of
the world after execution, the world state prerequisite
for the service execution is the precondition, and the
new state generated after the execution is the effect
[10].

In the research related to Web services, several
initiatives have been conducted with the intention to
provide platforms and languages for WSC such as
Business Process Execution Language for Web
Services (BPEL4WS) [7]. Nowadays some languages
have ability to support semantic representations of the
WSs available on the Internet such as the Web
Ontology Language for Web Services OWL-S [8] and
the Web Service Modeling Ontology WSMO
[9].Although all of these efforts, the WSC still is a
highly complex task.

In this paper, we focus on the WSC problem and
offer a survey of recent approaches that provide
automation to Web service composition. The
automation means that either the approach can generate
the process model automatically, or the method can
locate the correct services if an abstract process model
is given [11]. We then compare them with respect to
the set of criteria. By offering this overview and
classification of existing proposals for Web service
composition, as well as a constructive review of them,
we hope to help service-composition designers and
developers focus their efforts and deliver more usable
solutions, while also addressing the technology’s
critical requirements.

2. Classification of the WSC approaches

 We can classify the WSC approaches using the
following four aspects:

2.1. Workflow-based WSC approaches

Workflow-based composition methods can be
distinguished to the static and dynamic workflow
generation [11]. The Static Composition means that the
requester before starting the composition planning
should build an abstract process model. The abstract
process model includes a set of tasks and their data
dependency. Each task contains a query clause that is
used to search the single WS to fulfill the task. Thus,
just the selection and binding of single WS is done
automatically by software. However, in Dynamic
Composition, creating process model and selecting
single WSs are done automatically. The requester has
to specify several constraints, such as the user’s

preference. In this section we describe two principal
approaches, namely:
• EFlow [12] is a platform for the specification,
enactment and management of WSC which uses a static
workflow generation method. In that case, WSC is
modeled by a graph that defines the order of execution
among the nodes in the process. The graph is created
manually but it can be updated dynamically. The graph
may include service (represent the invocation of WS),
decision (specify the alternatives and rules controlling
the execution flow) and event nodes (enable service
processes to send and receive several types of events).
Arcs in the graph denote the execution dependency
among the nodes. The definition of a service node
contains a search recipe that can be used to query
actual service. As the service node is started, the search
recipe is executed, returning a reference to a specific
service.
• Polymorphic Process Model (PPM) [13] uses a
method that synthesizes the static and dynamic WSC.
The static setting is supported by reference process-
based multi-enterprise processes. These processes
include abstract sub processes that have functionality
description but lack implementation. The abstract
subprocesses are implemented by service and bined at
runtime. The dynamic part of PPM is supported by
service-based processes. Here, a service is modeled by
a state machine that specifies that possible states of a
service and their transitions. Transitions are caused by
service operation invocations or internal service
transitions. In the setting, the dynamic service
composition is enabled by the reasoning based on state
machine.

2.2. AI-Planning-based WSC approaches

Currently, several approaches based on AI planning
have been presented to solve the problem of WSC.
Most of these approaches rely on the model of state-
transition systems. In this system there are finite or
recursively countable set of states, actions and events
along with a transition function that maps a state,
action, event tuple to a set of states. The goal of
planning is to find which actions to apply to which
states in order to achieve some objective, starting from
some given situation.

Basically, classical planning is based on the initial
modeling of the STRIPS [30] system. In this
representation a state is represented by a set of ground
literals expressed in a first-order language. An action is
an expression specifying which first-order literals
belong to the state in order for the action to be
applicable, and which literals the action will add or

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

remove in order to make a new world state. A planning
operator is a triple o = (N, P, E), where N, name of the
operator, P is the precondition of the operator
expressed as a conjunction of set of literals and E is
the effects of the operators which can be positive or
negative. An operator o is applicable in a state s when
the preconditions are satisfied in the state. Applying the
effects of an operator is done by adding or deleting
entries from the database.

In the terms of WSs, since services have
preconditions and effects that are expressed as logical
conditions, several WS languages describe services in
ways which are influenced by AI planning. Using this
similarity, it is possible to deal with WSs as planning
operators and use a causal planner to generate WSC.
Therefore, each WS is first translated to a planning
operator, the objective is expressed as a logical
condition, and the planner generates a plan which is
essentially a sequence of WS instances.

In the following we introduce some of well-known
WSC approaches based on AI planning. Excellent
surveys of AI-planning-based approaches to tackle the
problem of WSC can be found in [11, 31].
• Situation Calculus is a first-order language for
reasoning about action and change. In the situation
calculus, the state of the world is described by
functions and relations (fluents) relativized to a
situation s, such as f(x,s). The function do(a,s) maps a
situation s and an action a into a new situation. A
situation is simply a history of the primitive actions
performed from an initial, distinguished situation S0.
Golog is a high-level logic programming language
based on the situation calculus that enables the
representation of complex actions. It builds on top of
the situation calculus by providing a set of extra-logical
constructs for assembling PrimitiveActions, defined in
the situation calculus, into ComplexActions that are
compositions of individual actions.

McIlraith et. al. [32] adapt and extend the Golog
language for automatic construction of WSs. Actually,
this approach is based on the notion of generic
procedures. The authors address the WSC problem
through the provision of high-level generic procedures
and customizing constraints. Golog is adopted as a
natural formalism for representing and reasoning about
this problem. The general idea of this method is that
software agents could reason about Web services to
perform automatic Web service discovery, execution,
composition and inter-operation. The authors conceive
each Web service as an action. PrimitiveActions are
conceived as either world-altering actions that change
the state of the world or information-gathering actions
that change the agent’s state of knowledge. The agent

knowledge base provides a logical encoding of the
preconditions and effects of the WS actions in the
language of the situation calculus. A composite service
is a set of single services which connected by
procedural programming language constructs (if-then-
else, while and so forth). The composition system uses
an augmented Golog interpreter that combines online
execution of sensing actions with offline simulation of
world altering services.

One advantage of using situation calculus is the
additional expressivity and the ability to do arbitrary
reasoning about first-order theories. However, Golog
implementation uses regression to reason about actions,
i.e. to solve executability and projection problems.
According to [33], translating OWL-S descriptions to
situation calculus and applying regression yields a
standard first-order theory which is not in the scope of
what Golog can handle without calling a general first-
order theorem prover. Furthermore, the programs,
which are enabled by Golog and defined as macros, are
complied away. So it is impossible to describe non-
functional attributes of such programs or use these
attributes for flexible matching.
• HTN-DL: Sirin [34] proposes the HTN-DL
formalism which combines Hierarchical Task Network
(HTN) planning, and Description Logics (DL) to
automatically overcome the problem of WSC which are
described with Web Ontology Language (OWL).

The hierarchical structure of HTN planning
domains can describe composite service descriptions.
Composite Web Services can be mapped to HTN
methods whereas atomic WSs are mapped to HTN
operators. HTN-style domains fit in well with the
loosely coupled nature of WSs: different
decompositions of a task are independent so the
designer of a method does not have to have close
knowledge of how the further decompositions will go
or how prior decompositions occurred. The DL is used
to describe both actions and states with an expressive
knowledge representation language. The service
categorization and non-functional attributes of services
are described in a task ontology that allows flexible
matchmaking. The state of the world is also represented
as a DL knowledge base. HTN-DL also differentiates
between world-altering effects and knowledge effects
making it possible to interleave planning with
execution by invoking information-providing services
during composition.

As the planning system relies on the inferences
drawn by the DL reasoner, the practicality of the
proposed solution crucially depends on the efficiency
of the DL reasoner. For this reason, several novel
optimization techniques, especially geared toward

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

handling nominals and large number of individuals, are
presented. The other frequently used reasoning service
by the HTN-DL planning system is conjunctive query
answering. To improve query evaluation times,
optimization techniques for conjunctive query
answering inspired by the techniques used in relational
databases are presented.

2.3. Syntactic-based WSC approaches

Currently there are two main approaches in the field
of syntactic-based WSC [14]:

Web Service Orchestration: combines available
WSs by adding a central coordinator (the orchestrator)
that is responsible for invoking and combining the
single subactivities. An orchestration also describes
how other WSs are composed in order to achieve the
required functionality of the WS.

Web Service Choreography, instead does not
assume a central coordinator but rather defines
complex tasks via the definition of the conversation
that should be undertaken by each participant; the
overall activity is then achieved as the composition of
peer-to-peer interactions among the collaborating WSs.
A Choreography also describes the external visible
behavior of the WS. Choreography languages are still
in an introductory phase of definition .WS-CDL [15] is
example of this approach.

One of the most important orchestration languages
namely BPEL4WS is defined as follows. Though this
approach can be also considered as a workflow
modeling language, the classification based on
syntactic is preferred over workflow for this approach.
• BPEL4WS: This syntactic-based language was
designed to enable the coordination and composition of
a set of WSs. Also this language is based on WSDL
[4], which is essentially an interface description
language for WS providers. In fact, BPEL4WS is a
merge between XLang and WSFL, but all of them are
considered as a web service flow language [16]. WSC
using BPEL4WS enables the definition of a new web
service by composing a set of existing ones. The
interface of the composite service is described as a
collection of WSDL PortTypes.
A BPEL4WS process defines the roles involved in a
composition as abstract processes. A buyer and a seller
are examples of two roles. They are expressed using
partner link definitions. We can have a role for each
web service that is composed and does some activity.
In order to integrate services, they are treated as
partners that fill roles [17].
BPEL4WS depends directly on the WSDL of the
service. A business process defines how to coordinate

the interactions between a process instance and its
partners. Thus, a BPEL4WS process provides one or
more WSDL services. The BPEL4WS process is
defined only in an abstract manner, allowing only
references to service portTypes in the partnerLink [7].
Each partner is characterized by a partner link and a
role name. In sum, business process is used to create an
organizer that point to each service endpoint that will
be actually executed.

2.4. Ontology-based WSC approaches

The Semantic Web [18] allows the representation
and exchange of information in a meaningful way,
facilitating automated processing of descriptions on the
Web. Annotations on the Semantic Web express links
between information resources on the Web and connect
information resources to formal terminologies. These
connective structures are called ontologies.

Ontologies are used as data models throughout
these types of approaches, meaning that all resource
descriptions and all data interchanged during service
usage are based on ontologies. Ontologies are a widely
accepted state-of-the-art knowledge representation, and
have thus been identified as the central enabling
technology for the Semantic Web. The extensive usage
of ontologies allows semantically enhanced information
processing and support for interoperability. In this
section we consider two principal approaches, namely:
• OWL-S is an OWL service ontology for describing
various aspects of Web services [19]. OWL-S has tried
to adopt existing Semantic Web recommendations yet
still maintain bindings to the world of Web services by
linking OWL-S descriptions to existing WSDL
descriptions [20]. In the following, we describe the four
top-level concepts of the OWL-S ontology which are
illustrated in Figure 1.
SERVICE: The SERVICE concept serves as an
organizational point of reference for declaring WSs.
Every WS is declared by creating a SERVICE instance.
It links the remaining three elements of a WS through
properties like PRESENTS, DESCRIBEDBY and
SUPPORTS.

SERVICE PROFILE: declares what a SERVICE
does in order to advertise and serves as a template for
service requests at a high level, therefore enabling
discovery and matchmaking. The profile includes
nonfunctional aspects such as provider information and
the quality rating of the service. The most essential
information presented in the profile, however, is the
specification of what functionality the service provides.
Information transformation is represented by inputs and
outputs; the change in the state of the real world caused

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

by the execution of the service is represented by
preconditions and effects. Inputs and outputs refer to
OWL classes describing the types of instances to be
sent to the service and the respective responses to be
expected. A feasible problem is that the semantics of
these conditions is not covered by the (description
logics) expressivity of the OWL-S ontology itself, but
by reference to these languages. So, parties need to
consent on the language for expressing conditions and
also the notions of a “match” which is not addressed in
the standard.

SERVICE MODEL: SERVICE could be described
by a SERVICE MODEL which describes how a service
works to enable invocation, enactment, composition,
monitoring, and recovery. The service model views the
interactions of the service as a process. OWL-S
distinguishes between single processes and composite
processes. But, a feasible problem is that the semantics
of the workflow constructs is not expressible in the
description logics underlying OWL, for which reason
this semantics has been externally defined [21].

SERVICE GROUNDING: In order to map to the
Web service world, an OWL service can support a
grounding which maps the constructs of the PROCESS
MODEL to detailed specifications of message formats,
protocols, and others. In fact, SERVICE
GROUNDING describes how to use a WS (i.e. how
clients can actually invoke it).

• WSMO defines a model to describe semantic WSs,
based on the conceptual design set up in the WS
Modeling Framework WSMF [22]. Following (Figure
2) the key aspects identified in the Web Service
Modeling Framework, WSMO identifies four top-level
elements as the main concepts [21]:

Ontologies: provide the (domain specific)
terminologies used and is the key element for the
success of Semantic Web services. Furthermore, they
use formal semantics to connect machine and human
terminologies.

Web services: are computational entities that
provide some value in a certain domain. They are
described from three different aspects: non-functional
properties, functionality and behavior.

Goals: describe aspects related to user desires with
respect to the requested functionality, i.e. they specify
the objectives of a client when consulting a WS. Thus
they are an individual top-level entity in WSMO.

Mediators: describe elements that handle
interoperability problems between different elements,
for example two different ontologies or services.
Mediators can be used to resolve incompatibilities
appearing between different terminologies (data level),
to communicate between services (protocol level), and
to combine Web services and goals (process level).

Besides these main elements, Non-Functional
properties are used in the definition of WSMO
elements that can be used by all its modeling elements.
Furthermore, there is a formal language to describe
ontologies and Semantic Web services called WSML
(Web Service Modeling Language) which contain all
aspects of Web service descriptions identified by
WSMO. To introduce aspects of Semantic Web
services in WSMO, the Meta-Object Facility (MOF)
[23] specification is used, which defines an abstract
language and framework for specifying, constructing,
and managing technology-neutral metamodels. In
addition, WSMX (Web Service Modeling eXecution
environment) is the reference implementation of
WSMO, which is an execution environment for
business application integration. [24].

In the following, we describe the differences in the
conceptual models of OWL-S and WSMO.
• OWL-S is specified using the Web Ontology
Language, while WSMO uses an abstract MOF model.
On the other hand, OWL-S defines its Meta model in
the same language that it uses for concrete service
descriptions. However, WSMO’s basis in the abstract
MOF model successfully avoids this problem.
• OWL-S does not separate what the user wants from
what the WS provides. The service profile of a WS is
not explicitly based on standard metadata specification.
WSMO recommends the use of widely-accepted
vocabularies (like the Dublin Core [25]).
• Non-functional properties in OWL-S are restricted
to the service profile. However, this can be expressed
in any WSMO element.

Figure 1. OWL-S conceptual model [19].

Figure 2. Four top-level elements of WSMO.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

We give below some similarities in the conceptual

models of OWL-S and WSMO:
• A service profile in OWL-S is close to a capability
of a service or goal in WSMO. But, WSMO makes a
conceptual distinction between the provider’s and the
requester’s view, which is not made in OWL-S.
• The process model of OWL-S is conceptually
similar to the WSMO service and goal interfaces.
However, the distinction between the description of
external behavior (choreography interface) and of the
internal behavior (orchestration interface) is not made
explicit in OWL-S.
• As for the grounding, WSMO and OWL-S adopt
similar ideas with respect to binding to WSDL.
However, the grounding is not a top-level concept in
WSMO, but is instead integrated into the WSMO
interfaces.

3. Comparative evaluation

In this section we compare the above WSC

approaches with respect to the following criteria. We
claim that, any approach to WSC should satisfy these
set of criteria. The result can be seen in Table 1.

3.1. QoS

Currently, considering quality of service (QoS) to
describe as nonfunctional properties is one of the
critical issues in the WSC. When referring to QoS,
nonfunctional properties such as performance, cost, or
reliability are intended. Since a composed service uses
other services to form itself, its quality depends on the
WSs it uses. To be accepted by its customers, a
business should try to provide good quality regarding
the customers’ requirements to a composed WS.

QoS aspects are considered when selecting WS
candidates for a composition. By defining aggregation
formulas for several QoS aspects which are applied to
simple composition patterns, the whole workflow
pattern of a composed service can be collapsed
stepwise, and each time the most suitable collection of
simple services is selected. As QoS information
assigned with each basic service, performance and
availability were chosen.
• Performance: This represents how fast a Web
service request can be completed. According to [26],
performance can be measured in terms of throughput,
latency, execution time, and transaction time. The
response time of a Web service can also be a measure
of the performance. High-quality Web services should
provide higher throughput, lower latency, lower

execution time, faster transaction time and faster
response time.
• Availability: the probability that a WS is available
at any given time, measured as the percentage of time a
WS is available over an extended period of time.

The management of QoS when composing WSs
requires a careful consideration of the QoS criteria of
the constituent WSs. To enable the specification and
monitoring of QoS aspects like performance, financial,
reliability, and availability, various approaches have
been developed. An excellent research for considering
QoS aspects in WSC can be found in [27]. Most of
workflow based approaches like EFlow neglect
specification of nonfunctional QoS properties such as
security, dependability, or performance. In AI planning
approaches such as Situation Calculus, a planning
operator cannot represent such information. However,
HTN-DL by using ontology that allows flexible
matchmaking, tries to tackle this problem. Also,
BPEL4WS does not directly support the specification
of most QoS measures. However, in OWL-S, QoS
measures such as availability are specified as service
parameters in the WS description definition, but the
specification of metrics and guarantees is missing.
Moreover, there is no way to specify functional
relations between metrics and therefore quality-aware
WS discovery is not feasible [14].Finally, QoS
(Nonfunctional properties) are applicable to all the
definitions of WSMO elements such as Ontologies,
Web services, Goals, and Mediators. Which QoS
properties apply to which WSMO element is specified
in the description of each WSMO elements.

3.2. Automatic composition

Many composition approaches aim to automate
composition, which promises faster application
development and safer reuse, and facilitates user
interaction with complex service sets. With automated
composition, the end user or application developer
specifies a goal (a business goal expressed in a
description language or mathematical notation) and an
“intelligent” composition engine selects adequate
services and offers the composition transparently to the
user. The main problems are in how to identify
candidate services, compose them, and verify how
closely they match a request [28]. Generally, we cannot
assign any of the above approaches as an automated
approach. Although, most of these approaches like
HTN-DL, OWL-S and WSMO can be assigned as a
semi automated approach.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

3.3. Composition scalability

This represents the ability of the WS to process
multiple requests in a certain time interval. Composing
two WSs is not the same as composing ten or more
WSs. In a real-world scenario, end users will typically
want to interact with many WSs while enterprise
applications will invoke chains of possibly several
hundred services. Thus, one of the important issues is
how the proposed approaches scale with the number of
WSs involved. It can be measured by the number of
requests resolved in a certain time interval.

The HTN-DL, due to the fact that DL reasoner
Pellet used, is optimized to handle large number of
instances, and therefore has a tolerable scalability. In
BPEL4WS, since XML files have increased a lot, WSC
is a bit tiresome. BPEL4WS composition can be
modularized, because this approach is recursive. But,
BPEL4WS has no standard graphical notation. Some
orchestration servers offer graphical representation for
descriptions, such as UML, but they don’t map one-to-
one to complex constructs of BPEL4WS. Finally,
OWL-S and WSMO have similar issues. The Web
component approach achieves good scalability with
class definitions, but requires additional time for
mapping and synchronization between class definitions
and XML.

3.4. Correctness

Verifying correctness depends on the WS and
composition specifications. The composition of WSs
may lead to large and complex systems of parallel
executing WSs. An important aspect of such systems is
the correctness of their behavior. Situation Calculus
and HTN-DL, because of their solid mathematical basis
in order to ensure the correctness of the compositions
generated from the resulting planning domain, are very
well. All other approaches offer no direct support for
the verification of WSC at design time, to evaluate in
this way its correctness. For example, BPEL is a
Turing complete language dealing more with
implementation than specification, and thus it’s
difficult to provide a formalism to verify the
correctness of BPEL4WS flows [29]. The result is
shown in Table 1.

Table 1. Comparing Web service composition
approaches

 Criteria

Approaches QoS (Semi)
Automatic Scalability Correctness

EFlow Low Low Low Low

PPM Low Low Low Low

Situation
Calculus Low Low Good Average

HTN-DL Average Average Good Good

BPEL4WS Average Low Average Low

OWL-S Good Average Good Low

WSMO Good Average Good Low

4. Conclusion

This paper has aimed to provide an overview and
comparison for recent progress in WSC. We classify
these approaches into four categories. But we cannot
claim that this classification is exhaustive. In each
category, the introduction and comparison of selected
approaches are presented. The workflow-based
approaches are usually used in the situation where the
request has already defined the process model, but
automatic program is required to find the atomic
services to complete the requirement. The AI-planning
based approaches deal with WSs as planning operators
and use a causal planner to generate WSC. The
syntactic-based approaches concentrate on two main
approaches, namely: orchestration and choreography.
Choreography languages are still in an introductory
phase of definition. In ontology-based approaches,
ontologies are used as data models throughout these
types of approaches, meaning that all resource
descriptions and all data interchanged during service
usage are based on ontologies. The main problems with
most of these approaches to compose Web services are
the verification of correctness of WSC and the analysis
of QoS aspects.

5. Acknowledgement

This research is supported by the Ministry of
Science & Technology and Innovation (MOSTI),
Malaysia and University of Technology Malaysia under
the Vot. 79277.

6. References

[1] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifiers (URI): Generic Syntax”, IETF RFC
2396. [Online].Available: http://www.ietf.org/rfc/rfc2396.txt

[2] Web Services Architecture Requirements.(2004).
[Online]. Available: http://www.w3.org/TR/wsa-reqs/

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

[3] New to SOA and Web services. [Online]. Available:
http://www.ibm.com/developerworks/webservices/

[4] WSDL v1.1. (2001). [Online]. Available:
http://www.w3.org/TR/wsdl

[5] SOAP v1.2. (2007). [Online]. Available:
http://www.w3.org/TR/soap12-part1/

[6] F. Casati, M. Sayal, and M.C. Shan, “Developing E-
Services For Composing Eservices”, In Proceedings of 13th
International Conference On Advanced Information Systems
Engineering (Caise), Springer Verlag, Interlaken,
Switzerland, June 2001.

[7] T. Andrews et.al., BPEL v1.1.(2007).[Online].Available:
http://www.ibm.com/developerworks/library/specification/ws
-bpel/

[8] A. Ankolekar, DAML-S: “Web Service Description for
the Semantic Web”. In Proceedings of ISWC’02, ser. LNCS,
vol. 2342, Springer Verlag, 2002, pp. 348–363.

[9] WSMO working group. [Online]. Available:
http://www.wsmo.org

[10] J. Rao, “Semantic Web Service Composition via Logic-
based Program Synthesis”, PhD Thesis, Norwegian
University of Science and Technology, Norway, 2004.

[11] J. Rao and X. SU, “A survey of automated web service
composition methods”. In Proceedings of SWSWPC, LNCS
3387, Springer, 2005, pp. 43-54.

[12] F. Casati, S. Ilnicki, and L. Jin, “Adaptive and dynamic
service composition in EFlow”. In Proceedings of 12th
International Conference on Advanced Information Systems
Engineering (CAiSE), Springer Verlag, Stockholm, Sweden,
June 2000.

[13] H. Schuster et.al, “Modeling and composing service-
based and reference process-based multi-enterprise
processes”, In Proceeding of 12th International Conference
on Advanced Information Systems Engineering (CAiSE),
Springer Verlag, Stockholm, Sweden, June 2000.

[14] M. Beek, A. Bucchiarone, and S. Gnesi, “Web Service
Composition Approaches : From Industrial Standards to
Formal Methods”. In Proceedings of Int’l Conf. On Internet
and Web Application and Services (ICIW’07), IEEE, 2007.

[15] N. Kavantzas, D. Burdett, and G. Ritzinger, WSCDL
v1.0. (2004). [Online]. Available:
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/

[16] W.M.P. Van der Aalst, “Don't Go with the Flow: Web
Services Composition Standards Exposed”, Intelligent
Systems, IEEE, 18(l), 2003, pp. 72-76.

[17] D.J. Mandel and S.A. Mcllraith, “Adapting BPEL4WS
for the Semantic Web Bottom-up Approach to Web Services
Interoperation”, In Second International Semantic Web
Conference (ISWC), Sanibel Island, Florida, 2003.

[18] Berners-Lee, T., J. Hendler, and O. Lassila, The
Semantic Web. ScientificAmerican, 2001, pp. 34–43.

[19] Fensel, D. et.al, Enabling Semantic Web Services,
Springer, Berlin, 2007.

[20] OWL-S: Semantic Markup for Web Services, W3C
Member Submission, (22 November 2004). [Online].
Available: http://www.w3.org/Submission/OWL-S/.

[21] S. Narayanan and S. McIlraith, “Simulation,
verification and automated composition of web services”, In
Proceedings of the 11th International World Wide Web
Conference (WWW2002), Honolulu, Hawaii, 2002.

[22] Battle, S. Semantic Web Services Framework (SWSF).

[23] Object Management Group Inc. (OMG), Meta Object
Facility (MOF) Specification v1.4, 2002.

[24] WSMX working group. [Online]. Available:
http://www.wsmx.org

[25] S. Weibel et al. (1998) Dublin Core Metadata for
Resource Discovery. IETF 2413. [Online]. Available:
http://www.ietf.org/rfc/rfc2413.txt

[26] Rajesh, S. and D. Arulazi, Quality of service for Web
services – demystification, limitations, and best practices.

[27] D. ThiBen and P. Wesnarat, “Considering QoS Aspects
in Web Service Composition”, In Proceedings of the 11th

IEEE Symposium on Computers and Communications
(ISCC'06), 2006.

[28] N. Milanovic and M. Malek, “Current solution for Web
service composition”, IEEE, 2004.

[29] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting
BPEL Web Services”. In Proceedings of WWW’04. ACM
Press, 2004, pp. 621–630.

[30] R. E. Fikes and N. J. Nilsson. “Strips: A new approach
to the application of theorem proving to problem solving.”
Readings in Planning, Kaufmann, San Mateo, CA, 1990.

[31] S. Oh, D. Lee, and S. Kumara, “A Comparative
Illustration of AI Planning-based Web Services

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

978-1-4244-2328-6/08/$25.00 © 2008 IEEE

Composition”, In Proceedings of the 2005 ACM SIGecom
Exchanges, Vol. 5, No.5, December 2005.

[32] S. McIlraith and T. C. Son. “Adapting Golog for
composition of Semantic Web services”, In Proceedings of
the 8th International Conference on Knowledge
Representation and Reasoning(KR2002), Toulouse, France,
April 2002.

[33] F. Baader et.al, “Integrating description logics and
action formalisms: First results”, In Proceedings of the
Twentieth National Conference on Artificial Intelligence
(AAAI-05), Pittsburgh, PA, USA, 2005.

[34] E. Sirin. “Combining Description Logic Reasoning
with AI Planning for Composition of Web Services”, PhD
thesis, University of Maryland, 2006.

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 27, 2009 at 19:08 from IEEE Xplore. Restrictions apply.

