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ABSTRACT 

The Euler-Bernoulli beam model has a wide range of applications to the real 

life; such as nano electro mechanical system switches in small scale up to the Eifel 

tower in large scale. Advantages of FDM like simpler mathematical concept and 

easier programming have made scientist to choose this numerical method to solve 

many state-of-the-art physical problems of partial differential equations (PDE). 

There are researches done by using this method in solving many problems; while, 

how the nodes at the boundaries can be treated in the best way is still unclear. 

Therefore, this study is subjected to obtaining the beam behavior with the material in 

two ranges of elastic and ideal plasticity. Firstly, different schemes of FDM are 

applied to the PDE of the beam in the elastic range for six cases. Afterwards, loading 

increases that the material goes to the ideal plastic range. In both ranges, validity of 

the results by comparing with the analytical solutions need to be studied. Finally, the 

best FD scheme to implement the boundary conditions are determined. Effect of the 

point load on FDM is investigated. Moreover, optimum value of the vital parameters 

like number of nodes, layers and load increments are extracted. Advantages of FDM 

like simpler mathematical concept and easier programming have made scientist to 

choose this numerical method to solve many state-of-the-art physical problems of 

PDE. There are researches done by using this method in solving many problems; 

while, how the nodes at the boundaries can be treated in the best way is still unclear. 
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ABSTRAK 

Kaedah pembezaan  terhingga  merupakan  salah satu pilihan klasik daripada 

kaedah  berangka  kerana  ia adalah  kaedah  pertama  yang  telah  dibangunkan  

untuk penyelesaian hampiran.   Terdapat banyak penyelidikan yang telah dijalankan 

dalam menyelesaikan pelbagai masalah dengan menggunakan kaedah ini, akan tetapi 

adalah masih tidak jelas mengenai nod yang harus digunakan di sempadan.  Oleh itu, 

projek ini   bertujuan   membentangkan   pemodelan   rasuk   dengan   menggunakn   

kaedah pembezaan  terhingga  dengan keadaan sempadan  yang sesuai bagi dua jenis 

rasuk: rasuk ‘Euler-Bernoulli’ dan rasuk ‘Timoshenko’ yang digunakan pada situasi 

dalam keadaan  anjal/elastik.    Bagi keadaan  elastik dan plastik,  terdapat  dua 

situasi  yang dikaji iaitu rasuk sokongan momen seragam dan rasuk julujur dengan 

beban teragih dan kedua-duanya hanya diapplikasikan pada rasuk ‘Euler-Bernoulli’. 

Hasilnya menunjukkan  bahawa  aspek  beban  dan  nod  palsu  yang  terdapat  

semasa  analisis adalah  penting  bagi  pemilihan  skim  yang tepat.   Selain itu, ia 

juga menunjukkan bahawa ketepatan meningkat dengan bilangn nod yang digunakan 

pada rasuk. Hasil kajian menunjukkan  bagi pemodelan rasuk dalam julat anjal, 

adalah penting dalam membuat  pilihan yang tepat pada keadaan  sempadan  bagi 

mendapatkan  keputusan yang menumpu disebabkan bilangan nod akan 

mempengaruhi  ketepatan keputusan. Dalam usaha untuk menggabungkan kelakuan 

plastik ke dalam skim pembezaan terhingga, pendekatan bertingkat diperkenalkan 

dan ia menunjukkan keupayaan untuk mengasingkan zon anjal dan plastik.   Selain 

itu, beban peningkatan atau momen memainkan peranan yang penting dalam analisis 

julat elastik-plastik. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the study 

Most of the physical phenomena running into different areas of science, such as 

electro-magnetic, fluid and solid mechanics, can be modeled mathematically by partial 

differential equations (PDE) [1]. The grid generation strategies employed in numerically 

solving nonlinear partial differential equations representative of complex physical 

phenomena involving complex geometry are discussed. A historical perspective of 

evolving distinct strategies and methodologies for static and dynamic grid generation in 

view of increased demand for computational field simulations (CFS) is presented [1]. 

Obtaining an appropriate mathematical model for beam problems especially for 

the elastic-plastic case is an important issue. Many researches have been done to solve 

the partial differential equations for beams which require efficient numerical methods. 

Numerical solution methods have become one of the most successful methods of solving 

a PDE particularly for complicated equations or geometries. If the discretization step 

contains the analysis starting from the mathematical equation which usually is in terms 

of partial differential equations, this will result in procedures of numerical methods for 
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partial differential equations [2]. The discretization step is solved and this result 

is representing the original physical problem based on the mathematical equations at the 

first stage of analysis. 

There are some classical choices of numerical approximation methods such  as  

the finite  difference  method  (FDM), the finite element method (FEM), the finite 

volume method (FVM) and the boundary element method (BEM) [2].   In this study, 

the focus is on modeling using the finite difference method (FDM), which is one of the 

best choices in the analysis of many practical problems.    As  more  new  algorithms  

have  been produced and the availability of faster computers, all these methods were 

evolved in a  lot  of  areas  such  as  stress  analysis,  heat  transfer  and  electromagnetic  

theory, potential theory, fracture mechanics, fluid mechanics, elasticity, elastostatics 

and elastodynamics, biological and biomedical cases. 

Euler introduced finite difference schemes for the first time (1707-1783) and his 

equation on beams was applied to the Eifel Tower as a large scale engineering problem 

for the first time. He had used the method to find the approximation of differential 

equations and only after 1945 many research activities regarding FDM is been applied 

and explored.  It works by defining the next value in a sequence of numbers in terms of 

preceding ones.  This approach has been utilized in many different fields such as 

applied mechanics, fluid flow, wave equation etc. FDM is based on Taylor’s series 

expansion and there are three major types of approximation in finite difference 

methods, namely forward, backward and central finite difference approximations [4] 

where these approximations apply the function values at a set mesh point and 

approximate the value of derivative at the left most, right most and the central mesh 

points, respectively. In addition, Taylor says that the more information of the function 

at the node, the more order of accuracy in results. 

Beams are divided in two major groups, Euler-Bernoulli and Timoshenko 

beams.  Their difference in general is that the Euler-Bernoulli beam theory does not 

take the transverse shear and through-the-depth normal strains into account [5] which 

normally would involve slender beams where the length is more than 10 times of the 
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width.  This beam works on the assumption that the straight lines normal to the mid-

plane before and after deformation is remained [6]. However, the Timoshenko beam 

theory includes the shear deformation effect and the shear correction factor is been 

introduced to factor the shear force [6-8].   The Timoshenko beam is a second order 

theory which means it can predict two types of vibration which are the flexible shear 

motion and the thickness shear motion [9].  

In this project, the beam investigations are divided into two cases which are 

the elastic range and plastic range.   The elastic deformation is defined as when a 

stress versus strain is plotted, the linear function will show the elastic region whereby 

the material can still assume to its original shape [10].  Plastic deformation defines 

as a shape of solid body change permanently as a result from the load or stress applied 

beyond the elastic limit [11].  

Beams with a simple structure with a simple geometry and boundary conditions 

have been investigated through this project.  The analytical solution has been used for 

a comparison with finite difference schemes.   A t  f irst, the analysis is focused on 

the elastic behavior and extended to plastic behavior which is the more complicated 

objective of the study. 

1.2 Objectives of the study 

The objectives of this research are to identify the best FDM approach for bending 

problems of elastic and elastic-plastic that result in the desired accuracy. Afterwards, the 

obtained results from FDM need to be compared with the analytical solutions. Then, the 

optimum number of each parameter such as number of nodes, layers, load increments need 

to be investigated. On the basis of achievements, there would be recommendations for the 

best way to implement boundary conditions. 
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1.3 Scopes of the study 

Scopes of this project are: 

 

1. Elastic Bending Problems  

A. Analytical solutions 

B. FD Solution  

C. Evaluation of the results  

2. Elastic-Plastic bending problems  

A. Analytical solutions 

B. FD Solution 

C. Evaluation of the results  

3. Presentation and Documentation 
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1.4 Structure of the research 

Table 1.1 Gantt chart of the project 

Task Semester 2 Session 

2011/2012 

Semester 1 Session 2012/2013 

1 2 3 4 5 1 2 3 4 5 6 

E
la

st
ic

 

Literature review            

Analytical solution            

FDM Solution            

Evaluation results            

E
la

st
ic

-p
la

st
ic

 

Literature review            

Analytical solution            

FDM Solution            

Evaluation results            

Presentation, Documentation 

and Publications 
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