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ABSTRACT 

 

 

 

Today’s e-commerce is highly depended on online customers’ reviews 

posted in opinion sharing websites that are growing incredibly. These reviews are 

important not only effect on potential customers’ purchase decision but also for 

manufacturers and business holders to reshape and customize their products and 

manage competition with rivals throughout the market place. Moreover opinion 

mining techniques that analyze customer reviews obtained from opinion sharing 

websites for different purposes could not reveal accurate results for combination of 

spam reviews and truthful reviews in datasets. Thus employing review spam 

detection techniques in review websites are highly essential in order to provide 

reliable resources for customers, manufacturers and researchers. This study aims to 

detect spam reviews using time series. To achieve this, the novel proposed method 

detects suspicious time intervals with high number of reviews. Then a combination 

of three features, i.e. rating of reviews, similarity percentage of review contexts and 

number of other reviews written by the reviewer of current review, will be used to 

score each review. Finally a threshold defined for total scores assigned to reviews 

will be the border line between spam and genuine reviews. Evaluation of obtained 

results reveals that the proposed method is highly effective in distinguishing spam 

and non-spam reviews. Furthermore combination of all features used in this research 

exposed the best results. This fact represents the effectiveness of each feature.
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                                               ABSTRAK 

 

 

 

Hari ini e -dagang adalah sangat bergantung kepada ulasan pelanggan talian ' 

yang dicatatkan pada laman web perkongsian pendapat yang berkembang sangat. Ini 

ulasan adalah penting bukan sahaja memberi kesan pada keputusan pembelian 

pelanggan berpotensi ' tetapi juga untuk pengeluar dan pemegang perniagaan untuk 

membentuk semula dan menyesuaikan produk mereka dan menguruskan persaingan 

dengan pesaing di seluruh pasaran. Teknik perlombongan pendapat lebih-lebih lagi 

yang menganalisis pelanggan yang diperolehi daripada laman web perkongsian 

pendapat untuk tujuan yang berbeza tidak boleh mendedahkan keputusan yang tepat 

untuk kombinasi ulasan spam dan ulasan benar dalam dataset. Oleh itu 

menggunakan kajian spam teknik pengesanan dalam kajian laman web adalah sangat 

penting untuk menyediakan sumber-sumber yang boleh dipercayai untuk pelanggan, 

pengeluar dan penyelidik. Kajian ini bertujuan untuk mengesan ulasan spam 

menggunakan siri masa. Untuk mencapai matlamat ini , kaedah yang dicadangkan 

novel mengesan jarak masa yang mencurigakan yang mempunyai bilangan ulasan. 

Kemudian gabungan tiga ciri-ciri, iaitu penarafan ulasan, peratusan persamaan 

kajian konteks dan beberapa ulasan lain yang ditulis oleh pengulas kajian semasa, 

akan digunakan untuk menjaringkan setiap kajian semula . Akhirnya ambang yang 

ditetapkan untuk jumlah markah yang diberikan kepada ulasan akan garis sempadan 

antara spam dan ulasan tulen. Penilaian keputusan yang diperolehi menunjukkan 

bahawa kaedah yang dicadangkan adalah amat berkesan dalam membezakan spam 

dan bukan spam - ulasan. Tambahan pula gabungan semua ciri-ciri yang digunakan 

dalam kajian ini didedahkan hasil yang terbaik. Fakta ini mewakili keberkesanan 

setiapciri.
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CHAPTER 1 
 

 

 

 

                                               INTRODUCTION 

 

 

 

 

1.1.  Introduction 

 

 

With the development of internet, people became more confident to explain 

their thoughts on websites and share them with millions of people. Web 2.0 slowly 

changed different aspects of people living. For instance, by creating online groceries, 

a huge number of daily trades are virtualized. Nowadays people are more dependent 

to the internet for purchasing products and services. Long time ago, when they 

wanted to purchase a product, the best method was asking other customers who have 

purchased it before and know about the quality of that product very well to ensure 

that they will have a successful transaction. Similarly now they can visit customer 

reviews about various products or services that they tend to purchase via opinion 

sharing websites. Hence they can easily trade off the pros and cons of a specific 

good. 

 

 

 The increasingly propensity of people to use online opinion sharing websites 

has created a challenging situation for manufacturers, business holders and stores. 

Hence dishonest producers who tend to control and optimize the customers’ opinions 

flow on their products and brand attempt to publish fake reviews among review 

websites. Sometimes they hire individual or in some cases groups of spammers to 

create not only glamorized positive reviews on their products but also harmful 

negative reviews on competitors’. These types of non truthful reviews motivate 
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customers to find their products the best option to purchase among similar products 

offered by different brands. 

 

 

Fake opinions are extremely harmful for business holders. Therefore opinion 

mining techniques are assisting business to analyze posted customers’ opinions on 

offered products to detect spam reviews and proffer truthful reviews to purchasers. 

However research in this area is not adequate and many critical problems related to 

spam detection are not solved yet. 

 

 

 

 

1.2. Problem Background 

 

 

 In comparison with other types of spam such as e-mail spam and web spam, 

review spam detection is very complicated because manual evaluation of reviews and 

distinguishing fake reviews from real opinions is very hard, if not impossible (Jindal 

and Liu, 2008). Hence state-of-the art methods in detecting various types of spam are 

not applicable in review domain. Accordingly review spam detection is a different 

and complex problem in Natural Language Processing area. 

 

 

Various researchers proposed different methods and algorithms to detect fake 

reviews. Algur et al.(2010) used conceptual feature similarity to detect spam 

reviews. They extracted features from review database and store them in a feature 

database. Then extracted features were used in constructing a feature matrix M with 

n columns and m rows. Where n indicates the number of reviews and m represents 

extracted features from them. Consequently they categorized reviews into four 

groups i.e. duplicate reviews, near duplicate reviews, partially related reviews and 

unique reviews. This categorization was based on similarity of features among them. 

First two categories in their approach were considered as spam and the rest of them 

as truthful reviews. Further they classified reviews to spam and non-spam by 

defining rules to separate spam reviews, specifying a threshold, and analyzing the 

matrix. In this research they assumed products features similarity as a factor to detect 
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spam reviews. The purpose of product features is specific parts, attributes and 

aspects of a product that is mentioned in the content of a review.  However by 

revising reviews of a product one can observe that many opinion holders talked about 

one or more similar features which are disaster elements or privileged   aspects of a 

product (e.g. battery life in a digital camera) which this method consider them as 

spam reviews. In the other words this method measures the similarity of product 

features between reviews and considers two reviews with high level of similarity as 

spam reviews. 

 

 

Likewise, an important initial research on spam detection which similarly 

used duplication reviews is done by Jindal and Liu(2007b,2008). The duplication in 

aforementioned study was in product features. However in Jindal and Liu focused on 

duplication in context of the reviews. Firstly they used Shingle method approach 

proposed in (Broder, 1997) to find duplicate and near duplicate reviews. A 2-gram 

based review content comparison was used in their approach to identify the similarity 

of review contents. Then they performed logistic regression to detect spam reviews 

on brands and non review texts among reviews by manually labeling 470 fake 

reviews. 36 features were used in their approach in order to classifying spam and 

non-spam reviews. A critical point in their approach is that if a duplicate review is 

from a same person but on two models of a same product (e.g. a Samsung DVD 

player and a Samsung T.V) it will be considered as spam, yet it might be a truthful 

review. In addition 100% duplicate reviews might be the result of pressing submit 

button frequently by an innocent opinion holder. 

 

 

In an approach proposed by Li et al. (2010) a co-training algorithm with two 

views was designed to skip the onerous task of manual annotation in their supervised 

learning framework. The views for each review were review features and reviewer 

features. The other reason of using co-training algorithm was utilizing unlabeled 

reviews to as train data during run time. Assuming that the more malicious reviews 

have less helpfulness rate was the foundation of their approach. They annotated 1398 

spam reviews which had low-helpfulness rate out of 6000 reviews. For the 

supervised method they used public machine learning software Weka to perform 
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SVM, Bayes and logistic regression. The authors argued that Bayes achieved best 

results on their dataset.  

 

 

On one hand, in their approach unlike single heuristic methods used in 

previous studies, authors used a two view co-training method to detect spam reviews. 

On the other hand, one cannot assume that low-helpfulness feature is the main factor 

of detecting spam reviews. Additionally more than 10% of their manually detected 

spam reviews are from top and middle helpful set reviews. 

 

 

Two other studies (Yoo and Gretzel, 2009; Ott et al., 2011) had worked on 

datasets of hotels reviews crawled from TripAdvisor.com. The first one studied on 

lexical complexity differences and using brand names and first person pronouns 

between fake and honestly reviews. They measured quantity (number of words 

included in a review) and lexical complexity of reviews (average length of each 

word) using Microsoft Word word count tool and rate of recurrence of unique words, 

pronouns and brand name using CATPAC. They also used General Inquirer to 

percentage positive and negative words in sentences. Consequently the second study 

used mentioned method to obtain 400 truthful reviews about top 20 hotels from a 

review website. Then they created 400 fake reviews for those hotels by exploiting 

Amazon Mechanical Turk that is a service provided by Amazon. It performs human 

needed computational tasks such as data annotation, reviewing products, and creating 

texts. They defined three tasks: firstly they compare distribution of POS tags between 

fake and ingenuous reviews by making features for each review depends on 

frequency of POS tags in it. Secondly to detect personality traits or Psycholinguistic 

deception detection they used the Linguistic Inquiry and Word Count (LIWC) 

software. Then they created classifier from its output features. Thirdly they used n-

gram-based classifier in content and concept of reviews to label honest and fake 

ones. Finally they used these three approaches to train SVM and Bayes classifiers. 

They argued that using standard n-gram-based categorization approaches perform 

better in deception detection than keyword based deception cues like LIWC. It is 

even more effective by combination with psycho linguistically motivated features. 
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The three types of abovementioned approaches have mainly focused on 

content and context of a review. Yet there are many spammers that write their 

genuine experience about a really purchased product for a non-purchased product in 

order to spam it (e.g. the spammer has a Canon camera and write positive spam 

reviews for Nikon camera based on his experience of Canon camera). In these 

common cases focusing on context and content of reviews is not efficient any more. 

 

 

Additionally, a novel study in this area is done by Xie et al.(2012a). The 

approach attempts to detect singleton spam reviews. A singleton review is the only 

review written by a reviewer. The authors assumed that reviewers’ behaviors can be 

divided into two phases: arrival phase, when a customer purchase a product or a 

spammer hire and writing phase, when they start developing reviews. They analyzed 

spammers and customers behaviors in normal arrival, promotion arrival and spam 

attack arrival. Accordingly they found that spammers start writing phase immediately 

after arrival but customers have delay for receiving product and testing it. In other 

words attacks tend to create a burst on review arrival process which is dissimilar with 

customers. Therefore the authors focused on joint nonstandard patterns in arrival 

phase and rating to do their task. The scope of their study is on cases that rating is 

promoted dramatically. They formed a three dimensional time series to capture 

behaviors. Then they tried to find unusual blocks in the time series using a three part 

algorithm obtained from previous researches. Finally they proposed a framework to 

detect singleton spam reviews. Consequently in another method proposed in (Fei et 

al., 2013) review burst pattern were used to detect spammers. The authors generated 

5 new spammer behavioural features as indicators to be used in review spammer 

detection. 1) Ratio of Amazon verified purchase (AVP) 2) Rating deviation 3) Burst 

review ratio 4) Review content similarity 5) Reviewer burstiness. All mentioned 

features are demonstrated in Chapter 2. Their method reveals more accurate results 

comparing with abovementioned approaches (Xie et al.2012a). However one of these 

5 used features is ‘Ratio of Amazon verified purchase’ which possibility of using this 

feature in any detection technique optimizes the accuracy of the method profoundly. 
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All in all, various approaches are proposed to detect spam reviews, individual 

and group spammers and suspicious behavior in reviews by focusing on different 

aspects such as reviewer behavior, review content, comparing review features with 

surrounding reviews, reliability of the product, and so on. However there are many 

problems in this area to classify suspicious and truthful reviews. Accuracy of some 

methods represents that it is not competent in filtering maximum spam or in 

preventing truthful reviews to be detected as spam. Furthermore some aspects are not 

studied by researchers or few researches are done on them. The following Table 

(Table 1.1) represents the major proposed techniques in review spam detection. The 

precision is computed using a micro-average, i.e., from the aggregate true positive, 

false positive and false negative rates, as suggested by Forman and Scholz (2010). 
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Table 1.1: List of major review spam detection methods 

 

Study Title Year Methods & Techniques Results 

Jindal 

and 

Liu, 

2008 

Opinion Spam and 

Analysis 
2008 

Detect & labeling duplicate 

reviews as spam. Then using 

SVM, Naive Bayes and  logistic 

regression to classify spam and 

non spam reviews 

Precision 

85% 

Algur 

et al., 

2010 

Conceptual level 

Similarity Measure based 

Review Spam Detection 

2010 

constructing the matrix of 

product features and detecting 

similar reviews as spam 

precision 

43.6% 

Li et 

al., 

2011 

learning to identify review 

spam 2011 

using co-training algorithm with 

two views i.e. review features and 

reviewer features 

Precision 

64% 

Ott et 

al., 

2012 

Estimating the prevalence 

of deception in online 

review communities 

2012 

classification with linguistic 

features 
precision 

83.3% 

Wang 

et al., 

2012 

Identify Online Store 

Review Spammers via 

Social Review Graph 

2012 

graph, iterative algorithm 
Precision 

49%,  

Xie et 

al., 

2012 

Review Spam Detection 

via Temporal Pattern 

Discovery 2012 

Three dimensional time series( 

ratio of singleton reviews, rating, 

number of reviews) 
Precision 

61.11% 

Lim et 

al., 

2010 

Detecting Product Review 

Spammers using Rating 

Behaviors 

2010 

rating behaviors 
Precision 

78%,  

Fei et 

al., 

2013 

Exploiting Burstiness in 

Reviews for Review 

Spammer Detection 

2013 

Kernel Density Estimation 

techniques with proposed features 
Precision 

83.7%,  

 

 

 

According to the table, the most accurate result belongs to (Jindal and Liu, 

2008). However the authors considered duplicate reviews as spam reviews. 

Duplication might be a mistake from an innocence reviewer, yet will be considered 
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as spam in their method. Therefore the accuracy of their proposed technique will be 

profoundly apposed by this fact. Another high accurate method in the table is the one 

proposed by Ott et al.( 2012). They have produced the fake reviews using Amazon 

Mechanical Turk. Employing human resources to do this task will be highly effective 

on the obtained result. Additionally, there were not any features to detect spam 

reviews except content based features that relying on them is not adequate to detect 

spam reviews in real situation. Therefore the method might be fragile in detecting 

real spam reviews. Finally it is demonstrated that methods employing posting time 

factor performed well. The focus of this study will be on detecting the burst pattern 

of spam attacks as a strong evidence for detecting fake reviews fallen in attacks 

durations. 

 

 

 

 

1.3. Problem Statement 

 

 

 It is generally accepted that annotating a 100 percent accurate spam reviews 

dataset collected from opinion sharing websites is impossible. Therefore a genuine 

review not only might be annotated as spam but also might be detected as spam in 

proposed methods. Distribution of spam reviews among all reviews could be closely 

related to points of time that spammers are hired and started attacks. Therefore 

detecting abnormal oscillations in reviewing flow for a product or brand could be a 

strong evidence of spam attacks. Assessing reviews fallen in spam attacks duration 

aggrades the accuracy of a method in detecting spam reviews. 
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1.4. Objectives of the Study 

 

 

1. Detecting spam reviews using time series. 

2. Identifying spam attacks using oscillations of number of reviews 

over the time. 

3. Scoring reviews fallen in time intervals with high oscillations 

based on percentage of similarity of the review text with other 

reviews, rating deviation of the review and number of reviews 

written by a person fallen in a similar interval. 

4. Detecting spam reviews using assigned spam scores. 

 

 

 

 

1.5. Scope of the Study 

 

 

In this study the focus will be on a dataset collected from a unique review 

website. Among various numbers of products and brands in the dataset, reviews of 

products that are produced by Nikon Company found the corpus of this project. 

Furthermore regarding to difficulty of manual annotation of spam review datasets 

which is almost impossible in majority of review datasets, the corpus is limited to 

number of 244 reviews. The corpus is selected from Nikon brand reviews with 

searching and reviewing all the reviews and discarding irrelevant parts. 

 

 

 

 

1.6. Significant of Study 

 

 

Today methods of purchasing products by people are profoundly different 

from erstwhile. Most of the customers review purchased products online and others 

who tend to buy a similar product will search opinion sharing websites to make the 

best decision. This situation promotes competition between merchants, business 

holders, manufacturers and even famous stores. Thus some of them attempt to perk 
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between competitors and highlight their products and corresponding features and 

aspects on review websites. Promoting their products against competitors or vise 

versa is the reason of hiring review spammers to do this task.  

 

 

Opinion mining researchers in contrast, focused on detecting and discarding 

these spam reviews to moderate the market in a real and fare situation. Many 

approaches are proposed by them using various aspects of reviews to detect spam. 

Spammers in the other hand are becoming smarter and optimize their methods as 

they cannot be detected by majority of approaches. 

 

 

The most important point in review spamming is the role of producers in this 

game. Times of hiring spammers by them which is a critical method to detect spam 

reviews could be detected by following proportion of their products in reviews and 

between competitors. 

 

 

 

 

1.7.Conclusion 

 

 

All things considered, one can say that considering the appearance of smarter 

spammers, review spam detection research needs more attention from researchers. 

New methods of spamming cannot be captured by majority of state of the art spam 

detection approaches. However spam attacks that will be starts a bit after hiring 

spammers by business holders could be detected using abnormal oscillations in 

number of reviews for a product or brand over the time supported with spammers’ 

atypical behaviors. 
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