FLEXIBLE MANIPULATOR MODELLING AND VIBRATION CONTROL USING END-POINT RESIDUAL VELOCITY FEEDBACK

MIWORI ODEMADIGHI

UNIVERSITI TEKNOLOGI MALAYSIA

FLEXIBLE MANIPULATOR MODELLING AND VIBRATION CONTROL USING END-POINT RESIDUAL VELOCITY FEEDBACK

MIWORI ODEMADIGHI

A project report submitted in partial fulfillment of the

requirement for the award of the degree of

Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

JUNE 2013

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	To my family
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

1	
2	
3	ACKNOWLEDGEMENT
4	ACKINOWLEDGEWIENT
5	
6	
7	
8	My deep appreciation and heartfelt gratitude goes to my supervisors, Dr. Suhail
9	Kazi and Dr. Tang Howe Hing for their kindness, support, guidance and the numerous
10	moments of attention they devoted throughout this project.
11	
12	I would like to extend my deepest gratitude to my friends and brothers, Mr.
13	Ejokuoye Miwori , Mr. Major Udisien Major, Mr. Henry Angala and Mr. Chukwuladi
14	Nweke for their moral, emotional and mental support, it's a great privilege to have you
15	guys as friends.
16	
17	I want to also thank Dato' Professor Kamarrudin Nor for being a great father to
18	me, I am came this far because of you, I want to say a very big thanks.
19	
20	Finally, I give my sincere thanks to my family for their prayers and
21	encouragement that always inspires me to go higher.
22	
23	
24	

ABSTRACT

1

2

3

4	
5	
6	This project presents the modeling and simulation of a two-link flexible
7	manipulator and the control of a single-link manipulator taking into consideration the
8	effects of payload variation on the rate of change of the residual motion of the tip. The
9	characteristic behavior of the dynamic model was investigated in terms of transient
10	response using MATLAB and SIMULINK. The results show that the response of
11	system contains highly undesirable vibrations. In order to reduce this vibration, an
12	Optimized Modified parallel PD controller was proposed using the rate of change as the
13	feedback signal, which is better than acceleration feedback. The Optimized Modified PD
14	involved the use of graphical based Direct search (pattern Search) method to optimized
15	the controllers parameters. It was found out that as the payload increases, the vibration
16	gain also increases, however trajectory tracking met the design specification and
17	vibration was greatly reduced using this algorithm. In comparison to the pure parallel
18	PD, the PPD has a better response time, but was unable to reduce vibration, which
19	makes the OMPD controller better.
20	
21	
22	

1	
2	
3	
4	ABSTRAK
5	
6	
7	
8	Projek ini membentangkan model dan simulasi 'two-link flexible manipulator'
9	dan kawalan 'single-link manipulator' mengambil kira kesan perubahan muatan pada
10	kadar perubahan gerakan baki hujung. Ciri-ciri model dinamik telah disiasat dari segi
11	tindak balas fana dengan menggunakan MATLAB dan SIMULINK. Keputusan
12	menunjukkan bahawa tindak balas sistem mengandungi getaran tinggi yang tidak
13	diingini. Dalam untuk mengurangkan getaran ini, sebuah pengawal 'Optimized Modified
14	Parallel PD' telah dicadangkan menggunakan kadar perubahan sebagai isyarat maklum
15	balas yang lebih baik daripada maklum balas pecutan. 'Optimized Modified PD'
16	melibatkan penggunaan 'Direct Search' grafik (Pattern Search) berasaskan kaedah untuk
17	mengoptimumkan parameter pengawal. Saya telah mendapati bahawa dengan
18	peningkatan muatan, berat gegaran turut meningkat, namun pengesanan trajektori
19	bertemu spesifikasi reka bentuk dan getaran telah dikurangkan menggunakan
20	perbandingan algorithm. Jika dibandingkan dengan ' Pure Parallel PD, PPD mempunyai
21	masa tindak balas yang lebih baik, tetapi tidak dapat mengurangkan gegaran, yang
22	menjadikan pengawal OMPD lebih baik.
23	
24	
25	
26	
27	

1	
2	
3	
4	TABLE OF CONTENT
5	
6	

7	CHAPTER	TITLE	PAGE
8			
9			
10		DECLARATION	ii
11		DEDICATION	iii
12		ACKNOWLEDGEMENTS	iv
13		ABSTRACT	v
14		ABSTRACT	vi
15		TABLE OF CONTENTS	vii
16		LIST OF TABLES	xi
17		LIST OF FIGURES	xii
18		LIST OF SYMBOLS	XV
19		LIST OF ABBREVIATIONS	xvii
20		LIST OF APPENDENCES	xvii
21			
22	1	INTRODUCTION	1
23		1.1 Introduction	1

1		1.2 Background of the problem	3
2		1.3 Statement of the problems	3
3		1.4 Objective of the study	5
4		1.4 Scope of Study	5
5	2	LITRATURE REVIEW	
6		2.1 Introduction	6
7		2.2 Dynamic Modeling of	
8		Single-link flexible Manipulator	7
9		2.3 Dynamic Modeling	
10		of Two-link flexible Manipulator	9
11		2.4 Control of Flexible	
12		Manipulator system	10
13		2.5 Summary	13
14	3	RESEARCH METHODOLOGY	
15		3.1 Introduction	15
16		3.2 Modeling:Finite Element method	16
17		3.3 Lagrangian Dynamics	19
18		3.4 The controller Design	19
19		3.5 Summary	21
20	4	DYNAMIC MODELING OF FLEXIBLE	
21		MANIPULATOR AND CONTROL ALGORITH	M
22		4.1 Introduction	22
23		4.2 Finite Element Method Approach	22
24		4.3 Dynamic Model of a	

1		Single-link Flexible Manipulator	26
2		4.3.1 Dynamic Equation of Link 1	30
3		4.4 Dynamic Model of a Two-link	
4		Flexible Manipulator	31
5		4.4.1 Dynamic Equation of Link 2	35
6		4.7 Controller Design	36
7		4.8 Summary	39
8	5	COMPUTER SIMULATION	
9		5.1 Simulation Environment	40
10		5.2 Initial Values	42
11		5.3 Matlab Simulation	43
12		5.4 Simulink	43
13	6	RESULTS, ANALYSIS AND DISCUSSION	
14		6.1 Simulation Results	48
15		6.2 Simulation Results of Link 1	48
16		6.3 Simulation Results of Link 2	50
17		6.4 Validation of Derived Model	52
18		6.5 Control Simulation Results	53
19		6.6 Analysis of Results	57
20		6.7 Summary	58
21			
22			
23			
24			

1	7	CONCLUSION AND RECOMMENDATION	
2		7.1 Conclusion	59
3		7.2 Recommendation for future	60
4	REFERENCE		62
5	APPENDICES A-E		69-79
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

Х

1			
2			
3			
4		LIST OF TABLES	
5			
6			
7			
8	TABLE NO.	TITLE	PAGE
9	5.1	Initial Parameters	42
10	5.2	Initial Parameters	42
11	6.1	Design Specification results	56
12	6.2	Vibration gain	57
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

1			
2			
3			
4		LIST OF FIGURES	
5			
6			
7			
8	FIGURE NO	TITLE	PAGE
9			
10	3.1	(a) Physical System and (b) Finite Element model	16
11	3.2	Methodology of modeling	18
12	3.3	Optimization process and performance criterion	21
13	4.1	Flow chart of the model development approach	24
14	4.2	Structure of a one-link flexible manipulator	26
15	4.3	Structure of a Two-link flexible manipulator	31
16	4.4	Parameter tuning process	37
17	4.5	Control objective and performance assessment	38
18	4.6	Flow chart of search Algorithm.	38
19	5.1	The bang-bang input torque of link 1, τ_1 .	41
20	5.2	The bang-bang input torque of link 1, τ_2 .	41
21	5.3	Simulink State-Space Block	44
22	5.4	Parameters to be tuned and optimized	44
23	5.5	Setting objective function and constrain	45
24	5.6	Setting options for optimization	45

1	5.7	Simulink model of a two-link flexible manipulator	46
2	5.8	Simulink control algorithm for a single-link manipulator	47
3	6.1	Hub angle of link 1, θ	49
4	6.2	End-point residual motion of link 1, w1	49
5	6.3	Total displacement of link 1, y ₁	50
6	6.4	Hub angle of link 2, α	51
7	6.5	End-point residual motion of link 2, w ₂	51
8	6.6	The total displacement of link 2, y ₂	52
9	6.7	Hub-angle for Payload mass M _p =20g	53
10	6.8	Hub-angle for Payload mass M _p =40g	54
11	67.9	Hub-angle for Payload mass M _p =60	54
12	6.10	End point residual motion for Mp=20g	55
13	6.11	End point residual motion for Mp=40g	55
14	6.12	End point residual motion for Mp=60g	56
15	E.1	Angular displacement of link 2 ,Theta 2	
16		for open-loop Bang-bang Torque	76
17	E.2	Angular displacement of link 1, Theta 1	
18		for open-loop Bang-bang Torque	77
19	E.3	Residual velocity of link 2 for open loop	
20		Bang-bang Torque	77
21	E.4	Residual velocity of link 1	
22		for open loop Bang-bang Torque	78
23	E.5	Angular velocity of link 1	
24		for open-loop Bang-bang Torque	78

1	E.6	Angular velocity of link 1	
2		for open-loop Bang-bang Torque	79
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			

1	
2	
3	
4	LIST OF SYMBOLS
5	
6	
7	
8	$y_1(x_1, t)$ =Total displacement of a point along the manipulator at a distance x_1 from the
9	hub
10	$w_1(x_1, t)$ = Elastic deflection of the hub of link 1
11	$N(x_1), N(x_2)$ = Shape function of link 1 and 2 respectively
12	$Q_1(t), Q_2(t)$ =Nodal displacement of link 1 and 2 respectively
13	$y_2(x_2, t)$ = Total displacement of a point along the manipulator at a distance x_2 from the
14	hub
15	$w_2(x_2, t)$ = Elastic deflection of the hub of link 2
16	τ_1, τ_2 = Applied torque at joint 1 and 2
17	$u_{j-1}(t), u_j(t)$ =Elastic deflections of element
18	$\theta_{j-1}(t), \theta_j(t)$ =Angular displacements of element
19	ρ_1 , ρ_2 = Mass density per unit area of link 1 and two respectively
20	A_1, A_2 =Cross-sectional area of link 1 and 2 respectively
21	E_1, E_2 =Young Modulus of link 1 and 2 respectively
22	I_1 , I_2 =Second moment area of link 1 and 2 respectively
23	P_1, P_2 =Total potential energy of link 1 and 2 respectively

- T_1, T_2 =Total Kinetic energy of link 1 and 2 respectively
- K_1, K_2 =Global stiffness matrix
- M_1, M_2 =Global mass matrix of link 1 and 2 respectively
- n_1, n_2 =Number of elements on link 1 and 2 respectively
- l_1 , l_2 =Length of each in link 1 and 2 respectively
- L_1, L_1 =Total length of link 1 and 2
- m_1, m_2 =Uniform density (mass per meter) of link 1 and 2 respectively.

1		
2		
3		
4		LIST OF ABBREVIATIONS
5		
6		
7		
8	PID	Proportional, integral. Derivative
9	PD	Proportional. Derivative
10	MPD	Modified Proportional. Derivative
11	OMPD	Optimized Modified Proportional. Derivative
12	AMM	Assume Mode Method
13	FEM	Finite Element Method
14	ANN	Artificial Neural Network
15	NN	Neural Network
16	SLFM	Single Link Flexible Maniputlator
17	MPC	Model Predictive Control
18		
19		
20		
21		
22		
23		
24		

1			
2			
3			
4		LIST OF APPENDENCES	
5			
6			
7			
8	APPENDIX NO	D. TITLE	PAGE
9	А	Single-link manipulator with $M_p = I_h = 0$	69
10	В	Single-link manipulator with M_p and I_h not equal to zero	70
11	С	Code for a Two-link manipulator	71
12	D	Plot codes	72
13	E	Extra simulation results	76
14			
15			
16			
17			
18			
19			
20			
21			
22			

CHAPTER 1

INTRODUCTION

1.1 Introduction

Rigid robotic manipulators are designed and built to maximize stiffness so as to reduce vibration and achieve good trajectory tracking [1], and this involves the usage of heavy weight materials. As a result they have a low weight to payload ratio, consequently this affects the operating speed of rigid manipulators, increases the actuator size, increases the overall cost and power consumption. This problem led to the introduction of flexible manipulators which are design with lightweight materials, have a high operational speed, consume less power, and their designing involves the use of small actuators, high weight to payload ratio, less overall cost, and due to their reduced inertial they are safer to operate.

However, the consequence of making lightweight manipulators makes controlling them extremely difficult because their dynamics are complex and non-linear. This is due to the existence of residual vibration in the flexible link manipulators, which explains the residual motion of end effect even when nominal movement has been completed. Also, due to their complexity, it is very difficult to develop an accurate model of flexible link manipulators and non minimum phase characteristics [2]. This was one of the major reasons why they were hardly welcomed in manufacturing industries since manipulators are required to have end-point accuracy with respect to the desire trajectory input. So in the design of accurate models and controllers, one must take into account both the rigid and flexural motions of the system [1].

Residual vibration is a serious problem in flexible manipulator systems that are required to carry out precise motion. Residual vibration apart from normal vibration is more dangerous and the level of residual vibration can reduce the performance of the system. To handle this vibration challenge, there have been active researches in this field in finding not only accurate models but also controllers that can reduce or eliminate vibration. In handling general vibration, various control algorithms have been established, which are either passive or active control. Passive vibration control involves mounting of passive materials on the manipulators in order to alter the dynamic characteristics of the system, but this method is only convenient for high frequency and it also increases overall cost of design. Active vibration involves artificially producing sources that absorbs the vibration energy in order the cancel out the effect on the overall system.

Furthermore, control techniques for flexible link manipulators involve either feedback or feedforward control. Closed-loop feedback involving certain output can be use in both trajectory tracking and vibration control, and are widely used because they are not sensitive to changes in parameters and are very good in handling disturbances in systems. Other methods includes the addition of artificial intelligence such Genetic algorithm, Direct search, Fuzzy Logic e.t.c and a combination of one more of these method to eliminate vibration, where certain parameters are automatically tuned online or offline to eliminate vibration, and most of them can be implemented in practice.

1.2 Background of the Problems

Rigid manipulators are easy to model and control, however, flexible link manipulators cannot be modeled as rigid, so accurate control of flexible manipulators is important and a complex problem and it is still an active area of research[3].So obtaining the correct model is very important for an accurate controller to be developed.

A lot of researches have been carried out that examined different control strategy in other to reduce residual vibration and improve trajectory tracking, which prevents the system from reaching the resonance frequency. Flexible manipulators despite their inherent vibration problem, in low speed, vibrations are not important, but in high speed operations, residual vibration becomes a very important factor in terms of trajectory tracking and overall performance of the system. Also, changes in the reference command and external disturbances can also induce vibration. So to achieve accurate control, a proper model is require, and accurate system information is needed and involving intelligent techniques can help reduce unexpected or unforeseen disturbances that may come up in the system.

1.3 Statement of the Problems

The inherent dynamic characteristics and modeling of flexible link manipulators may create errors that may affect the nature of the output response. The accurate trajectory tracking of the end-effectors for precision tasks should involve small vibration level or possible no vibration at all. Therefore, to achieve an accurate dynamic characteristic of the system an accurate mathematical model for the system is required. This is very important in developing control strategies for the manipulator. Vibration reduction and control has been the core of many researches dealing with flexible link manipulators. Typical solutions in general vibration control involve designing stiff systems and adding dampers to the system, this involves adding extra materials to the original system. Materials such as piezoresistive polymer films and viscoelastic materials have been used as damping sources [4,18].

Different control algorithm involving vibration feedback techniques have also been developed to reduce vibration in flexible link manipulators. Acceleration feedback is one of the vibration feedback signal used in vibration control. An approach involving the design and develop a hybrid learning with acceleration feedback control for endpoint vibration suppression of flexible manipulator systems has been used in vibration control [5]. Another vibration feedback control involves the use tip deflection and its rate of change, including the use of neural network to tune certain controller parameters [6]. Other intelligent control methods in addition to classical controllers have been used as well in vibration control. An example involves the use of a combination of Genetic algorithm, Neural network and fuzzy logic with acceleration feedback technique in vibration control [7].

Intelligent control techniques are effective in reducing vibration in close loop system. While most work has been involved on popular intelligent controllers, not much work has been done on Direct search method. Therefore, optimization of a modified classical PD parameters and vibration feedback parameters using Direct search is needed to study its robustness in vibration control.

1.4 Objective of the Study

- Modeling and control of 2 link flexible manipulator using Matlab/Simulink.
- To develop an Optimized Modified PD scheme for trajectory tracking and vibration control respectively.
- To investigate the performance of end-point residual velocity feedback with a control gain in terms of input tracking, vibration reduction level and time response specification.

1.5 Scope of Study

The scope of this study is divided into three main parts:

- The first part involves doing a literature review on flexible link manipulator modeling and control methods use in both trajectory tracking and vibration control.
- Secondly, the developed 2 link flexible manipulator moving in the horizontal plane will be simulated and its open-loop response will be studied to understand the dynamic characteristic of the system.
- A Control strategy for a single link manipulator incorporating payload mass and Hub inertia will be designed and a performance comparative study of the both the parallel PD and Optimized Modified PD will be carried out using Matlab/Simulink.

REFERENCES

[1] Z. Mohamed and M.O. Tokhi, Command shaping techniques for vibration control of flexible robot manipulator, Mechatronics, 2004 14(1): pp. 69–90.

[2] Piedboeuf,J.C.,Farouq M.,Bayoumi M.N.,Labinaz G.,and Argoun M.B. Modelling and control of flexible manipulator .Proceedings of 36th Midwest Symposium on control and systems detroit,(1983). pp 1480-1483.

[3] Book,W.J. Controlled motion in an elastic world,ASME,Journal of Dynamic System,Measuremet and Control, (1993),115: pp252

[4] Plump H.,J.M. and Bailey,T.J.E.,Nonlinear control of a distributed

system:Simulation and experimental results,Journal of

Dynamics, System, Measurements, and Control, (1987), 109: pp122-139.

[5] M.Z. Md Zain, M.O. Tokhi, and M.S. Alam, Robustness of Hybrid learning Acceleration feedback control scheme on flexible manipulators, World Academy of science engineering and technology, (2007).6:pp733-736.

[6] Mansour, T.; Konno, A. & Uchiyama M. ,Neural Network Based TuningAlgorithm for MPID Control,Available: www.intechopen.com, accessed 2-17-2013.

[7] M. N. H. Siddique and M. O. Tokhi,Ga-based Neural Fuzzy control of flexible link manipulator,Engineering letters,Advanced online publication ,2006,pp1-10.

[8] J.M. Martins, Z. Mohamed, M.O. Tokhi, J. Sa da Costa and M.A. Botto, Approaches for dynamic modeling of flexible manipulator systems, IEEE Proceedings on Control Theory and Applications, (2003).150 (4): pp. 401–411.

[9] S.K. Tso, T.W. Yang, W.L. Xu and Z.Q. Sun, Vibration control for a flexible link robot arm with deflection feedback, International Journal of Non-Linear Mechanics (2003). 38(1): pp. 51–62.

[10] F. Rakhsha and A.A. Goldenberg, Dynamic modeling of a single link flexible robot, Proceedings of the IEEE International Conference on Robotics and Automation(1985), pp. 984–989.

[11] E. Barbieri and Ü. Özguner, Unconstrained mode expansion for a flexible slewing link, ASME Journal of Dynamic Systems, Measurement, and Control 110(1988), pp. 416–421

[12] T. Singh, Dynamics and Control of Flexible Arm Robots, Ph.D. Thesis, Mechanical Engineering, Waterloo University, Canada, 1991.

[13]Hasting G.G. and Book W. J., A Linear dynamic model for flexible robot manipulators.IEEE Control Systems Magazine,1987,7(1):pp.61-64.

[14] K. Krishnamurthy, K. Chandrashekhara and S. Roy, A study of single-link robots fabricated from orthotropic composite materials, Computers and Structures, (1990)136(1): pp. 139–146

[15] M.O. Tokhi, Z. Mohamed and M.H. Shaheed, Dynamic characterisation of a flexible manipulator system, Robotica, (2001).19(1):pp. 571–580.

[16] M.O. Tokhi, Z. Mohamed, S.H.M. Amin and R. Mamat, Dynamic characterization of a flexible manipulator system: theory and experiments, Proceedings of TENCON 3(2000), pp. 167–172.

[17] M.O. Tokhi, A.K.M. Azad, H. Poerwanto, S. Kourtis and M.J. Baxter, ASIMULINK environment for simulation and control of flexible manipulator systems,IEE UKACC International Conference on Control,(1996). pp. 210–215.

[18] T.E. Alberts, H. Xia and Y. Chen, Dynamic analysis to evaluate viscoelastic passive damping augmentation for the space shuttle remote manipulator system, ASME Journal of Dynamic Systems, Measurement, and Control, (1992). 114(1):pp. 468–474.

[19] D.A. Saravanos and J.S. Lamancusa, Optimal structural design of robotic manipulators with fiber reinforced composite materials, Computers and Structures, (1990). 36 (1): pp. 119–132.

[20] J.D. Lee and B.L. Wang, Optimal control of a flexible robot arm, Computers and Structures, (1988). 29 (3): pp. 459–467.

[21] W. Khalil and M. Gautier, Modeling of mechanical systems with lumped elasticity, Proceedings of the IEEE International Conference on Robotics and Automation 4(2000), pp. 3964–3969.

[22] H.S. Tzou, C.L. Tseng and G.C. Wan, Distributed structural dynamics control of flexible manipulator II. Distributed sensors and active electromechanical actuator, Computers and Structures, (1990),35(6): pp. 679–683.

[23] H.S. Tzou, Distributed modal identification and vibration control of continua: theory and applications, ASME Journal of Dynamic Systems, Measurement, and Control (1991). 113(1): pp. 494–499.

[24] J.C. Simo and L. Vu-Quoc, On the dynamics of flexible beams under large overall motions-the plane case: Part II, Journal of Applied Mechanics,(1986). 53(1): pp. 855–863.

[25] D.W. Raboud, A.W. Lipsett, M.G. Faulkner and J. Diep, Stability evaluation of very flexible cantilever beams, International Journal of Nonlinear Mechanics (2001).36(1): pp. 1109-1122.

[26] T. Fukuda, Flexibility control of elastic robot arms, Journal of Robotic Systems (1985). 2 (1): pp. 73–88.

[27] T. Fukuda and A. Arakawa, Modeling and control characteristics for a two-degreesof-freedom coupling system of flexible robotic arms, JSME, (1987).Series C (30): pp. 1458–1464.

[28] T. Fukuda, F. Arai, H. Hosogai and N. Yajima, Flexibility control of flexible structures (Modeling and control method of bending-torsion coupled vibration), JSME, (1988).Series C 31(3): pp.575–581.

[29] J.C. Ower and J. Van De Vegte, Classical control design for a flexible manipulator: modeling and control system design, IEEE Journal of Robotics and Automation, RA, (1987) .3(5).

[30] A. Green, J.Z. Sasiadek, Robot manipulator control for rigid and assumed mode flexible dynamics models, AIAA Guidance, Navigation and Control Conference and Exhibit, Austin, paper no AIAA 2003-5435, 2003.

[31] A. Green and J.Z. Sasiadek, Dynamics and trajectory tracking control of a two-link robot manipulator, Journal of Vibration and Control, (2004).10 (10):pp. 1415–1440.

[32] J.Z. Sasiadek, Two link light weight flexible manipulator, Proceedings of IASTED International Conference on Advances in Robotics vol. 1, Acta Press, Anheim, CA (1985) pp. 152–155.

[33] Subudhi, B. and Morries, A. S., Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robotics and Autonomous Systems (2002).41(1): pp. 257-270.

[34] H.H. Lee, New dynamic modeling of flexible-link robots, ASME Journal of Dynamic Systems, Measurement, and Control, (2005),127(1): pp. 307–309.

[35] P.B. Usoro, R. Nadira and S.S. Mahil, A finite element/Lagrangian approach to modeling light weight flexible manipulators, ASME Journal of Dynamic Systems, Measurement, and Control, (1986).108(4):pp. 198–205.

[36] G. Naganathan and A.H. Soni, Coupling effects of kinematics and flexibility in manipulators, The International Journal of Robotics Research, (1987).6 (1): pp. 75–84.
[37] P. Kalra and A.M. Sharan, Accurate modeling of flexible manipulators using finite element analysis, Mechanism and Machine Theory, (1991).26(3), pp. 299–313.

[38] W.H. Sunada and S. Dubowsky, On the dynamic analysis and behaviour of industrial robotic manipulators with elastic members, ASME Journal of Mechanism, Transmissions and Automation in Design, (1983).105 (1): pp. 42–51.

[39] V.O.G. Rosado and E.A.O. Yuhara, Dynamic modeling and simulation of a flexible robotic manipulator, Robotica (1999), pp. 523–528.

[40] V.O.G. Rosado, A planar flexible robotic manipulator, Kybernetes (2000), pp. 787– 796.

[41] A. Meghdari and F. Fahimi, On the first-order decoupling of dynamical equations of motion for elastic multibody systems as applied to a two-link flexible manipulator, Multibody System Dynamics (2001), pp. 1–20.

[42] J. Cheong, W.K. Chung, Y. Youm, S. Oh, Control of two-link flexible manipulator using disturbance observer with reaction torque feedback, in: ICAR97, Monterey, CA, 1997, pp. 227–232.

[43] M.H.F. Dado and A.H. Soni, A generalized approach for forward and inverse dynamics of elastic manipulators, Proceedings of the IEEE International Conference on Robotics and Automation (1986), pp. 359–364. [44] M.H.F. Dado and A.H. Soni, Dynamic response analysis of 2-R robot with flexible joints, Proceedings of the IEEE International Conference on Robotics and Automation (1987), pp. 479–483.

[45] K.H. Low and M. Vidyasagar, A Lagrangian formulation of the dynamic model for flexible manipulator systems, ASME Journal of Dynamic Systems, Measurement, and Control (1988), pp. 175–181.

[46] A. Dogan and A. Iftar, Modeling and control of a two-link flexible robot manipulator, Proceedings of the 1998 IEEE International Conference on Control Applications (1998), pp. 761–765.

[47] Rasheedat. M. Mahamood and Jimoh. O. Pedro, Hybrid PD-PID with Iterative Learning Control for Two-Link Flexible Manipulator, Proceedings of the World Congress on Engineering and Computer Science 2011 Vol. 2 WCECS 2011, October 19-21, 2011, San Francisco, USA.

[48] M.Z. Md Zain ,M.O. Tokhi,Z. Modhamed,M. Maila,Hybrid iterative learningcontrol of a flexible manipulator proceedings of the IASTED International Conference Modeling,Identification,and Control, (2004). 23(1): pp.313-317.

[49] Mohd Ashraf and Zarrudin Mohamed, Techniques of vibration and end-point trajectory control of flexible manipulator, Proceeding of the International Symposium on Mechatronics and its Applications (ISMA), Sharjah, UAE,6(2009).

[50] M.Z. Md Zain, M.O. Tokhi, and Z. Mohamed, Hybrid learning control schemes with input shaping of a flexible manipulator system, Meachantonics, (2006).6(1):pp.209-219.

[51] Rasheedat. M. Mahamood, Direct Adaptive Hybrid PD-PID Controller for Two-Link Flexible Robotic Manipulator, Proceedings of the World Congress on Engineering and Computer Science 2011 Vol. 2 WCECS 2011, October 19-21, 2011, San Francisco, USA.

[52] Feliu V.; Rattan, K. & Brown, H. Control offlexible arms with friction in the joint.IEEE Transactions on Robotics and Automation, 1993. 9(4). pp. 467-475.

[53] Kotnik, P. T., Yorkovich, S. And Özgüner, Ü. Acceleration feedbackfor control of a flexible manipulator arm.Journal of Robotic Systems,(1988).5(3):pp.181–196.

[54] Mansour, T.; Konno, A. & Uchiyama M. Modified PID Control of a Single- Link flexible Robot, Advanced Robotics, (2008).22(4): pp. 433-449, 0169-1864.

[55] Ge, S. S.; Lee, T. H. & Zhu, G. Asymptotically stable end-point regulation of a flexible SCARA/Cartesian robot, IEEE/ASME Transactions on Mechatronics, (1998).32(1): pp. 138–144, 1083-4435.

[56]Siciliano,B. and Book, W. J. A singular perturbation approach control of lightweight flexible manipulators. International Journal of Robotics Research, (1988).7(4):pp. 79–90.
[57] Wang, D. and vidyasagar, M., Transfer function of a single flexible link. Proceedings of the IEEE International Conference on Robotics and Automation, Scottsdale, Arizona, USA, 14–19 May 1989.pp. 1042–1047.

[58] Wang D. and Vidyasagar M. Feedback linearizability of multi-linkmanipulators with one flexible link.Proceedings of the 28th IEEE Conference on Decision and Control, Florida, USA, 13–15 December 1989. pp. 2072–2077.

[59] Madhavan S. K. and Singh S. N., Inverse trajectory control and dynamic sensitivity of an elastic manipulator. International Journal of Robotics and Automation, (1991)6(4): pp. 179–191.

[60] Kwon, d.s. and Book, W. J. An inverse dynamic method yielding flexible manipulator state trajectories.Proceedings of the American Control Conference, San Diego, California, USA, 23 – 25 May 1990:pp186–19.

[61]Talebi H. A., Patel R. V. and Khorasani,K. Inverse dynamicscontrol of flexible-link manipulators using neural networks.Proceedings of the IEEEInternational Conference on Robotics and Automation, Leuven,Belgium, 16–20 May,1998:pp.806–81.

[62] Kargupta, H. and Smith, R. E., System identification with evolving polynomial networks. Proceedings of the 4th International Conference on Genetic Algorithms, San Diego, California, USA, 14–17 July, 1991: pp.370–376.

[63] KRISTINSSON, K. and DUMONT, G. System identification and control using genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics, (1992). 22(5):pp. 1033–1046.

[64] LJUNG, L. and SJÖBERG, J. A system identification perspective on neuralnetworks.Neural Networks for Signal Processing II. Proceedings of the IEEE-SPWorkshop, Helsingoer, Denmark, 31 August–2 September 1992.pp.423–435.
[65] Ge S. S., Lee T. H. and Zhu G. Energy-based robust controller design formulti-link flexible robots.Mechatronics, (1996). 6(7):pp.779–798. [65] Moh. Khairudin, Sudiyatno, Fatkhul Arifin NN robust based-PID Control of A Two-Link Flexible Robot Manipulator, Internal Journal of Advance science and Engineering Information Technology(IJASEIT), (2012)(.21):pp. 2088-5334.
[66] Tahmina Zebin and M. S. Alam, Modeling and Control of a Two-link Flexible Manipulator using Fuzzy Logic and Genetic Optimization Techniques, Journal Of Computers, (2012).7(3):pp.578-584.

[67] Gutiérrez L.B., Lewis F. L. and Lowe J. A. Implementation of a neural network tracking controller for a single flexible link: Comparison with PD and PID controllers. TheIEEE Transactions on Industrial Electronics, (1998).45(2):pp. 307–318.

[68] Donne J. D. and Özgüner U. Neural control of a flexible link

manipulator.Proceedings of the IEEE International Conference on Neural Networks, Orlando, Florida, USA, 27 June–2 July 1994,.pp.2327–2332.

[69] Cheng W. and Wen J. T. ,A neural controller for the tracking control of flexible arms.Proceedings of the IEEE International Conference on Neural Networks,San Francisco, USA, 28 March-01 April 1993.pp. 749–754.

[70] A. Stothertand A. TurevskiyImproving, Simulink Design Optimization Performance Using Parallel Computing,pp.1-8.

[71] Mathwork, Globalization toolbox: Direct search, 2013a Documentation.