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ABSTRACT 

 

 

 

Vortex induced vibration (VIV) could be regarded as a fluid-structure 

interaction vibration type where the bluff structure vibrates due to fluid flowing 

around the body. The separation of boundary layer has created vortex layer that 

staggers the structure in cross-flow direction. VIV suppression work has attracted 

numerous researchers to build a passive device that could reduce the vibration. 

However, such device requires an intricate design which incurs high expense and 

indirectly contributes to higher chance of VIV occurrence due to the additional mass 

to the system. This research proposed a method to overcome those shortcomings by 

introducing an active flow control concept to the system. Since the vibration 

originates from unhindered flowing fluid, the approach is to avoid the development 

of the vortex by attaching a single control rod to the system as an actuator. The 

actuator injects momentum to the boundary layer thus preventing the VIV 

phenomenon. Both simulation and experimental works were implemented in this 

study. The input-output data of the system were measured directly from the 

experimental rig. For system identification, three methods were employed which 

were least square (LS), recursive least square (RLS) and differential evolutionary 

(DE) algorithms. It was found that the DE methods were stable, had considerably 

lower mean squared error (MSE) and the transfer function itself represented the 

natural frequency of the system. The study was continued by tuning the proportional-

integral-derivative (PID) based controllers to the simulated system plant in offline 

mode. The PID based controllers were tuned using heuristic and Ziegler-Nichols 

(ZN) methods. The best performance was recorded. However, it was observed that 

once the disturbance of the system changed, the performance of the PID tuned using 

heuristic and ZN were deteriorated. To overcome this drawback, adaptive tuning 

algorithms were introduced, namely ZN-Fuzzy-PID and ZN-Fuzzy-Iterative 

Learning Algorithm-PID (ZN-Fuzzy-ILA-PID) based controllers. In simulation, it 

was found that the ZN-Fuzzy-ILA-PD controller outperformed other controllers with 

57.82 dB of attenuation level. In experimental works, dynamic response comparison 

was made between the bare pipe, fixed single and double control rods. It was 

observed that the fixed single and double control rods could not effectively attenuate 

the system, but amplified the vibration instead. Further experimental work was 

conducted by varying the rotating speed of the actuator at various disturbances. The 

result shows that at 100 % actuator rotating speed with 33 Hz disturbance flow to the 

system, the vibration was successfully reduced with attenuation level of 20.71 dB. 

However, by changing the disturbance, the actuator performance was reduced. 

Therefore, the controller was adaptively tuned using the fuzzy and iterative learning 

(ILA) schemes. It was observed that the maximum vibration attenuation was 

achieved by ZN-Fuzzy-ILA-PD controller with 13.8 dB of attenuation level at 

changing disturbance. Overall results show that by adopting the single rotating 

control rod, the vibration of VIV could be successfully attenuated.  
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ABSTRAK 

 

 

 

Pusaran induksi getaran (VIV) boleh dikenali sebagai interaksi struktur 

bendalir dimana struktur itu bergetar akibat daripada aliran bendalir di sekelilingnya. 

Pemisahan lapisan bendalir telah membentuk lapisan pusaran yang menghuyung 

struktur tersebut dalam arah aliran silang. Usaha mengurangkan VIV telah menarik 

ramai penyelidik untuk membina radas pasif yang boleh mengurangkan getaran. 

Walaubagaimanapun, radas tersebut memerlukan reka bentuk khusus yang 

memerlukan perbelanjaan tinggi dan secara tidak langsung menyumbang kepada 

berlakunya VIV disebabkan penambahan beban pada sistem. Kajian ini 

mencadangkan satu kaedah bagi mengatasi kelemahan tersebut dengan 

memperkenalkan konsep kawalan aliran secara aktif kepada sistem. Memandangkan 

getaran berasal dari aliran air tanpa halangan, pendekatannya ialah menghalang 

pembentukan pusaran dengan memasang satu rod kawalan pada sistem sebagai 

penggerak. Penggerak akan menyuntik momentum kepada lapisan sempadan lantas 

menghalang fenomena VIV. Kedua-dua kerja simulasi dan eksperimen telah 

dilaksanakan di dalam kajian ini. Data input-output sistem telah diambil secara 

langsung dari eksperimen. Untuk pengenalpastian sistem, tiga cara telah digunakan 

iaitu kuasa dua terkecil (LS), rekursif kuasa dua terkecil (RLS) dan evolusi kebezaan 

(DE). Didapati bahawa kaedah DE adalah stabil, mempunyai nilai min ralat kuasa 

dua (MSE) terendah dan formula tersebut mewakili nilai frekuensi asli sistem 

tersebut. Kajian diteruskan dengan menala pengawal terbitan kamiran berkadaran 

(PID) pada sistem simulasi dalam mod luar talian. Kawalan berasaskan PID ditala 

menggunakan kaedah heuristik dan Ziegler-Nichols (ZN). Prestasi terbaik telah 

direkodkan. Walaubagaimanapun, apabila gangguan sistem diubah, prestasi talaan 

PID menggunakan heuristik dan ZN merosot. Untuk mengatasi kelemahan ini, 

beberapa algoritma talaan ubah suai diperkenalkan seperti ZN-Kabur-PID dan ZN-

Kabur-Algoritma Pembelajaran Berlelaran-PID (ZN-Fuzzy-ILA-PID). Dalam 

simulasi, didapati bahawa kawalan ZN-Fuzzy-ILA-PID telah mengatasi kaedah 

kawalan yang lain sebanyak 57.82 dB tahap pengurangan Dalam eksperimen, 

perbandingan sambutan dinamik telah dibuat di antara paip terdedah, rod kawalan 

tunggal dan berganda tetap. Diperhatikan bahawa rod kawalan tunggal dan berganda 

tidak berkesan melemahkan sistem, malah memperkuatkan getaran. Kerja 

eksperimen lanjutan telah dibuat dengan mengubah kelajuan pemutaran penggerak 

pada pelbagai gangguan. Hasil menunjukkan pada 100 % kelajuan pemutaran 

penggerak dan 33 Hz gangguan bendalir pada sistem, getaran telah berjaya 

dikurangkan dengan tahap pengurangan sebanyak 20.71 dB. Walaubagaimanapun, 

dengan mengubah gangguan, prestasi penggerak telah merosot. Justeru, pengawal 

ditala secara ubahsuai dengan menggunakan skim kabur dan pembelajaran 

berlelaran. Diperhatikan bahawa pengurangan getaran yang maksimum telah dicapai 

oleh kawalan ZN-Fuzzy-ILA-PD dengan 13.80 dB tahap pengurangan pada 

gangguan berlainan. Keputusan keseluruhan menunjukkan dengan mengguna pakai 

rod kawalan tunggal berputar, getaran VIV berjaya dikurangkan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

Currently, the rapid growth of oil and gas industry activity has become more 

significant around the world as reservoir exploration has been expanded from 

shallow to deep water areas. Marine riser is an important structure that needs to be 

carefully designed and maintained as failure of these structures would lead to 

massive loss to humans and the environment. Figure 1.1 shows a typical steel 

catenary riser which acts as a channel flow for oil and gas to be conveyed from 

wellhead to the platform. There are many types of marine riser based on its function 

such as drilling riser, production riser, completion/work-over riser and export riser 

(Sparks, 2007). It is known that marine riser is one of the most common slender 

structures that are prone to vortex induced vibration phenomenon which in many 

cases causes fatigue damage to the vibrating structure (Xu et al., 2009). 

 

 

Vortex induced vibration (VIV) could be regarded as vibration phenomenon 

which occurs to the structure, either in air or water. As the flow passes a bluff body 

at sufficiently large Reynolds number, vortices will be shed at the trailing edge of the 

body, creating fluctuating lift force due to pressure difference on the body surface 

that pulls the body from side to side across the wake. This lift force eventually will 
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create cross-flow vibrations. The source of the vibration is mainly from the vortex 

formed aft of the body. This phenomenon is known Vortex Induced Vibration. 

(Blevins, 1990; Daei-Sorkhabi and Zehsaz, 2009). This kind of fluid-structure 

interaction phenomenon has been widely investigated and reviewed previously in 

both numerical and experimental works. Details can be found in Bearman, (2011), 

Gabbai and Benaroya, (2005) and Sarpkaya, (2004). 

 

 

Figure 1.1: Typical steel catenary riser (Sparks, 2007) 

 

 

The effect of vortex induced vibration in the water is more significant as the 

natural frequency is lowered due to the presence of the added mass (Yang et al., 

2010). Also, as in deeper water area, an increased length of riser pipe will lower its 

natural frequency correspondingly (Allen, 1998). Thus, the possibility of resonance 

is very high. If the vibration is not well controlled, it would lead to resonance 

problem and much more importantly, fatigue failure of the riser will occur over 

extended periods of time mainly due to resonance of cross-flow vibration in deeper 

water area. Fatigue study related to the VIV phenomenon can be found in Campbell, 

(1999), Cunffl et al., (2002) Martins et al., (1999) and Mukundan et al., (2009).  
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Some typical example of disasters related to vortex induced vibration during 

resonance are the collapse of Tacoma Narrows Bridge and the destruction of piling 

of an oil terminal on the Humber estuary in 1960s (Griffin and Ramberg, 1976). 

These catastrophic incidents justify the need to suppress vibration in order to avoid 

the occurrence of resonance by way of any controlling method particularly for risers 

in deeper water area. Consequently, research on controlling vortex induced vibration 

has attracted the attention of researchers around the world. 

 

 

Two distinct methods, which are passive and active control methods, are used 

to prevent the occurrence of VIV phenomena (Kumar et al., 2008). In the perspective 

of VIV, passive control strategy is a method to attenuate the VIV phenomena by 

disturbing or eliminating the formation of vortices behind the pipe. This is achieved 

by introducing additional fixed or free to rotate shaped geometrical structures along 

the pipe. Conversely, in active vibration control strategy, an actuator is introduced at 

certain locations along the pipe where maximum vibration occurs. In this research, a 

secondary small rotating rod is introduced to the vibrating system which acts as an 

actuator that will rotate based on structure vibration. The rotating rod will inject 

momentum to the boundary layer thus eliminating the vortex formation behind the 

pipe (Modi, 1997). 

 

 

 

 

1.2 Problem statement  

 

 

Passive control strategy has always been the best choice for offshore industry 

to suppress the vortex induced vibration for marine riser. Researchers have 

developed and constructed various types of passive devices in the last few decades 

due to their high confidence level that these devices could deliver its task. Although 

proven successful in attenuating vibration, there are still some shortcomings of this 

method such as increasing drag force along the pipeline, barnacle problems, 

expensive, difficult to handle and modifies their geometrical structure (Kumar et al., 
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2008). Also, it is found that the passive devices do not completely eradicate the 

vortex induced vibration at low mass and damping which often occurs in marine 

applications (Gabbai and Benaroya, 2005).  

 

 

By introducing the active vortex control method to the marine riser, the 

disadvantages associated with passive control strategy and actuator installation 

difficulties could be reduced since the proposed method could control the vibrating 

structure without requiring enormous structural additions to the pipe as compared to 

passive method. In addition, there are no control region limitations and they are 

relatively easy to mantle and dismantle from the vibrating system. With the state-of-

the-art technology available nowadays, the active control strategy could be 

implemented and accepted by industry as it could increase the reliability and 

lengthen the life service of marine riser. 

 

 

 

 

1.3 Research objectives 

 

 

The objectives of the current research are as follows: 

 

i) To model the offshore marine riser using system identification 

techniques. 

 

ii) To investigate adaptive active vibration control (AVC) algorithms 

using conventional and intelligent methodologies. 

 

iii) To assess and validate the thus developed algorithms for vibration 

control of flexible cylinder via simulation and experimental work. 

 

iv) To compare the performance of all thus developed algorithms in 

vibration reduction of the structure. 
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1.4 Scope of the research 

 

 

The scope of the research includes: 

 

i) Modelling an offshore marine riser using parametric identification 

approach such as least square (LS), recursive least square (RLS) and 

differential evolutionary (DE) algorithms via system identification 

method. 

 

ii) Development and fabrication of a lab scale experimental rig for 

representation of the vibration of an offshore marine riser using 

flexibly mounted cylinder. 

 

iii) Development and integration of data acquisition (DAQ) and 

instrumentation systems for acquiring input-output vibrational data 

from the experimental rig. 

 

iv) Development of adaptive active vibration control (AVC) algorithms 

using conventional and intelligent methodologies, namely 

heuristically tuned P controller, PID based controller tuned using Z-N 

method, Fuzzy PID based controller and Fuzzy iterative PID based 

controllers. 

 

v) The developed algorithms are assessed and validated for vibration 

suppression of the flexibly mounted cylinder via simulation and 

experimental work. 

 

vi) Comparison of the performance of all thus developed algorithms in 

vibration reduction of the structure. 

 

 

 

 



6 
 

1.5  Research contributions 

 

 

 A brief outline of the main contributions of this research is given in the 

subsection as follows:  

 

1. This research has conducted the design, fabrication and development of 

miniature water circulating tank that utilize a submersible large-volume 

displacement water pump in generating disturbance throughout the water 

tank. Various amplitudes of disturbance could be generated and controlled 

through an inverter from a single personal computer (PC). Since aluminium 

profile is used as its structure, a unique experimental rig based on respective 

research study could be installed and assembled easily onto the tank. With 

this characteristic, the developed miniature water tank could be used for other 

kinds of small underwater studies such as vibration control, harnessing 

energy device, remote operated vehicle (ROV), propulsion test and so forth. 

In current research, the active control of vortex induced vibration 

phenomenon is studied. 

 

 

2. This research has contributed in developing the dynamic response of the 

vortex induced vibration phenomenon by using parametric system 

identification technique. This approach differs from other mathematical and 

physical models which use both input and output data from experiment in 

constructing the equation of the vibrating system based on the auto-regressive 

with exogenous input (ARX) structure model. Three parameter estimation 

techniques such as least square, recursive least square and differential 

evolutionary algorithms are tested for VIV-ARX model structure. The 

estimated model is verified by comparing its natural frequency with the true 

natural frequency obtained from the decay test. Among the identified models, 

mean squared error (MSE), stability and correlation test are performed in 

order to determine the best model that represents the vibrating system. 
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3. This research has contributed in investigating the real implementation of 

cancelling the vortex induced vibration phenomena by using a single rotating 

rod which is placed perpendicular (90
o
 or -90

o
) to the water flow direction. 

The proportional, integral and derivative (PID) controller has been adapted to 

the system. Before implement to the experimental works, the modelled 

vibrating system is controlled within the simulation environment in order to 

pre-determine the appropriate gains for PID controller. Later, the performance 

of the simulated controllers is validated experimentally. Another novel 

contribution of this research is the online self-tuning fuzzy and iterative PID 

based controllers which can be implemented and validated experimentally. 

 

 

4. This research has contributed by proposing a method in solving the closed 

loop control problem encountered during experimental validation. Problem 

arises as the actuator rotate in both clock wise and counter-clock wise 

directions, which are due to the sinusoidal vibration signal. In solving this, 

the sinusoidal vibration signal acquired from the sensor is manipulated to root 

mean square (RMS) value before being fed into the controller. By 

manipulating the sensor signal, a single direction of actuator rotation is 

attained and has enabled proper investigation of closed loop control strategy. 

 

 

 

 

1.6 Research methodology 

 

 

Methodology is an outline research steps. This outline or frame work is 

important as it will determine the successfulness of this study. Figure 1.2 shows all 

the steps involved from the beginning until the end of the research. An explanation of 

the framework is as follows: 

 

 



8 
 

Identifying Research Problem: In vibration study, particularly in marine riser 

application, the implementation of passive control devices such as helical strake, 

fairings and other flow disturbance devices onto marine riser pipe has some 

drawbacks as stated by previous researchers. Also, the probability of resonance 

occurrence is high due to additional mass and increased length of the marine 

structure in deep water areas. Thus, this research is conducted in order to improve 

some of these shortcomings by implementing the active vortex control device using a 

single rotating control rod on the modelled pipe. 

 

 

Literature Study: The literature review is organized into three major parts which 

are. The vortex induced vibration phenomena, control method and finally the 

research gap. The vortex induced vibration part includes the theory behind the 

occurrence of VIV phenomena, previous experimental design, and data collection 

technique. As for controller part, it includes the passive and active control methods. 

Under active control method, all previous works in suppressing the vortex induced 

vibration phenomena using actuators is briefly described. 

 

 

Rig Design, Development and Fabrication: Literature study on vortex induced 

vibration experiment has been performed in order to obtain an idea on how previous 

experiments were conducted. Information regarding the dimension of pipe, spring 

system, rig design and instrumentation used in obtaining both input and output data 

are reviewed. After reviewing all previous designs based on miniature, simplicity and 

limitation characteristics, a final experimental design is produced. To measure 

vibration, an integrated comprehensive instrumentation and data acquisition system 

is crucial. Accelerometer is used in capturing the vibration data. However, for the 

sake of data analysis, displacement signal is retrieved in order to describe how the 

system behaves. Also, the VIV response towards various water flow speed is studied. 

The overall amplitude ratio over reduced velocity for the vibration system is plotted 

in a single graph. The actual natural frequency of the vibration system is determined 

from the decay test. 
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VIV System Identification: For this research, system identification technique will 

be utilized in representing the dynamic response of the vortex induced vibration. The 

data taken solely from experimental works will be used to describe how the cylinder 

behaves against the disturbance generated inside the circulating water tunnel. The 

water flow speed in the test section area is considered as an input to the vibrating 

system since the pipe vibrates according to the flow speed, while the vibration of the 

pipe is considered as an output of the system. The data obtained from the 

experimental works are employed in order to develop the ARX model structure. 

Three parameter estimation techniques namely LS, RLS and DE are used to optimize 

the ARX model structure. The natural frequency obtained from the system 

identification is compared with the actual natural frequency obtained from decay test. 

Comparative studies in terms of MSE, stability and correlation test are conducted in 

order to find the best model that represents the VIV phenomena. The best model that 

characterizes the vibrating system will be used in designing the PID controller in the 

simulation environment and later will be implemented experimentally.  

 

 

Simulation on Active Vortex Control Strategy: At this stage, the system 

identification of VIV phenomena has been conducted. Prior to actual implementation 

of controller onto experimental rig, it is crucial to design the controller for active 

control of the vibrating system in simulation environment. Matlab SIMULINK 

software is utilized for such purpose. Initially, the P-controller is utilized as the 

control scheme. The proportional gain is tuned heuristically until the maximum 

attenuation is achieved. The effects of integral and derivative gains are studied by 

implement the Ziegler-Nichols tuning rules. The robustness of the system is tested by 

changing the disturbance to the system. The conventional tuning rules could not 

maintain the controlled signal thus an adaptive controller is crucial to be introduced 

to the system. ZN-Fuzzy-PID and ZN-Fuzzy-ILA-PID controllers are developed and 

its robustness is tested. Results obtained from all developed controller schemes are 

compared in terms of its attenuation level at first mode of vibration and robustness 

toward dynamic disturbance to the system. 
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Experimental works on Active Vortex Control: Initially, the cylindrical rod which 

used as an actuator in controlling the VIV is fixed besides the main pipe. The 

purpose is to study the performance of the fixed actuator rod to the vibrating system 

as a passive control strategy. Next, the investigation is conducted by rotating the 

actuator rod in both clockwise (CW) and counter clock wise (CCW) directions at 

various actuator rotation speeds. The same actuator rod speed variation study is also 

conducted at variation of water flow disturbance speed. The study is known as open 

loop control where the control action is implemented directly without considering the 

system output. The performance of passive and active open loop control are 

recorded. Later, the closed loop control strategy is conducted experimentally by 

feeding the system output to the controller. Conventional and intelligent controllers 

are tested in the closed loop control scheme and the performance of all developed 

controllers is studied. The robustness of the control schemes are tested 

experimentally by changing the water flow speed as the disturbance to the system. 

 

 

Comparative and Performance Analysis: A comparative study between the 

simulation and experimental results were carried out and described in Chapter 7. The 

purpose of comparative study and performance analysis is to observe the 

performance of the developed controller. The overall performance of the control 

scheme is concluded. 
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1.7  Structure of thesis 

 

 

This thesis is organized into eight chapters. A brief outline of contents of the 

thesis is as follows: 

 

 

Chapter 1 presents an introduction to the research problem. It includes the research 

background, problem statements as well as the research objective and scope. The 

structure of the thesis is also outlined in this chapter. 

 

 

Chapter 2 is devoted to a literature study on vortex induced vibration exerted on 

bluff body. Then, literature studies on vibration controlling method are discussed. 

There are two well-known methods used in attenuating the VIV which are passive 

and active vibration control. All related VIV control studies using active control are 

presented. Finally, the research gap found in the active control of VIV study is 

identified in this chapter.  

 

 

Chapter 3 describes the experimental setup and the VIV results obtained in this 

study. Both mechanical and instrumentation parameters are briefly explained in this 

chapter. This chapter also presents a description of the circulating tank, pipe rig 

structure and the water flow generator used in this research. As for the 

instrumentation section, the data acquisition, sensors, flow generator controller and 

actuator description are explained in detail. The decay test result, water flow analysis 

and the dynamic response of pipe are presented at the end of this chapter. Results 

obtained are verified with experimental results on VIV phenomenon by previous 

researchers. 

 

 

Chapter 4 presents the system identification technique employed in VIV problem. In 

this chapter there are two distinct parts which are system identification and control 

simulation. In system identification, the ARX model is used to represent the system. 
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The LS, RLS and DE algorithms are used as the optimization tools in obtaining the 

parameters of the ARX model. Comparison among the stated tools in terms of 

natural frequency, mean squared error, stability and correlation tests are done. The 

transfer function that best represents the vibrating system is used as the system plant 

to be controlled in the simulation part. Several control schemes which are 

heuristically tuned P-controller, ZN-PID, ZN-Fuzzy-PID and ZN-Fuzzy-ILA-PID 

based controllers are discussed. Robustness of the developed controllers is tested.  

 

 

Chapter 5 presents the result of passive and active open loop control studies. In 

passive control study, the effects of inserting a single and double fixed rod upon the 

bare pipe system are investigated. Initially, a single rod is assembled at 90º with 

respect to direction flow. The dynamic response of the passive single rod control 

system is recorded at various water flow speeds. Then, another rod is added to the 

system, which is fixed at the opposite location of previous one or  ̶  90º with respect 

to direction flow. The dynamic response of passive double rod control is examined. 

The results obtained from both single and double rod controls are compared with the 

bare pipe results, which have already been achieved in chapter 3. Discussions and 

comparisons are made among the bare pipe, single and double passive rod control.  

 

 

The study continues by rotating the single rod at CW and CCW direction. The 

dynamic responses of the vibrating system are recorded for both rotating directions. 

The effect of rotating direction upon the vibrating system is studied. As the effective 

direction is achieved, the study continues by rotating the single rod at various 

rotation speeds under constant disturbance to the system. The speed is defined as the 

value of voltage supplied to the single rod. A miniature 12 V direct current (DC) 

motor is used for such purpose. The single rod rotation study is tested at changing 

disturbance. The effective rotation speed at respective disturbance is achieved from 

this study. Discussions and comparisons are made between the fixed single control 

rod and rotating single rod control. 
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Chapter 6 presents the closed loop implementation on the experimental rig. As 

much as 6 controllers are tested on the experimental rig, which consist both 

conventional and intelligent controllers. The controllers are ZN-P, ZN-PD, ZN-PID, 

ZN-Fuzzy-PD, ZN-Fuzzy-ILA-PD and ZN-ILA-P. It is noted that the values of the 

gain parameter used in all controllers are based on the simulated values as described 

in chapter 4 of this thesis. As for actuator, the study proposes a control strategy 

where the vibration signal measured by accelerometer is converted into RMS value. 

The control scheme will operate based on the converted value. In order to 

demonstrate the robustness of the developed controllers, the disturbance exerted on 

the vibrating system is increased and additional fixed rod is attached to the vibrating 

system. The attenuation level for all controllers upon the vibrating system is 

recorded. Comparisons are made between the conventional and intelligent controller 

performance.  

 

 

Chapter 7 compares the performance of the implemented controllers in both 

simulated and experiment environments. The steps involved in obtaining the 

simulation results are recalled. The purpose is to ensure that the same condition such 

as the disturbance exerted on the system and the same control schemes are 

implemented in both simulation and experiment environments. As much as 5 

controllers are compared which are ZN-P, ZN-PD, ZN-PID, ZN-Fuzzy-PD and ZN-

Fuzzy-ILA-PD. The attenuation level achieved by the tested controller in simulation 

and experiment is tabulated separately. Then the percentage of attenuation level from 

both environments is compared. 

 

 

Chapter 8 summarizes the work presented and draws some relevant conclusions. 

The future works on active control of VIV phenomena are discussed. 
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