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ABSTRACT

Language identification is the process of determining the natural language of
text documents using computational methods. The quality and size of the text available
for generating the necessary models has significant impact on the performance of the
algorithms used to determine the language of a text. The ability to correctly identify
the language of a document is required to ensure the effectiveness of information
retrieval systems in a multilingual setting. Unfortunately, existing methods that are
used to model natural language have been affected by several limitations. Such
limitations include inability to produce reliable models given a small size of training
text. Other limitations are: inability to consistently handle multilingual documents,
long training times and inability to distinguish closely related languages. The spelling
checker technique has been shown to be successful in distinguishing closely related
languages but is often hampered by two important constraints: inefficient run time
performance and non-availability of spelling checkers for many languages. The aim of
this study is to address the problems of language identification by developing improved
algorithms that enhance run time performance and accuracy irrespective of the size of
corpus available. Therefore, this thesis proposed three algorithms. Firstly, the word
length algorithm implements the bag-of-words model using word length information.
Secondly, the model elimination algorithm is designed to further improve run time
performance by taking advantage of word frequency in training and testing documents.
By monitoring the performance of models in the course of processing, this algorithm
dynamically selects non-performing models for elimination without compromising
accuracy. Thirdly, the linear combination algorithm merges the strengths of the
word length and model elimination algorithms by feeding word length features into
the model elimination algorithm. Empirical results from the proposed algorithms
using test collection from the standard corpora are superior to existing methods in
terms of distinguishing closely related languages and multilingual identification. In
addition, the word length, model elimination and the linear combination algorithms
have better run time performance than the spelling checker method that uses a similar
scoring technique, yielding average time gains of 57%, 83% and 98.4% respectively in
identification of 140-byte long text.
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ABSTRAK

Pengenalpastian hahasa adalah proses menentukan bahasa tabii sesebuah
teks dokumen menggunakan kaedah pengkomputeran. Kualiti dan saiz teks sedia
ada untuk menjana model, memberi impak yang besar terhadap prestasi algoritma
untuk menentukan bahasa sesebuah teks. Kemampuan untuk menentukan bahasa
sesebuah dokumen secara tepat adalah perlu untuk memastikan keberkesanan sistem
pencarian maklumat dalam pelbagai bahasa. Malangnya, kaedah sedia ada yang
diguna pakai mempunyai beberapa kelemahan. Antaranya adalah ketidakupayaan
untuk menghasilkan model yang efektif jika menggunakan teks latihan yang kecil,
ketidakupayaan untuk mengendali kan dokumen pelbasai Bahasa secara konsisten,
jangka masa latihan yang panjang dan ketidakupayaan untuk mengenal pasti bahasa
lain yang berkait rapat. Teknik spelling checker merupakan kaedah yang berkesan
dalam pengenalpastian bahasa yang berkait rapat tetapi di halang oleh dua kekangan
utama prestasi run-time yang kurang cekap dan ketiadaan spelling checker untuk
kebanyakan bahasa. Matlamat penyelidikan ini adalah untuk menangani masalah
Pengenalpastian hahasa dengan membangunkan algoritma untuk meningkatkan
prestasi run-time dan ketepatan tanpa mengira saiz korpus yang sedia ada. Tesis
ini mengemukakan tiga (3) algoritma. Pertama, algoritma panjang perkataan
yang mengimplementasikan model bag-of-words. Kedua, algoritma penghapusan
model direka untuk meningkatkan lagi prestasi run-time dengan mengambil kira
frekuensi perkataan dalam dokumen latihan dan ujian. Dengan meneliti prestasi
model semasa pemprosesan, algoritma tersebut memilih secara dinamik model-model
kurang berprestasi untuk dihapuskan tanpa menjejaskan ketepatan. Ketiga, algoritma
kombinasi linear menggabungkan keberkesanan algoritma panjang perkataan dan
penghapusan model dengan memasukkan ciri-ciri panjang perkataan ke dalam
algoritma penghapusan model. Hasil empirikal daripada algoritma yang dikemukakan
menggunakan test collection daripada standard corpora, adalah lebih unggul daripada
kaedah yang sedia ada dari segi pengenalpastian bahasa lain yang berkait rapat
dan pengenalpastian pelbagai bahasa. Di samping itu, algoritma panjang perkataan,
penghapusan model dan kombinasi linear mempunyai prestasi run-time yang lebih
tinggi daripada kaedah spelling checker yang menggunakan teknik pemarkahan serupa,
dengan hasil purata masa 57%, 83% dan 98.4% masingmasing dalam mengenal pasti
teks sepanjang 140-byte.
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CHAPTER 1

INTRODUCTION

1.1 Background

In spite of major advances in technologies that facilitate information
sharing across the globe, linguistic differences often constitute significant barriers
to information access. These barriers may be addressed by using translation
systems. However, to achieve any meaningful translation the language of the
target document must first be ascertained (Newman, 1987). To overcome these
challenges, several computational methods have been developed to solve the problem
of language identification. Such methods include N-gram models, naive Bayes
event models, artificial neural networks (ANN), self-organizing map (SOM), fuzzy
ARTMAP, adaptive resonance theory (ART), support vector machines (SVM),
independent component analysis (ICA), decision tree (DT), hidden markov models
(HMM)(Susperregi, 2010). Selamat and Ng (2011) define language identification as a
process of determining the natural language of text documents. Automatic language
identification is usually done using computational methods and available corpus or
linguistic data. However, the quality and size of the corpus data available for generating
the necessary language models has significant impact on the performance of the
algorithms used to determine the language of a text (Brown, 2012; Botha and Barnard,
2012; Hughes et al., 2006).

The ability to correctly identify the language of a document is required to
ensure the effectiveness of information retrieval systems in a multilingual setting such
as the Internet (Selamat, 2011). Unfortunately, existing methods including N-gram
and its classifier variants that are used to model natural languages for identification
have been affected by several limitations. Such limitations include: (a) Inability to
produce reliable models given a small sample size of training text and consistently
handle multilingual document. (b) Data sparseness problem. (c) Long training time.



2

(d) Inability to distinguish closely related languages (Hammarstr-om, 2007; Ljubesic
et al., 2007; da Silva and Lopes, 2006; Ranaivo-Malancon, 2006; Zampieri, 2013) .

It has been noted from previous studies that accuracy of language identification
is almost 100% for different language identification techniques (Takci and Gungor,
2012). However, most studies did not report results in terms of time performance
because research in the area of language identification has focused on two main
directions: exploring new techniques suitable for the task and advancing on the
level of accuracy achievable in using these techniques. This is very important for
information retrieval applications (Yang and Wu, 2012; Sun and Liu, 2011). As stated
earlier much success has been achieved in the direction of accuracy. Some level of
progress has also been made in the direction of increasing the language coverage of the
available techniques. However, investigating the computational speed performance of
the various methods has been apparently neglected. It is noted that even in comparative
studies only accuracy tends to be the yard stick for comparison. Consequently, this
study considers it timely for research to change direction to the investigation of speed
performance. Issues of language identification are as follows.

a) Run Time Performance of Language Identification

This research investigates the run time performance of the lexicon based
approach for language identification. The research is focused on language
identification using limited training text. This is often a problem with natural languages
with little or no digital resources, which are also called under-resourced languages.
These are mainly minority languages i.e., spoken by a few, but which are gaining in
importance due to increasing and widespread use of the Internet and the possibility
of such languages being used for communication over the Internet. So far, not much
research has been done on these languages because they were previously perceived as
being less important than the popular languages. However, the research by Pienaar
and Snyman (2010) was a good beginning and also pointed the direction for further
research on resource-poor languages. The special nature of this class of languages has
also influenced the choice of technique and data set for this research.

In their research, Winkelmolen and Mascardi (2011) proposed investigation of
spelling checker based language identification by running text through spellcheckers
of different target languages and using the number of errors in each language (i.e. the
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Hamming distance from the corrected text). They noted that such approach could give
very accurate results, but would be very inefficient. However, this thesis takes the
position that, only a critical study of the performance of this approach can confirm or
disprove such opinions.

b) Identification of Minority Languages

Supporting minority languages and resource-poor languages is one of the
outstanding problems in language identification research. Minority languages are
generally understood to be languages that are spoken by a small number of people
(Pienaar and Snyman, 2010; Prinsloo, 2000; Barbaresi, 2013). There are languages on
earth today that have as few as 1000 speakers or even less (Lewis, 2009). Language
identification research has not been extended to cover even languages that have native
speakers running into millions; however, languages with few speakers should still be
considered in language identification research for historical reasons and for reasons of
cultural preservation (Pavan et al., 2010; Jothilakshmi and Palanivel, 2012). Moreover
wide spread use of the Internet has continued to grow very rapidly and as more people
of various linguistic origin become players in cyber space they are bound to bring
content in their native languages (Varma, 2010). There is the need to research on how
such documents can be identified for effective information sharing. Attempts to solve
this problem using N-gram modeling and SVM for the South African languages (Botha
and Barnard, 2006) have failed to produce acceptable results, by giving accuracy of less
than 70% in language identification.

c) Sparse or Impoverished Training Data and Multilingual Documents

This problem is closely related to the issues of resource-scarce languages(also
known as under-resourced languages). Hughes et al. (2006) wonder if it is possible
to develop algorithms that can handle as few as 50, 100, 250 words OR 50, 100,
250 characters for language identification. This would be particularly useful in
identification of resource-poor languages. There are indeed situations where NLP
tasks have to deal with such a small amount of input text for identification (Roux,
2008). For example when dealing with multilingual advertisements, menus and short
messages (SMS texts). Research by (Carter et al., 2011; Tromp and Pechenizkiy, 2011;
Gottron and Lipka, 2010) addressed the question of identification of short text but did
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not tackle the case of small training samples. However, Vatanen et al. (2010) have
shown that small training samples yield poor accuracy of less than 80%. Also research
by Brown (2012) has revealed that error rates increase sharply when training text is
below 500k, while Botha and Barnard (2012) has shown that accuracy of language
identification stabilizes only after training text is more than 200k.

The problem of language identification of Multilingual documents still needs
further research. There have been a number of research efforts aimed at solving this
problem (Yamaguchi and Tanaka-Ishii, 2012). The use of independent component
analysis for reduction of document features proves to be time consuming Selamat and
Zhi-Sam (2008). On the other hand using a fine-grained model for such a simple task
as language identification produced a heavy system that is rather slow, Hammarstr-
om (2007). Both researchers report varying levels of accuracy, but considerable
computational costs. The method used by Yang and Liang (2010) was particularly
expensive in processing time during training.

This thesis focuses on solving the problem of using a small data set to build
robust language models that can be used to identify documents by language. This is
necessary because is it often difficult to find large amounts of training text in many
natural languages and this could make it impossible to identify documents written
in such languages. Such a state of affairs would make these languages vulnerable
for information hiding and other uses. This needs to be addressed quickly especially
since under-resourced languages are becoming widely used on the internet. Thus,
improved computational methods are needed to capture all the necessary details and
organize the models in such a way that permits accurate and efficient identification
of resourced-poor languages, as well as taking cognizance of the need to distinguish
closely related languages and handle multilingual identification (Susperregi, 2010).
However, it is necessary to test the improved method on heavily resourced languages,
such as English, to ensure that the developed method remains valid for a long time and
for many languages.

1.2 Motivation

The growing number of electronic documents on the Internet is one of the major
reasons that motivated research into automatic language identification. For example:
a student, business man or any other person, conducting research in some area could
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issue a query (or request) through a browser to find information of interest on any
subject. Such a search need not be limited to the language in which the query was
issued, but should in general, be able to search the entire World Wide Web (WWW)
and return pages with the relevant information. Upon assembly of all the relevant
documents the researcher should be able to arrange translation of the documents to
any language of his/her choice. This is only possible and viable with availability of
good language identification tools. Indeed, Lewandowski (2008) insists that if the
language of a document is incorrectly identified, subsequent translation will also be
meaningless, leading to gabbled translation.

This research is motivated by the fact that only about 12% of all the languages
in the world have been studied in language identification research (Brown, 2012)
because in most cases only the popular languages are investigated. This means most
natural languages cannot be distinguished by digital methods due to none availability
of identification tools. However, consideration of automatic language identification of
many natural languages also needs to contend with the fact that these languages are
resource-poor as there are no corpora available in these languages. This raises the
question of which technique to use for the language identification research because
most techniques for language identification are statistical approaches which require a
large corpus in the language to be studied.

Pienaar and Snyman (2010) applied second generation spellcheckers to
perform language identification on the 11 official languages of South Africa. A second
generation spelling checker (Prinsloo and Schryver, 2003b) not only uses a lexicon
to check words, but also uses a morphological analyzer to check compounds and
other complex morphological forms such as inflections and extensions of words. Their
choice of technique was predicated on the fact that African languages are resource-poor
because digital resources are not available. Their experimental results were impressive
with respect to identification of closely related languages and multilingual documents.
This encouraged Pienaar and Snyman (2010) to suggest extension of this method to
other resource-poor languages like Wolof, Yoruba, Igbo, Hausa and Kinyarwanda.
Pienaar and Snyman (2010) are of the view that research into language identification
of under-resourced languages would make a search for resources in these languages a
precise task. This indeed stresses the fact that there must be some minimum level of
digital resources available in any language to enable language identification research
on such a language. Tables 1.1 and 1.3 exhibit regional statistics on languages and
some selected African countries.
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Table 1.1: Distribution of world languages by region of origin, source: Ethnologue
(Lewis, 2009)

Region No. of Languages % No. of Speakers %
Africa 2.146 30.2 789,138,977 12.7
Americas 1,060 14.9 51,109,910 0.8
Asia 2,304 32.4 3,742,996,641 60.0
Europe 284 4.0 1,646,624,761 26.4
Pacific 1,311 18.5 6,551,278 0.1
Totals 7,105 100.0 6,236,421,567 100.0

Table 1.2: Language distribution for selected African countries , source: Ethnologue
(Lewis, 2009)

Country No. of languages Number of Speakers
Algeria 21 33,001,300
Angola 38 16,070,730
Cameroon 281 8,931,726
Chad 132 6,594,079
Congo 215 39,906,030
Egypt 28 81,716,600
Morocco 14 26,653,930
Nigeria 529 104,138,885
South Africa 44 44,637,399
Zimbabwe 23 15,712,470

In line with the discovered gaps, this study aims to address the problems and
limitations of developing digital resources for natural languages, improving on run
time performance of models and multilingual identification. The motivation of this
study is based on the need to properly integrate the newly emerging languages in the
digital community by developing modeling strategies that are effective and efficient
in solving existing problems of language identification. Such methods must be so
developed as to work effectively also for the heavily resourced languages.

1.3 Problem Statement

With the ever-increasing number of users of the Internet across the globe,
the possibilities of information sharing among the Internet population are often
hindered due to linguistic diversity. The main cause of this setback is the fact
that language creates barriers to information access across the various linguistic
boundaries. Considering that there are over 7000 languages in the world (Lewis, 2009),
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it is easy to see that within a very short time there could be a sizable volume of content
scattered across many languages on the Internet. Due to the lack of technologies to
break the linguistic boundaries there is bound to be much content that cannot be shared
because of the language digital divide.

The development of language identification tools is meant to solve this
problem. However, language identification tools currently exist for a small number
of languages (Brown, 2012; Lui and Baldwin, 2012). For the past 3 decades several
research works have attempted to provide solutions to the language identification
problem. However, it is now clear that the problem of language identification
is multifaceted. There are morphological issues, what script is used to write
a particular language, the fact that some languages can be written using several
scripts. Furthermore, there are encoding issues: is a document stored in latin1 or
utf8? The challenge of distinguishing between closely related languages has not
been overcome. Other outstanding issues in language identification research include
identifying multilingual documents, coping with minority languages (Hughes et al.,
2006; Scannell, 2007) and the closely related problem of under-resourced languages
(Pienaar and Snyman, 2010).

Several previous works have developed techniques for many of the above
challenges using N-gram models, naive Bayes event models, artificial neural networks
(ANN), fuzzy ARTMAP, support vector machines (SVM), independent component
analysis (ICA), decision tree (DT), hidden markov models (HMM), etc. However,
most of these studies end up with one research gap or the other based on the
weaknesses of the applied methods (Baldwin and Lui, 2010; Hughes et al., 2006). In
particular the problems of time consuming models, unsatisfactory levels of accuracy in
multilingual identification and the unbending constraints of under-resourced languages
have remained intractable. Therefore the following questions need to be answered in
order to achieve the purpose of the study.

“Can the naive Bayes multinomial model be used to improve language

identification performance in the case of limited training text?”

In order to formulate research objectives it is necessary to define the following
detailed research questions from the primary research question:

RQ1: What language identification approaches currently exist?
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RQ2: What are the relative strengths / weaknesses of existing language identification
methods?

RQ3: Why is language identification in the case of limited training text important?

RQ4: Can a viable lexicon model be implemented from a small corpus?

RQ5: How to apply the ‘bag-of-words’ model for language identification in cases of
extreme scarcity of linguistic resources?

RQ6: What metrics can be applied to improve the run time performance of the ‘bag-
of-words’ model for language identification?

RQ7: Can the 80/20 rule and Zipf’s law be used to improve performance of ‘bag-of-
words’ model for language identification?

RQ8: Is the model elimination technique suitable for Language identification of
multilingual documents?

RQ9: How to implement a linear combination of word length and model elimination
algorithms to improve performance of language identification?

RQ10: Can a linear combination of word length / model elimination approach handle
language identification of multilingual documents?

1.4 Research Aim

The aim of this study is to develop improved lexicon models and word length
and model elimination algorithms to enhance the efficiency and effectiveness of
language identification irrespective of the size of corpus available. By addressing the
specific and peculiar constraints of natural languages, the research strives to develop
algorithms that improve the running time performance of language identification while
maintaining accuracy and consistency of results with the ultimate goal of improving
multilingual identification and distinguishing closely related languages to enable
effective information sharing in multilingual settings such as the Internet.
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Table 1.3: Research questions and where they are addressed
Research Questions Treated in
RQ1: What language identification approaches currently exist? Chapter 2
RQ2: What are the relative strengths / weaknesses of existing language
identification methods?

Chapter 2

RQ3: Why is language identification in the case of limited training text
important?

Chapter 2

RQ4: Can a viable lexicon model be implemented from a small corpus? Chapter 4
RQ5: How to apply the ‘bag-of-words’ model for language identification
in cases of extreme scarcity of linguistic resources?

Chapter 4

RQ6: What metrics can be applied to improve the run time performance
of the ‘bag-of-words’ model for language identification?

Chapter 4

RQ7: Can the 80/20 rule and Zipf’s law be used to improve performance
of ‘bag-of-words’ model for language identification?

Chapter 5

RQ8: Is the model elimination technique suitable for Language
identification of multilingual documents?

Chapter 5

RQ9: How to implement a linear combination of word length and model
elimination algorithms to improve performance of language identification?

Chapter 6

RQ10: Can a linear combination of word length / model elimination
approach handle language identification of multilingual documents?

Chapter 6

Summary
Research Questions 1 - 3 Chapter 2
Research Questions 4 - 6 Chapter 4
Research Questions 7 - 8 Chapter 5
Research Questions 9 - 10 Chapter 6

1.5 Research Objectives

In pursuance of the stated research aim, the following objectives have been set:

i. To propose an enhanced word length algorithm for language identification.

ii. To propose an enhanced model elimination algorithm for language identification.

iii. To propose a linear combination of word length and model elimination
algorithms that will complement the strengths of both algorithms to achieve
optimum run time performance for language identification.
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1.6 Contributions of the Research

The need for improved modeling and classification methods for language
identification is imperative in view of the increasing widespread use of the Internet in
the various regions of the world. Effective language identification tools have significant
impact on the overall information sharing potentials to the benefit of the global Internet
community. Securing improved methods of modeling the various languages under the
constraints of reduced training data in order to achieve high performance accuracy in
multilingual identification, distinguishing closely related languages, while maintaining
low running time, have been major concerns to practitioners in this field of research
because these are the most critical challenges of the earlier used approaches.

This research focused on developing enhanced computational models using
small training data to facilitate language identification in order to achieve the desired
high performance accuracy in multilingual identification, distinguishing closely related
languages, and maintaining low running time with the ultimate goal of facilitating
effective information sharing in a multilingual setting. In addition, implementing the
improved bag-of-words model for language identification using minimal training text
has potential for increasing digital resources for many natural languages. Moreover,
as a further advantage of the proposed solutions, the improved models contribute
to expanding the language identification coverage among world languages thereby
increasing the capacity of crime prevention systems and digital forensic investigation
strategies.
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1.7 Research Scopes

The scope of this research is limited to the following:

i. The proposed study will focus on reviewing previous work related to language
modeling using statistical and computational intelligence approaches for
purposes of language identification.

ii. In this study an improved lexicon based model is proposed along with
computational algorithms for language identification.

iii. The proposed method was tested and analyzed using the publicly available
universal declaration of human rights (UDHR) corpus obtained from UNESCO
website (UNESCO, 2011). This data set is considered suitable for this study
since it consists of standard legal genre text in over 300 languages. The UDHR
has been tagged the most translated document in the world (UNESCO, 2011).
This delivers two advantages. Firstly, the document consists of only 30 articles
of the law, which means that it is not very large. This fits perfectly into
the requirement of this research by allowing the testing of the small data set

constraint. Secondly, the fact that it is a translation means that it is a good data set
for testing the ability of the algorithms to distinguish closely related languages,
because being a translation implies that the documents are semantically identical.
Therefore the only thing that would distinguish any two documents in this corpus
is the words and style of writing the respective languages.

iv. In addition, this research only experiments on identification of 15 languages,
comprising nine African languages (Hausa, Igbo, Tiv, Yoruba Asante, Akuapem,
Ndebele, Zulu, and Swahili), two Asian languages (Malay and Indonesian)
and, four European languages (Serbian, Slovak, Croatian, and English). This
selection was deliberate in including two Asian languages which are strictly not
resource-poor but are closely related languages. The same can be said of Serbian
and Croatian. The English language is possibly the most resourced language but
is included here to test the viability of the proposed approaches to the richly
resourced languages of the world.

v. Developed models were validated using many data sets, namely the (a) Universal
declaration of human rights act (UNESCO, 2011). (b) Documents downloaded
in the 11 official languages of South Africa (from the South African government
services website) to obtain text of other genre e.g. history, science, medicine,
and politics for testing language identification using spellchecker technique. (c)
A Large data set on English language downloaded from ’Project Gutenberg’
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(Bird, 2006). This was used to test the performance of the algorithms on large
data sets. (d) Text in 9 European languages from the Europarl corpus Tiedemann
(2012). (e) Text in 9 European languages from the Leipzig corpus Quasthoff
et al. (2006).

vi. Performance of the algorithms was evaluated based on accuracy, processing
speed, precision, recall, and F1 measures.

1.8 Structure of Thesis

This thesis is made up of eight chapters as follows:

i. Chapter 1 presents a general introduction, the problem statement, motivation,
aims, objectives, scope, significance and expected contributions. The chapter
also narrates the organization of the entire thesis.

ii. Chapter 2 discusses a review of the literature related to this study. Outstanding
problems in language identification research are highlighted along with the
weaknesses and strengths of earlier used approaches. Also discussed is the
spelling checker method as a new entrant into language identification research
with special appeal to language identification of under-resourced languages. The
present direction of language identification research is discussed along with
coverage of language identification among the languages of the world.

iii. Chapter 3 describes the methodology employed in this research and presents
the operational framework for the entire study. The methodological steps are
discussed including the data gathering, pre-processing and the processing steps
for each method beginning with vocabulary extension and going on to word
length and model elimination. The universal declaration of human rights acts
(UDHR) and details of other corpora are presented as the data set for this
research.

iv. In Chapter 4 presents a detailed description of the word list based model and
highlights the steps for exploitation of a document’s inherent structure for
language identification. A detailed experimental validation of this model is
discussed along with results for the 15 languages studied. Also presented in this
chapter, is the algorithm for vocabulary extension. The strength of a spellchecker
lies in the size of its lexicon. This chapter includes detailed results and discussion
of experimental analysis of vocabulary extension.



13

v. Chapter 5 describes the word length algorithm as an enhancement of the bag-of-
words model. The chapter presents the theoretical background for the algorithm
as well as experimental results and discussions for the word length algorithm.
A detailed comparison of the performance of this approach with other standard
approaches is presented.

vi. In Chapter 6, a discussion of the dynamic model selection (model elimination)
algorithm is presented along with the motivating principles for this approach,
namely: the ”Pareto principle”, ”Zipfs law” and power laws. This chapter
discusses how to leverage on the content of the text to be identified in order
to reduce processing time and memory utilization. Detailed comparison of
results from the proposed approach with results from other standard approaches
is presented.

vii. Chapter 7 explains a linear combination of the word length and model
elimination algorithms for language identification. The idea is to leverage on
the strengths of the word length algorithm and the model elimination algorithm
by developing a linear combination that feeds the output of the word length
algorithm into the model elimination algorithm. Chapter 6 presents experimental
setup and results for the proposed approach with detailed comparison of the
proposed approach and other standard approaches for language identification.

viii. Chapter 8 discusses research findings, overall thesis contributions in conjunction
with the earlier set objectives, conclusions, and recommendations for future
work.

1.9 Summary

This chapter discusses the introduction of the research presented in this thesis.
The introduction covered the problem statement, motivation, aims, objectives, scope,
significance and expected contributions of the research. The chapter highlighted the
methods that will be investigated with a view to accomplishing language identification.
Peculiar considerations for resource-poor languages along with methodological
constraints involved in automatic identification of this class of languages have been
enumerated. Improved approaches have been proposed and presented in the brief
summaries of each of the chapters of this thesis covering the methods that will be
investigated and enhanced in order to carry out language identification in line with the
objectives earlier set for this research.
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