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ABSTRACT 

The cathode performance of solid oxide fuel cell (SOFC) depends 

substantially on its surface area, porosity and microstructure, and therefore the 

processing method is very important in determining cathode performance. By 

improving the structural characteristics of the layer, the cathode performance during 

fuel cell operation can be fully maximized. This study aims to improve the porosity 

and pore structure of the cathode deposited layer of micro-tubular SOFC (MT-

SOFC) by inducing pores with pore formers. Three types of pore formers have been 

used to investigate the formation of induced pores in the cathode layer of SOFC, 

which are polyether ether ketone (PEEK), corn starch and graphite. Each pore former 

chosen in this study possesses different particle geometry in order to produce distinct 

pore geometry in the cathode layer. The cathode layer was brush painted on an 

anode/electrolyte dual layer support hollow fibre that had been previously sintered at 

1500°C for 12 hours. The coated cathode consists of three layered coats, with 

functional layer as the first two layers followed by a current collector layer on the 

last coat. After the deposition of cathode layer, it is sintered at 1200°C for 5 hours. 

The study divides the characterization into three main parts; pore former geometry 

identification, pore former behavior in lanthanum strontium cobalt ferrite (LSCF) 

powder and pore former in LSCF as solid oxide layer. PEEK was able to produce 

pores that promote both fine microstructures for triple phase boundary generation 

and porous structure for efficient diffusion of gases. The increase in pore former 

loading has increased the porosity and decreased the grain size, but at the expense of 

decreasing mechanical strength of the fuel cell.  
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ABSTRAK 

Tahap prestasi katod dalam sel bahan api pepejal teroksida (SOFC) 

bergantung pada luas permukaan, keliangan dan mikrostrukturnya, maka langkah-

langkah pemprosesan yang digunakan amat penting dalam mengukur tahap prestasi 

katod. Dengan menaik taraf ciri-ciri struktur lapisan tersebut, tahap prestasi katod 

semasa operasi sel bahan api akan dapat dimaksimumkan sepenuhnya. Kajian ini 

bertujuan untuk menambah baik keliangan and struktur liang lapisan katod MT-

SOFC secara penturapan liang melalui pembentuk liang. Tiga jenis pembentuk liang 

telah digunakan untuk menyiasat pembentukkan liang di dalam lapisan katod SOFC; 

iaitu poly ether ketone (PEEK), kanji jagung dan grafit. Setiap pembentuk liang yang 

dipilih di dalam kajian ini mempunyai bentuk partikel yang berbeza bagi 

menghasilkan geometri liang yang berlainan pada lapisan katod. Lapisan katod 

tersebut kemudiannya diberuskan pada dwi-lapisan anod/elektrolit sokongan gentian 

berrongga yang telah disinter terlebih dahulu pada 1500°C selama 12 jam. Lapisan 

katod yang telah disalut terdiri daripada tiga lapisan, lapisan berfungsi pada dua 

lapisan pertama dan diikuti dengan lapisan pengumpul arus sebagai lapisan terakhir. 

Setelah disalut dengan lapisan katod, proses sinter kali kedua akan dilakukan pada 

1200°C selama 5 jam. Pencirian dalam kajian ini terbahagi kepada tiga bahagian 

utama; identitifikasi geometri pembentuk liang, kelakuan pembentuk liang di dalam 

serbuk LSCF dan pembentuk liang dalam LSCF sebagai lapisan pepejal teroksida. 

PEEK mampu menghasilkan liang untuk meningkatkkan kehadiran mikrostruktur 

bagi generasi sempadan tiga fasa dan struktur liang untuk resapan gas yang effisien.  

Penambahan jumlah kandungan pembentuk liang telah meningkatkan keliangan dan 

mengurangkan saiz butiran, tetapi meningkatkan penguranganan tegangan mekanikal 

sel bahan api.  
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  CHAPTER 1

INTRODUCTION 

1.1 Background of Study 

In the effort to meet with the energy demand of the modern world, oil 

exploration is expanding literally to the center of the earth.  Modern advanced 

technologies have allowed us to dig deeper, expedite crude oil extraction and extract 

more oil from oil reservoir.  In spite of new crude oil reserves found occasionally, 

total depletion of non-renewable crude oil sources is inevitable.  Crude oil accounts 

for more than half of the global energy sources.  Thus, the other sources of energy 

have to be fully utilized and optimized in order to relieve the global energy demand 

from crude oil.  Moreover, in the conversion of crude oil into electricity, it includes 

the release of gasses which may possess threat to the environment and the health of 

people. 

 

 

In the effort to fully utilize the use of environmental friendly energy such as 

solar, wind, geothermal and hydroelectric energies, they requires a lot of time before 

being able to cope with the global energy demand, as well as the technical and 

economic challenges present.  Subsequently, the introduction of better utilization of 

fossil fuel in energy generation is crucial.  On the same grounds, fuel cells have been 

regarded as a better replacement for current energy production devices because of its 

high efficiency.  Generally, fuel cells produce electricity through an electrochemical 

process without involving combustion.  Fuel cell functions by converting chemical 
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energy directly into electricity which is able to reduce energy losses.  They also 

produce less emission than the conventional combustion system.  Continuous 

operation is possible for fuel cells with the condition of uninterrupted supply of fuel 

and oxidant.  The fuel are stored externally, thus it will not be internally depleted as 

conventional battery.  The fuel cell also involves no moving parts, making them quiet 

and requires less maintenance.   

 

 

As a result of its relatively high conversion rates of chemical energy to 

electrical energy, solid oxide fuel cells (SOFCs) have been promoted as a promising 

energy generation devices (Singhal and Kendall, 2003).  SOFCs can be considered as 

a green technology through the application of H2 gases of which can be produced 

from non-hydrocarbon sources.  In addition, SOFC operation does not produce 

exhaust gases as in normal combustion engine, instead SOFC only produces excess 

hydrogen gas (H2), carbon dioxide (CO2) and water vapour.  SOFC is a multiple 

layer structure consisting of at least, three solid oxide layers, an electrolyte layer 

sandwiched between anode and cathode layers.  Generally, oxygen atoms will be 

reduced on the porous cathode surface by electrons to form oxide ions, which are 

then carried through the dense electrolyte layer to a porous anode zone that has been 

supplied with fuel where the oxide ions can react by donating electrons to an external 

circuit.  Figure 1.1 shows the complete fuel cell reactions at both porous cathode and 

anode, oxygen ion and electron pathway.   
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Figure 1.1 Solid oxide fuel cell reaction and ion/electron pathway (Singhal and 

Kendall, 2003) 

There are two types of SOFC configuration that are commonly studied, 

namely planar and tubular SOFCs.  Planar SOFCs boost in highly compact 

configuration which in turn generates high power density.  Nev(Singhal and Kendall, 

2003)ertheless,  the design of this type requires high temperature sealing near the 

edges of the cell and only few sealants are suitable for the operational condition of 

SOFC (Minh and Takahashi 1995c).  Additionally, slow start-up period and 

problems associated with formations of cracks in the thin planar structures are among 

the drawbacks in this configuration.  Because of the geometry of the planar design, 

the fabrication of this type of SOFC cell is able to be mass produced via screen 

printing.  Based on Figure 1.2, the unit cell of a planar SOFC is stacked with the 

interconnect in between to allow maximum conversion of energy per unit area. 
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Figure 1.2 Planar SOFC unit cell (Singhal and Kendall, 2003) 

On the other hand, tubular SOFC configuration has been proven to possess 

significant resistance to rapid thermal changes and able to operate without the need 

for high temperature seals.  The design of this type of SOFC cell relies heavily on the 

diameter of the cell.  Figure 1.3 below shows the cross section of an anode supported 

tubular geometry SOFC unit cell. Despite the advantages of the tubular 

configuration, this configuration suffers in the volumetric power density output of 

the fuel cell which is usually lower than that of in planar configuration.  

 

 

By reducing the diameter of the fuel cells to the scale of 1 mm, the 

volumetric power density can be greatly improved.  At this scale, the fuel cell is 

commonly referred as micro tubular SOFC (MT-SOFC).  By applying this micro 

tubular configuration, properties such as start-up and shutdown, mechanical 

properties and specific surface area of the electrodes can be significantly improved.  

Compared to large-diameter tubular SOFC which are susceptible to layer cracking if 

subjected to rapid thermal cycles, the micro-tubular SOFCs shows excellent 

resistance even at 850 °C (Singhal and Kendall, 2003). 
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Figure 1.3 Tubular SOFC unit cell (Singhal and Kendall, 2003) 

The electrochemical reactions at the electrodes in SOFC operation produce 

heat as a byproduct.  These heats are associated with the ohmic losses, anode-cathode 

overpotentials and from other sources.  Rather than eliminating these losses, heat 

management system was applied to maintain the operating temperature of the SOFC 

system.  High temperature exhaust heats of SOFC are advantageous for the control 

and utilization of exhaust gases, which are among the main advantage of SOFC over 

the other types of fuel cells. Because both electricity and heat are desirable and 

useful products of SOFC operation, the best applications are to utilize both, for 

example residential combined heat and power, auxiliary power supplies on vehicles, 

and stationary power generation from coal which needs heat for gasification.  A 

residential SOFC system can use this heat to produce hot water, as currently 

achieved with simple heat exchangers.  In a vehicle the heat can be used to keep the 

driver warm.  A stationary power system can use the hot gas output from the SOFC 

to gasify coal, or to drive a heat engine or a gas turbine motor. 

 

 

The electrolyte of a SOFC is a solid oxide material layer that conducts 

oxygen ions at elevated temperatures, between 600-1000°C.  This layer theoretically 

should be solid and impermeable to gasses, in order to avoid loss of fuel cell 
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potential through open gaseous connection between fuel and oxidant.  The electronic 

conductivity of the electrolyte layer should be minimal to reduce power losses due to 

short circuiting.  Other properties that an electrolyte should possess include great 

thermal and chemical stability at elevated temperatures under both oxidising and 

reducing environments (Subbarao, 1980). 

 

 

The main function of the anode layer of SOFC is to stimulate the 

electrochemical oxidation reaction of hydrogen gas as fuel.  For an anode supported 

cell, the anode also acts as a structural support for the entire cell.  Therefore, the 

mechanical and thermal characteristics such as mechanical strength, ductility, 

thermal expansion of the anode must be evaluated extensively.  The general 3 

requirements of an anode includes significant material stability (chemical and 

thermal) during cell fabrication and cell operation, high electronic conductivity under 

cell operating conditions, sufficient mechanical strength and flexibility, suitable 

thermal expansion, ease of fabrication and also low cost (Jiang and Chen, 2014).  

Furthermore, ionic conductivity would be very favourable to the reaction of fuel on 

the anode surface. 

 

 

Almost similar to the anode characteristics, cathode for SOFC has to possess 

certain characteristics including high in both electrical conductivity and catalytic 

activity for oxygen reduction and also compatible with the electrolyte layer.  

Compatibility in this term can otherwise be defined by thermal expansion match and 

chemical non-reactivity between cathode and electrolyte layer.  The cathode 

performance depends substantially on its surface area, porosity and microstructure 

(Hamedani et al., 2008), and therefore the processing method used is very important 

in determining cathode performance.  By optimizing the structural characteristics of 

the layer, certain key aspects can be individually encountered.  For example, the 

interfacial polarization resistance has been shown to decrease when the 

microstructure of the cathode were graded (Nie et al., 2010).  By using a graded 

microstructure, a more efficient distribution of layer microstructure fit for its 

functions can be achieved.  Graded microstructure is defined as possessing multi-

layered cathodes with each layer is designated for a specific function.  First, the 

usage of corn starch as the pore former has allowed the formation of open porous 
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microstructure at the outermost layer of the cathode to assist gas transport.  On the 

other hand, by using graphite as the pore former, the induced pores were uniformly 

distributed fine microstructure with microscopic pores with larger surface area at the 

inner layer of the cathode to significantly increase the generation of triple phase 

boundary (TPB) region at the interface of cathode/electrode (Nie et al., 2011).  

 

 

The performance of the cathode layer has been linked with the ability to 

facilitate gaseous reduction at the relative facility where chemical ions and electrons 

are transported in and out of the reactive zones (Kenney and Karan, 2007).  Thus, it 

is evident that the cathode layer have to possess efficient transport properties or 

structural characteristics for example low particle size, high porosity and optimized 

composition (Barbucci et al., 2005).  Hence, the control in porosity is essential in 

enhancing the performance of the cathodes in SOFC. 

1.2 Statement of Problem 

Conventionally, SOFC operates at high temperature of 800 – 1000 °C which 

is known as high temperature SOFC (HT-SOFC). HT-SOFC is known to suffer from 

expensive material requirements, high energy demands and prone to the inter-

diffusion of elements. Thus, current research trends are focusing more to lower the 

operation temperature of SOFC to the range of 500-700 °C which is commonly 

denotes as intermediate temperature SOFC (IT-SOFC). Due to its lower operation 

temperature, IT-SOFC has faster start up and shut down time and better material 

durability because to reduced kinetics of material inter-diffusion. Nevertheless, at 

lower operation temperature of SOFC, ionic resistance at the electrolyte layer 

increases to a point where the cell can no longer be electrolyte supported and the 

ionic conductivity of yttrium stabilized zirconia (YSZ) as the electrolyte material is 

too low. 
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For IT-SOFC, with the operating temperature in between 500°C to 700°C, 

cerium gadolinium oxide (CGO) has shown excellent performance, due to its great 

ionic conductivity property in reducing atmosphere (Zhu et al., 1998) and is suitable 

as a substitution of YSZ as the base material for the anode layer and the electrolyte 

material combined with nickel.  Lanthanum strontium carbon ferrite (LSCF) has 

proven to be a suitable material for the cathode layer with CGO based electrolyte 

(Droushiotis et al., 2012). While most efforts in SOFC research were poured into the 

anode and electrolyte layers, less attention is given towards the cathode layer, 

particularly in thin layer configuration.  Cathode fabrication method for SOFC 

currently offers minimal structural control over the layer geometry.  Generally, the 

cathode layer must have certain characteristics which are (i) high in electrical 

conductivity, (ii) high in catalytic activity for oxygen reduction and (iii) possess 

sufficient porosity.  These characteristics points to the optimization of the gaseous 

reaction at the electrode during fuel cell operation. 

 

 

For the first two characteristics, the type of material used in the fabrication of 

the porous layer plays a significant role.  On the other hand, the third characteristic 

can be related to the method used in the cathode deposition.  For a sufficient porosity 

formulation in the solid oxide layer, the available methods to simulate the desired 

condition include particle size, manipulating sintering profile and pore former 

addition. The optimum porosity values for an efficient cathode was outlined to be 

30% based on previous studies (Kenney and Karan, 2007; Kivi et al., 2008). While 

particle size and sintering profile manipulation are studied rigorously, less attention 

is given to the third alternative in the attempt to create relative porosity in the 

cathode layer.  To increase the porosity of the cathode layer, a simple pore forming 

agent is added into the layer preparation slurry, which is conveniently removed at the 

necessary sintering treatment of the cathode layer.  On the contrary, the other method 

requires increased amount of cost, energy and time associated with using different 

particle sizes and manipulating the sintering curve. 

 

 

This study is focused on the pore former addition into the precursor slurry for 

the cathode layer.  In the attempt of increasing the relative porosity in the cathode 

layer by the addition of pore former, it is important to consider that the increase in 
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porosity of the layer will also increase the electrical resistance of the cathode.  

Theoretically, in a solid metal layer, the electron pathway is straight and less 

resistive.  On the other hand, in a highly porous solid metal layer, the electron 

pathway is obstructed by the pores.  The electrons have to take a longer route and 

thus produce resistance in the circuit.  The pore former addition have to be controlled 

in order to produce sufficient porosity in the layer for efficient gaseous reaction to 

occur while maintaining low the resistance in the circuit. 

 

 

There is a demand for a more systematic approach for the optimization of the 

cathode layer fabrication as a deposited ceramics layer on a tubular substrate.  The 

study will be able to provide a comprehensive analysis on the pore former addition in 

the precursor slurry of the cathode layer.  This study focuses on the fabrication 

method of the cathode layer for intermediate temperature SOFC (IT-SOFC) in the 

micro tubular SOFC design by utilizing CGO as the electrolyte material.  The 

cathode layer will be coated onto anode/electrolyte dual layer support hollow fibre 

which has been sintered preceding the deposition of cathode.  For this study, three 

types of pore former were chosen; poly ether ether ketone (PEEK), corn starch and 

graphite.  Graphite was chosen because of its ability to generate high length of triple 

point boundary due to the fine microstructures of graphite particles.  Corn starch was 

chosen because it was proven to improve layer porosity even compared to other 

starch derivatives.  PEEK was chosen because its geometry resemblances both 

graphite’s and corn starch’s geometry at the same time.  Previous studies usually 

employ method to either focus on the generation of the active sites or induced 

increased porosity in the layer. In this study, by using pore former method, the 

cathode layer is improved by inducing increased porosity for gas diffusion and 

increased reaction sites in the cathode layer simultaneously.  

 

 

The brush painting technique was chosen as the deposition technique rather 

than other deposition method available such as dip coating and plasma spraying. The 

brush painting technique boosts in its simple chemical requirement and uses simple 

laboratory equipment rather than the other methods where they require special setup 

in order to deposit the cathode layer. Moreover, brush painting method was proven as 
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an efficient cathode deposition method with significant adhesion between the 

cathode and the electrolyte layer (Droushiotis et al., 2012).  

1.3 Objective of Study 

The general objective of the study is to provide a comprehensive analysis of the 

structural characteristics by the addition of pore former in the cathode depositing 

slurry towards the microstructure of the cathode as a deposited layer.  Hence, the 

specific objectives of the study can be separated to the following: 

1. To evaluate the pore morphology in LSCF cathodes with PEEK, graphite and 

corn starch as the pore formers 

2. To evaluate the effect of pore former loadings on the characteristics of the 

LSCF cathode layer.  

1.4 Scope of Study 

This study involves the application of PEEK as the pore former to induce desires 

porosity in the cathode layer of IT-SOFC. Firstly, the cathode layer is deposited by 

using LSCF with the addition of pore formers onto the co-sintered anode/electrolyte 

dual layer hollow fibre support by using brush painting technique. This part involves 

the preparation of the dual layer hollow fibre support from the green body by 

sintering at 1500°C for 12 hours and the deposition of the cathode layer. The 

temperature was chosen at 1500 °C in order to produce a dense electrolyte layer for 

an efficient gas barrier layer. Brush painting method was chosen as the deposition 

method because this method was economical and able to deposit a cathode layer with 

significant adhesion to the electrolyte layer. Moreover, the brush painting technique 
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only requires a simple setup to execute the deposition. Field emission scanning 

microscopy (FESEM) was used to evaluate the dense electrolyte layer and the 

adhesion between the cathode and the electrolyte layer. 

 

 

Next, the pore formation mechanism from the pore formers was analyzed by 

using thermal analysis and X-ray diffraction. In this part, the pore formation 

mechanisms of the pore formers were evaluated to investigate the burn off 

temperature of the pore formers and the efficiency of the pore former burn off. The 

formation of secondary phase or impurities was also examined. The sintered LSCF 

powders with pore formers were evaluated by using thermal gravimetric analysis 

(TGA) and x-ray diffraction (XRD). Additionally, the surface area of the LSCF 

particles was evaluated by using Single Point Brunauer, Emmett and Teller (BET) 

Nitrogen Adsorption method. 

 

 

The pore former loading was varied at 0%, 5%, 10%, 15% and 20% of PEEK, 

graphite and corn starch in the cathode layer deposition slurry. The pore formers 

were limited to PEEK, graphite and corn starch  as these pore formers obeys the 

important requirements of a suitable pore formers and possess the significant shape 

that can improve the characteristics of the cathode layer. The loading of the pore 

former were varied from 0%, 5%, 10%, 15% to 20% in order to evaluate the effects 

of each pore former loading on the characteristics of the cathode layer. FESEM was 

used to evaluate the morphology change in the cathode layer by using different type 

of pore formers at different loadings. 

 

 

The characteristics of the cathode layer with the induced pores from the pore 

formers was then evaluated. This part involves the evaluation of the characteristics of 

the deposited cathode layer with the induced pores from different types of pore 

formers at different loadings. The layer characteristics were evaluated by using 

Standard ASTM C373-14 for porosity measurements, atomic force microscopy 

(AFM) and bending strength. 
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1.5 Significance of Study 

It is essential in the cathode layer to require an ample porosity for the gaseous 

reaction to take place and to provide sufficient triple phase boundary region for the 

reduction reaction of gaseous in the layer.  This study can provide a comprehensive 

reference in the aspects of morphological study of pore former addition in the 

cathode layer.  Conventionally, cathode layer was known to be rate limiting in the 

electrochemical reaction in the SOFC operation because of the relatively lower 

reactivity of the cathode material compared to the anode. Pore former addition 

method has been explored to be able to improve the characteristics of the cathode 

layer by either increasing the porosity of the cathode layer to assist in the gas 

diffusion or by increasing the gas reaction sites in the cathode layer. In such instance, 

this study bids to improve the characteristics of the cathode layer by increasing both 

capacities of gas transport property and reaction sites simultaneously. This study is 

the first to tackle both structural improvements in the cathode layer of anode 

supported SOFC. 
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