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ABSTRACT 

In this study, the stability of sulfonated poly ether ether ketone (SPEEK) 

nanocomposite membrane against the radical attack during direct methanol fuel cell 

(DMFC) operation was elucidated by the Fenton reagent test.  The nanocomposite 

membrane was soaked in the Fenton reagent solution with 0.8, 3, 12, and 50 ppm iron 

salts concentration for 6, 12, 24, 48, and 96 hours, respectively at room temperature.  

Pristine SPEEK and Nafion® 117 membranes were used as control samples. The 

results indicate that the presence of Cloisite® inorganic particles can improve the 

stability of SPEEK nanocomposite membrane against the radical attack and allowed 

the nanocomposite membrane to maintain its weight comparable to Nafion® 117 

membrane up to 48 hours of testing. The Fourier transform infrared spectroscopy 

characterization combined with density functional theory study showed that both the 

C‒O‒C and ‒SO3H bonding with phenylene ring, and hydrogen bonding between the 

SPEEK, Cloisite®, and 2,4,6-triaminopyrimidine components were the most 

vulnerable to the radical attack. Loss of these functional groups has caused structural 

deformation, deterioration of mechanical strength, and changes of hydrophilicity in the 

SPEEK nanocomposite membrane. Additionally, the changes in its chemical structure 

have caused its water uptake, proton conductivity, and methanol barrier properties to 

drop, up to 2 times higher than the Nafion® 117 membrane. However, the selectivity 

value of the SPEEK nanocomposite membrane (27,037 S∙s/cm3) remained higher than 

the Nafion® 117 membrane (3,292 S∙s/cm3) due to the SPEEK nanocomposite 

membrane’s lower methanol permeability value (2.72×10−7 cm2/s) as compared to 

Nafion® 117 membrane (2.95×10−6 cm2/s). Based on the correlation graph, the SPEEK 

nanocomposite membrane is predicted to have 9,800 hours’ lifespans as polymer 

electrolyte membrane (PEM) in the DMFC system. As a conclusion, this study has 

proven that the SPEEK nanocomposite membrane has good stability in DMFC harsh 

environment and suitable to be employed as PEM for high performance and long 

lifespan DMFC system. 
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ABSTRAK 

Dalam kajian ini, kestabilan membran komposit nano poli eter eter keton 

tersulfonat (SPEEK) terhadap serangan radikal ketika operasi bahan api metanol 

(DMFC) telah diterangkan menggunakan ujian bahan uji Fenton.  Membran komposit 

nano telah direndam di dalam larutan bahan uji Fenton dengan kepekatan garam besi 

0.8, 3, 12, dan 50 ppm masing-masing selama 6, 12, 24, 48, dan 96 jam pada suhu 

bilik.  Membran SPEEK asli dan Nafion® 117 telah digunakan sebagai sampel 

kawalan.  Keputusan menunjukkan bahawa kehadiran partikel tak organik Cloisite® 

boleh meningkatkan kestabilan membran komposit nano SPEEK terhadap serangan 

radikal dan membolehkan membran ini mengekalkan beratnya setanding dengan 

membran Nafion® sehingga 48 jam.  Gabungan spektroskopi inframerah transformasi 

Fourier dan kajian ketumpatan teori berfungsi menunjukkan ikatan C-O-C dan -SO3H 

dengan gelang fenilena, dan ikatan hidrogen antara SPEEK, Cloisite® dan 2,4,6-

triaminopirimidina adalah yang paling lemah terhadap serangan radikal.  Kehilangan 

kumpulan berfungsi ini menyebabkan berlakunya perubahan struktur, kemerosotan 

kekuatan mekanikal dan perubahan kehidrofilikan kepada membran komposit nano 

SPEEK.  Tambahan pula, perubahan struktur kimia membran komposit nano SPEEK 

menyebabkan sifat penyerapan air, kekonduksian proton dan halangan metanol 

menyusut sehingga 2 kali lebih tinggi dari membran Nafion®.  Namun begitu, 

kememilihan membran komposit nano SPEEK kekal lebih tinggi (27,037 S.s/cm3) 

daripada membran Nafion® (3,292 S.s/cm3) kerana nilai kebolehtelapan metanol 

membran komposit nano SPEEK yang rendah (2.72×10-7 cm2/s) berbanding membran 

Nafion® 117 (2.95×10-6 cm2/s).  Berdasarkan graf korelasi, membran komposit nano 

SPEEK dijangka mempunyai jangka hayat selama 9,800 jam sebagai membran 

elektrolit polimer (PEM) di dalam sistem DMFC.  Sebagai kesimpulan, kajian ini 

membuktikan bahawa membran komposit nano SPEEK mempunyai kestabilan yang 

baik terhadap persekitaran DMFC yang buruk dan sesuai digunakan sebagai PEM 

untuk sistem DMFC yang berprestasi tinggi dan mempunyai jangka hayat yang 

panjang. 
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CHAPTER 1  

INTRODUCTION 

1.1 Research Background 

The energy sector is one of the important sectors in modern civilizations.  

Industries, transportations, accommodations, appliances activities and practices have 

contributed to the expansion of the energy production industry.  Based on the British 

Petroleum Statistical Review of World Energy 2015 [1], the world’s energy 

consumption in 2014 was 12,928 million tonnes of equivalent oils, which have 

increased by 0.9 % from 2013.  It is expected that energy demands will continue to 

increase in the future due to population expansion and increasing demands.  The 

statistics also mentioned that 86.3 % of world energy consumption is coming from 

carbon-based fuels (oil, natural gas, and coal).  The use of carbon-based fuels has 

produced carbon dioxide (CO2) and several greenhouse gases, which give the huge 

negative impact on the environment and climate [2].  According to International 

Energy Agency [3], the CO2 emission comes from the energy production sector has 

increased more than 50 % in two and half decades period (1990-2015).  This 

phenomenon had caused the Earth’s temperature to rise up to 4 °C higher than the 

Earth’s temperature during the early Industrial Age period [4].  Ice polar cap melting, 

sea water level rising, flood, famine, and formation of extreme weather are several 

impacts that result from the heated Earth’s atmosphere due to the greenhouse effect 

from the excessive release of greenhouse gases to the atmosphere.  The high CO2 

content in our atmosphere also causes an increase in the acidity of the oceans and fresh 

water.  This situation has affected the Earth’s biosphere and ecosystem since water is 

essential for all living things to survive on earth.  Thus, development and investment 

in renewable and environmentally friendly energy production technologies are crucial 

in order to preserve and sustain our nature for future generations. 
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Fuel cell is one of renewable energy technologies that have been proposed as 

a potential technology to replace conventional energy production.  A fuel cell is an 

electrochemical device that converts free energy from redox reaction directly into 

electrical energy with heat energy as the by-product [5].  Figure 2.1 shows the 

schematic diagram of the typical fuel cell operation.  There are several advantages that 

attract researchers to develop fuel cell as the next generation of energy production 

technology.  Since fuel cell generates electricity directly from the chemical reaction 

using electrochemical principle, the energy loss due to heat production is lower than 

the conventional energy production technology, which can increase the fuel cell energy 

conversion efficiency.  O'Hayre et al. [6] stated in their book (Fuel Cell Fundamentals) 

that the fuel cell efficiency is around 60 %, which is higher than any conventional 

energy production, which has efficiency around 40 % only.  Higher energy conversion 

efficiency means that the fuel cell needs less fuel to produce similar energy output as 

generated by the existing energy production technology.  Therefore, the fuel cell will 

produce less greenhouse gas by-products as compared to the established energy 

production technology.  This can reduce the carbon footprint issue [6].  Other than 

that, fuel cell system is simple since the fuel cell only needs anode and cathode 

electrode layer, and an electrolyte to produce electricity.  Therefore, the fuel cell can 

be scaled up or scaled down according to the energy requirement, whereby the fuel 

cell does not experience energy losses issue when scaling down to smaller size as 

compared to gas turbines or reciprocating engines [7].  Based on these benefits of the 

fuel cell such as low emission, high efficiency, simple system, and smaller footprint, 

it is expected that the fuel cell holds a good potential to be commercialized as the next 

generation energy production technology in the future [8]. 
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Figure 1.1 A basic fuel cell diagram. 

Several types of fuel cells have been developed since its first invention by Sir 

William Groove in 1839 [9].  The current fuel cell technology can be classified based 

on three criteria: operating temperature, electrolyte used and fuel consumed.  Table 

1.1 tabulates all fuel cell types with their corresponding operating temperature, its 

electrolyte, fuel used, and their efficiency. Direct methanol fuel cell (DMFC) is one 

types of fuel cell that utilize methanol as its fuel.  DMFC operates at low operating 

temperature, use liquid fuel, which simplifies fuel refuelling and handling, emit 

minimal CO2 gas by-product, and theoretically has high energy density, and high 

efficiency [10].  Due to its simple system design and easy to scale down, researchers 

are working on DMFC actively.  It is believed that DMFC can become the future 

replacement of the energy source for portable devices. 
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Table 1.1 Types of Fuel Cell. 

Fuel 

Cell 

Type 

Fuel Electrolyte 
Operating 

Temperature 
Efficiency 

PEMFC H2 Polymeric membrane <150 °C 40-50% 

DMFC CH3OH Polymeric membrane <100 °C 30-40% 

DEFC C2H5OH Polymeric membrane <100 °C 30-40% 

MFC C6H12O6 Polymeric membrane <40 °C 40-50% 

AFC H2 KOH alkaline solution 80-200 °C 45-60% 

PAFC H2 Concentrated H3PO4 acid 200-250 °C 40-45% 

MCFC CH4, CO, H2 Molten Li-K carbonate 600-700 °C 45-55% 

SOFC CH4, CO, H2 Ion conducting ceramic 700-1000 °C 50-65% 

DCFC Coal Ion conducting ceramic 600 °C - 1000 °C 40-60% 

Since the invention of the world first mobile phone by Joel Engel on 3 April 

1973, portable and wearable devices have become part of human society [11].  Each 

iteration of new mobile gadget introduced more powerful processor than their 

predecessor and become more “intelligent” to help mankind to cope with their daily 

activities.  Despite that, the use of lithium-ion battery to power the mobile appliances 

still limiting the portability of the devices because of its limited power capacity.  

Moreover, an external charger is needed to recharge the battery after the power stored 

in the battery is drained [12].  Due to these limitations, the DMFC has advantages over 

lithium battery because it can supply continuous power to the mobile devices as long 

as the fuel is available.  In addition, since the methanol fuel is in liquid form, it is easy 

to carry around and refill when it is needed.  However, in real-life applications, the 

DMFC suffers from low energy density and low efficiency.  This is due to the 

occurrence of methanol crossover problem in commercial Nafion® polymer electrolyte 

membrane (PEM) that creates an internal shorting and reduce the DMFC power output 

[13].  Thus, the new membrane with better methanol barrier properties is needed in 

order to overcome this problem and improves the DMFC performance and efficiency. 
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Sulfonated poly ether ether ketone or also known as SPEEK is one of the non-

fluorinated polymers that has potential to be develop as high performance PEM for 

DMFC operation due to its high chemical stability and thermal stability [14], decent 

proton conductivity, and low methanol permeability properties [15], [16].  However, 

high water uptake properties of SPEEK membrane due to the high concentration of 

sulfonated acid groups in its structure have reduced the mechanical stability of the 

membrane.  Therefore, modification of SPEEK membrane by adding inorganic 

particles has been done by various researchers to overcome its high water uptake 

problem and improves the membrane’s performance. 

Montmorillinite (MMT) is one of the inorganic particles that have been 

integrated with SPEEK polymer membrane due to its high cation exchange capacity, 

surface area, surface reactivity, and adsorptive properties.  The MMT also has the high 

length to width aspect ratio, which creates longer diffusion path for methanol to 

permeate [17].  Incorporation of Cloisite® 15A particles (a modified commercial 

MMT) into SPEEK matrix can improve the proton conductivity and methanol 

permeability of SPEEK/Cloisite composite membrane as compared to pristine SPEEK 

membrane [18]. 

However, the Cloisite® particles fail to disperse homogenously in SPEEK 

matrices due to poor interaction between SPEEK polymer and Cloisite® particles.  

This leads to severe agglomeration of Cloisite® particles on the SPEEK/Cloisite® 

membrane’s surface.  Thus, in order to solve the Cloisite® dispersion problem, Jaafar 

et al. [19] added 2,4,6-triaminopyrimidine (TAP) as a compatibilizer to improve the 

interaction between SPEEK polymer and Cloisite® particles.  The NH2 functional 

groups in TAP chemical structure have properties to form strong bonding with both 

organic polymer and inorganic particles [20], which provides an additional interaction 

site for SPEEK and Cloisite® to form bonding, thus improves the dispersion of 

Cloisite® particles in SPEEK matrices [18].  The new developed SPEEK 

nanocomposite membrane with 2.5% Cloiste® particles loading and 5.0% loading of 

TAP compatibilizer was able to outperform the commercial Nafion® 112 membrane 

in term of proton conductivity, methanol permeability, and produce the higher power 

output in DMFC performance test.  Thus, this type of nanocomposite membrane has 
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good potential to be developed as the new high performance PEM membrane for 

DFMC applications. 

Even though DMFC has high theoretical energy density and efficiency, the 

DMFC performance in real-life application was lower than expected.  Methanol 

crossover, cathode flooding, mechanical fatigue, and chemical degradation are several 

problems that caused DMFC performance to deteriorate as time goes by, thus shorten 

its lifespan.  DMFC lifetime test was used to study DMFC lifespan in order to achieve 

5,000 hours operational lifespan as outlined in the United States Hydrogen Energy 

Program report [21], [22].  However, conducting DMFC lifetime test is not practical 

because it requires lengthy testing time and consumes large resources [23], [24].  

Moreover, the test can only assess the overall durability of the system, not the 

individual components.  Thus, accelerated stress test (AST) is introduced as an 

alternative test to study fuel cell lifetime and degradation mechanisms that occurred 

during its operation. 

AST is a term used for a group of tests which expose the fuel cell to similar 

real-life DMFC working condition.  However, the test is conducted at a higher degree 

of severity to shorten the testing time [25].  Fenton reagent test is one of AST tests that 

used to study the effect of radical attack towards PEM’s durability as the production 

of free radical in Fenton reagent solution is similar to the production of free radical 

during DMFC operation [26].  Furthermore, the Fenton reagent test is done externally, 

which is outside the DMFC operation. Therefore, the Fenton reagent test can be used 

to study the durability of the membrane solely without taking into consideration of the 

durability of other DMFC components [27]. 

1.2 Problem Statements 

Even though the SPEEK nanocomposite membrane shows a better 

performance than commercial Nafion® membrane in term of proton conductivity, 

methanol permeability, and power output, so far, there is no research reported on the 

durability of this membrane in the DMFC application.  Durability and stability test for 
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PEM membrane using Fenton reagent test is more feasible than the DMFC lifetime 

test due to shorter testing time, and its ability to study the durability of PEM membrane 

solely without taking into consideration of the durability of other DMFC components.  

At the same time, the Fenton reagent test can replicate similar radical formation that 

occur during the DMFC operation.  Many studies have been done to study the 

durability of PEM membrane against radical attack using the Fenton reagent test [23], 

[25], [28].  However, most of the research only reported on the stability of the testing 

membrane against radical attack, and only a few follow-up study was conducted to 

determine the impact of radical attack towards PEM membrane’s physicochemical 

characteristics.  Thus, this study was designed to study the impact of radical attack 

towards SPEEK nanocomposite membrane’s physicochemical characteristics and 

properties related to DMFC operation. 

1.3 Research Objectives 

Based on the problem statements stated in section 1.2, several objectives were 

proposed in order to address these problems: 

1) To study the physicochemical changes of SPEEK nanocomposite membrane 

and determine the weak bonds in SPEEK nanocomposite structure. 

2) To study the changes of SPEEK nanocomposite membrane’s properties related 

to DMFC operation after Fenton reagent test and correlate the lifetime of 

SPEEK nanocomposite membrane in DMFC operation. 

1.4 Research Scopes 

Based on research objectives as outlined above, several scopes were outlined 

in order to achieve these objectives: 
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1) Preparing SPEEK nanocomposite solution using solution intercalation method 

and casting the SPEEK nanocomposite membrane using modified phase 

inversion technique.  The Cloisite® and TAP loadings were 2.5 wt% and 5.0 

wt% respectively. 

2) Conducting the Fenton reagent degradation test for SPEEK nanocomposite 

membrane at room temperature using 5 wt% hydrogen peroxide solution and 

four different ferum ion (Fe2+) concentrations (0.8, 3.0, 12.0, and 50.0 ppm) 

from 6 to 96 hours. 

3) Characterizing the physicochemical of degraded SPEEK nanocomposite 

membrane using field emission scanning electron microscopy (FESEM), 

tensile strength, contact angle and Fourier transform infrared spectroscopy 

(FTIR). Pristine SPEEK membrane is used as a control sample and 

comparison. 

4) Correlating the physicochemical characterization of SPEEK nanocomposite 

membrane with density functional theory (DFT) by Zhao et al. [29] to predict 

the weak bonds in SPEEK nanocomposite membrane structure that vulnerable 

to free radical attack. 

5) Evaluating the membrane properties of SPEEK nanocomposite membrane in 

terms of water uptake, proton conductivity, methanol permeability and 

selectivity. Nafion® 117 membrane is used as a control sample and 

comparison. 

6) Correlating the selectivity of SPEEK nanocomposite membrane in Fenton 

reagent test with DMFC lifetime test to predict the lifetime of SPEEK 

nanocomposite membrane in DMFC operation. 
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