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ABSTRACT 

 

  

 

 

Hemodialysis is a process of purifying the blood of a person whose kidneys are 

not working normally. The design of a sustainable and high performance hemodialysis 

membrane is of great demand to solve the existing issues and heighten the 

hemodialysis performance. Hence, the objective of this study is to fabricate 

polyethersulfone/multi-walled carbon nanotubes (PES/MWCNTs) mixed matrix 

membrane (MMM) and evaluate its potential as a hemodialysis membrane. Prior to 

MMM fabrication, MWCNTs were purified by acids mixture (H2SO4/HNO3; 3:1 v/v) 

through chemical oxidation to remove carbonaceous and metallic impurities. 

Subsequently, the oxidized MWCNTs were functionalized with citric acid 

monohydrate via polycondensation process to form poly (citric acid)-grafted-

MWCNTs (PCA-g-MWCNTs). The MMMs comprised of 17.6 wt% PES, 4.8 wt% 

polyvinylpyrrolidone and 0-0.2 wt% MWCNTs were fabricated via dry-wet spinning 

technique. The MMMs were characterized using Fourier transform infrared 

spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy 

(AFM) and contact angle goniometer. The MMMs biocompatibility were studied in 

terms of compliment activation, protein adsorption and blood coagulation time. For 

separation and antifouling studies, the MMMs were subjected to permeation test at the 

pressure of 0.7 bar using pure water and 500 ppm bovine serum albumin (BSA) 

solution as the feed solution to obtain pure water flux (PWF), BSA rejection and PWF 

recovery rate. The matched FTIR spectra obtained showed that the MWCNTs have 

been successfully incorporated in the MMM. Based on the microscopic analyses using 

SEM and AFM, MMM incorporated with PCA-g-MWCNTs possessed larger pores 

and smoother surface. Besides, the decrease in the MMM contact angle value showed 

that the surface hydrophilicity of the MMM has been improved. The biocompatibility 

test results showed that the MMM incorporated with PCA-g-MWCNTs displayed the 

least complement activation and protein adsorption while keeping a normal blood 

coagulation time, hence demonstrating modest interaction with blood. The permeation 

test results showed that MMM incorporated with PCA-g-MWCNTs has better PWF  

and BSA rejection (J= 95.36 Lm-2h-1; R= 95.2 %) as compared to the MMM added 

with oxidized MWCNTs (J= 56.15 Lm-2h-1; R= 93.7 %) where the optimum PCA-g-

MWCNTs loading was 0.1 wt%. The MMM incorporated with 0.1 wt% PCA-g-

MWCNTs also achieved the highest PWF recovery rate (81 %) and showed less 

fouling effect. The PES/MWCNTs MMM was successfully fabricated and showed 

good biocompatibility and enhanced separation performance hence secures the 

essential properties to serve as hemodialysis membrane.
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ABSTRAK 

 

 

 

 

Hemodialisis ialah proses membersihkan darah seseorang yang buah 

pinggangnya tidak berfungsi seperti biasa. Reka bentuk sebuah membran hemodialisis 

yang mampan dan berprestasi tinggi mendapat permintaan yang tinggi bagi 

menyelesaikan isu-isu semasa dan meningkatkan prestasi hemodialisis.  Justeru, 

objektif kajian ini adalah untuk menghasilkan membran bermatrik campuran (MMM) 

polietersulfon/tiub nano karbon berbilang dinding (PES/MWCNTs) dan menilai 

potensinya sebagai sebuah membran hemodialisis. Sebelum penghasilan MMM, 

MWCNTs telah ditulenkan oleh campuran asid (H2SO4/HNO3; 3:1 v/v) melalui 

pengoksidaan kimia untuk menyingkirkan bendasing berkarbon dan berlogam. Selepas 

itu, MWCNTs yang dioksida telah difungsikan dengan asid sitrik monohidrat melalui 

proses polikondensasi untuk membentuk MWCNTs-dicantumkan-poli (asid sitrik) 

(PCA-g-MWCNTs). MMMs yang terdiri daripada 17.6 wt% PES, 4.8 wt% 

polivinilpirrolidon dan 0-0.2 wt% MWCNTs telah dihasilkan melalui teknik putaran 

kering-basah. MMMs dicirikan menggunakan spektroskopi infra merah jelmaan 

Fourier (FTIR), mikroskopi imbasan elektron (SEM), mikroskopi daya atom (AFM) 

dan goniometer sudut sentuh. Biokeserasian MMMs dikaji dari segi pengaktifan 

pelengkap, penjerapan protein dan masa pembekuan darah. Bagi kajian pemisahan dan 

anti cemar, MMMs telah menjalani ujian penyerapan pada tekanan 0.7 bar 

menggunakan air tulen dan 500 ppm larutan serum albumin bovin (BSA) sebagai 

larutan suapan untuk mendapatkan fluks air tulen, penyingkiran BSA dan kadar 

pemulihan PWF. Spektra FTIR sepadan yang diperoleh menunjukkan bahawa 

MWCNTs telah berjaya dimasukkan ke dalam MMM. Berdasarkan analisis 

mikroskopik menggunakan SEM dan AFM, MMM yang dimasukkan dengan PCA-g-

MWCNTs mempunyai liang yang lebih besar dan permukaan yang lebih rata. Selain 

itu, penurunan nilai sudut sentuh MMM menunjukkan bahawa sifat hidrofilik 

permukaan MMM telah dipertingkatkan. Hasil ujian biokeserasian menunjukkan 

bahawa MMM yang dimasukkan dengan PCA-g-MWCNTs mempamerkan 

pengaktifan pelengkap dan penjerapan protein paling sedikit sementara mengekalkan 

masa pembekuan darah yang normal, justeru membuktikan interaksi yang memuaskan 

dengan darah. Hasil ujian penyerapan menunjukkan bahawa MMM yang dimasukkan 

dengan PCA-g-MWCNTs mempunyai fluks air tulen dan penyingkiran BSA yang 

lebih baik (J= 95.36 Lm-2h-1; R= 95.2 %) berbanding dengan MMM yang dicampurkan 

dengan MWCNTs yang dioksida (J= 56.15 Lm-2h-1; R= 93.7 %) di mana kandungan 

PCA-g-MWCNTs yang optimum adalah 0.1 wt%. MMM yang dimasukkan dengan 

0.1 wt% PCA-g-MWCNTs juga mencapai kadar pemulihan PWF tertinggi (81 %) dan 

menunjukkan kesan cemar yang kurang. PES/MWCNTs MMM telah berjaya 

dihasilkan dan menunjukkan biokeserasian yang baik dan prestasi pemisahan yang 

dipertingkatkan justeru menjamin ciri-ciri penting untuk berkhidmat sebagai membran 

hemodialisis. 
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INTRODUCTION  

 

 

 

 

1.1 Research Background 

 

 

Over the past fifteen years, the number of chronic kidney diseases patients has 

increased terrifically where these patients suffer from the incapability of filtering and 

removing body waste. According to Malaysia’s National Renal Registry, it has been 

reported that the total amount of people undergoes hemodialysis had risen from 6,689 

to 21,159 people in 2009 (Cheng, 2011). The number did not stop there. The latter 

report in May 2013 indicated the increase of dialysis patients to 26,159 people (Cheng, 

2013). The latest statistics issued by National Kidney Foundation (NKF) in 2014 

revealed the total number of 30,000 Malaysians on dialysis (Cruez, 2014). This shows 

the growth of about 4,000 newly registered patients each year. In human blood 

circulatory system, the blood carries soluble wastes such as the end-products of 

metabolism reactions occurred in body, together with the accumulated sodium, 

potassium, and chloride ions in the body. The accumulated wastes cause toxins to build 

up in the body and may render further complications. Thus, blood must be cleaned by 

removing those substances as waste. The most widely applied extracorporeal treatment 

to filter and purify blood is hemodialysis.  

 

 

Hemodialysis is considered as a highly successful therapy that provides the 

second chance to live. Since the commencing of the first semipermeable membranes 

for hemodialysis, the membrane technology keeps developing until it has been 

successfully used for hemodialysis treatment for patients who suffer from acute renal 

disease and end-stage renal failure (ESRF). In general, the main component of 
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hemodialysis machine is dialyzer, where semipermeable membrane is situated. The 

membrane is arranged in the middle, serves as membrane contactor to form separate 

adjacent paths for blood and dialysis fluid (dialysate). It filters waste products (i.e. 

urea, creatinine, β2-microglobulin), removes excess water and balances electrolytes 

such as sodium, potassium, and bicarbonate. Hemodialysis treatment utilizes 4 

principles of movement across semipermeable membrane, namely diffusion, 

convection, ultrafiltration (UF) and osmosis. Diffusion is the movement of solutes 

across concentration gradient while convection is the movement of solvent and 

dissolved solutes across hydrostatic pressure gradient. UF is a convective movement 

of water following pressure gradient and osmosis is a movement of water across water 

concentration gradient, separated by membrane.  

 

 

Among hydrophobic polymers, polyethersulfone (PES) is usually employed for 

blood purification (Zhao et al., 2013) due to its hydrophilic-hydrophobic characteristic 

that can be easily tailored to ensure higher biocompatibility. Currently, materials used 

for commercialized hemodialysis membranes are polysulfone (PSf) and PES. PES 

shares the same properties as PSf but offers outstanding oxidative stability, greater 

mechanical, chemical and heat resistance. Thus, PES could endure many kinds of 

sterilization method which is crucial for clinical purpose.  PES is more hydrophobic 

compared to PSf, which is favorable in terms of mechanical strength of membrane. 

However, some studies concluded that membrane fouling is directly proportional to 

hydrophobicity. Thus, modification of PES membrane is performed to improve the 

hydrophilicity. Polar additive such as polyvinylpyrrolidone (PVP) is usually added for 

this purpose. 

 

 

Recently, the advancement of synthetic membranes for hemodialysis is not 

centering on synthetic polymers alone. The expansion of nanotechnology has exposed 

people around the world on the exceptional properties of nanomaterials. In this context, 

nanomaterials have been promisingly used as nanofiller of polymer matrix (Favvas et 

al., 2014; Ng et al., 2010; Japip et al., 2014), forming a new class of membrane known 

as mixed matrix membranes (MMMs). The incorporation of nanoparticles in 

membrane matrix for surface modification and performance enhancement of 

membranes is an emerging trend in membrane technology. There are two types of 
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commonly used nanoparticles, i.e. (i) carbon nanoparticles such as carbon nanotubes 

(CNTs) and graphene and (ii) metal oxide nanoparticles like titanium dioxide and iron 

oxide nanoparticles. Their major roles include enhancing the durability of polymeric 

membranes towards chemical degradation, fouling and thermal instability as well as 

heightening the performance of the resultant MMMs through their unique properties 

(Souza and Quadri, 2013; Cao et al., 2006). 

 

 

In some cases, hydrophilic nanomaterials are placed specifically in the 

membrane pores, where they have a promising effect on the flux improvement and 

fouling mitigation. For example, the incorporation of CNTs into membrane mainly 

aims at providing numerous additional transport channels to improve the membrane 

mass-transfer properties. The study by Irfan et al. (2014) comprehensively highlights 

the advantages offered by functionalized multi-walled carbon nanotubes (MWCNTs) 

towards PES membrane. The improved characteristics like porosity and hydrophilicity 

subsequently results in the enhancement of the membrane pure water permeation rates, 

antifouling capabilities (Sianipar et al., 2015) and separation performance (Nie et al., 

2015). 

 

 

In this study, MWCNTs were incorporated in PES membranes for hemodialysis 

application. To further enhance the hydrophilicity and water transport properties, the 

MWCNTs were functionalized with poly (citric acid) (PCA), forming PCA-grafted 

(g)-MWCNTs. The effects of MWCNTs modification and loading on the MMMs were 

evaluated in terms of morphology, separation features and antifouling performance. In 

brief, this study would be beneficial to those interested in the design of carbon 

nanocomposites and the development of a sustainable and high performance 

membrane for efficient liquid separation especially in UF and hemodialysis treatment. 

Besides, the employment of unique nanoparticles in hemodialysis membrane would 

broaden people’s horizons and provide the insight towards its potential 

commercialization for hemodialysis application.   
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1.2 Problem Statement 

 

 

One of the major problems arising in hemodialysis is the membrane fouling 

which caused by adsorption of nonpolar solutes, hydrophobic protein or bacteria onto 

the membrane surface (Van der Bruggen, 2009; Koh et al., 2005). Membrane fouling 

caused a reduction in water permeability and separation performance of membrane. 

As a result, the performance of the membrane deteriorates with time. There are a 

number of factors contributing to membrane fouling. The first one is the hydrophobic 

property of polymer matrix. Naturally existing hydrophobic proteins in blood tend to 

deposit on membrane surface. The second one is due to the bio-incompatibility of 

membrane which induced inflammatory responses such as complement activation. 

Immunological cells will be triggered and block the opening of pore, minimizing pore 

size. Thirdly is related to inner surface roughness of membrane. The possibility of 

proteins to get stuck on a rough surface is higher. Besides that, morphology of 

membrane can also be associated with membrane fouling (Yuan and Zydney, 1999). 

In fact, current commercial membranes could not remove ‘middle’ size molecules such 

as β2-microglobulin efficiently due to inadequate membrane pore size. 

 

 

Realizing the importance of maintaining the consistency of the membrane 

separation features, a novel approach in the design of a safe, high performance 

hemodialysis membrane is of great demand. To tackle the stated problems, surface 

modification is usually done to hydrophobic polymer like PES. The simplest way to 

modify PES is by blending with hydrophilic polymers like PVP (Barzin et al., 2004). 

Other than becoming pore former, PVP also increases the hydrophilicity of membrane, 

thus increasing antifouling properties and biocompatibility of PES membrane (Wang 

et al., 2006). Nevertheless, the tendency of PVP to swell in water and elude during 

dialysis (Irfan et al., 2014) makes it less convincing. The efforts then have been shifted 

to the development of MMMs by incorporating nanoparticles to overcome the 

limitation of polymeric membranes.  

 

 

Among other nanoparticles, MWCNTs received the most attention due to its 

nanoscale dimension, chemically inertness, remarkable total surface area, high 

modulus and strength. MWCNTs are used as membrane fillers which can pave massive 
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mass transport channels for solutes, improving separation process (Zhang et al., 2014). 

However, pristine MWCNTs suffer from strong intermolecular forces due to their 

hydrophobic nature and thus cannot disperse well in organic solvents. Besides, carbon 

and metal impurities, which could pose threat on patient must be removed from 

MWCNTs walls. Thus, chemical oxidation of pristine MWCNTs must be performed. 

Chemical oxidation of MWCNTs also introduces polar (i.e. carboxyl) groups onto the 

surface, which makes it become dual nature. It has been proven that a small amount of 

oxidized MWCNTs could enhance hydrophilicity, water permeability, and the 

antifouling property of polymeric membranes (Gallagher et al., 2013; Majeed et al., 

2012; Ajmani et al., 2012), other than increasing mechanical stability and transport 

property of membranes.  

 

 

In addition, further functionalization of MWCNTs with dendritic polymers is 

highly needed to reduce their toxicity effects and lead to safe interaction with cell 

membranes. Dendritic polymers have been previously demonstrated as suitable nano-

carriers for use in biomedical applications because of their large number of functional 

groups, small sizes and polyvalency.  One of dendritic polymers is PCA, which is a 

highly water soluble polymer and its biocompatibility cannot be denied (Naeini et al., 

2010; Qian et al., 2008). It was anticipated that the addition of PCA-g-MWCNTs 

might improve the MMM separation performance and antifouling properties, hence 

pave a way to its potential application in hemodialysis.  Therefore, in this study, 

attempts were made to fabricate PES/MWCNTs MMMs to investigate the synergism 

between MWCNTs nanofillers and PES matrix in demonstrating far better 

characteristics, separation performance, and antifouling properties compared to that of 

neat membrane. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The main objective of this project is to fabricate PES hollow fiber membrane 

embedded with MWCNTs and evaluate its potential as hemodialysis membrane. Based 
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on the aforementioned research background and problem statement, the specific 

objectives of this study are listed below:  

 

 

1. To functionalize and characterize MWCNTs. 

  

2. To study the effects of purification and functionalization of MWCNTs on the 

MMMs surface characteristics and biocompatibility. 

 

3. To evaluate the separation performance of the MMMs in terms of pure water flux 

and BSA removal. 

 

 

 

 

1.4 Scopes of the Study 

 

 

In order to fulfil the above objectives, the following scopes of work are 

outlined: 

 

 

1. Purifying the MWCNTs through chemical liquid phase oxidation process using 

acids mixture (H2SO4/HNO3; 3:1 v/v) and functionalizing with PCA. 

 

2. Confirming the purity of oxidized and functionalized MWCNTs that were formed 

using field emission scanning electron microscopy (FESEM), scanning 

transmission electron microscopy (STEM), energy-dispersive X-ray spectrometry 

(EDX), thermogravimetric analysis (TGA), and Fourier transform infrared 

spectrometry (FTIR). 

 

3. Investigating the dispersion stability of oxidized and functionalized MWCNTs in 

ethanol by observing the suspensions after 24 hours. 

 

4. Preparing dope solutions comprised of 17.6 weight percent (wt%) PES, 4.8 wt% 

PVP, and 0-0.2 wt% MWCNTs in NMP and water. 
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5. Fabricating PES/MWCNTs mixed matrix hollow fiber membranes via dry-wet 

spinning technique at 50 cm air gap. 

 

6. Casting PES/MWCNTs flat sheets via dry-wet phase inversion process with 

evaporation time of 6 seconds using water as the coagulation bath. 

 

7. Examining the morphology of the fabricated membranes using SEM and atomic 

force microscope (AFM), thermal stability using TGA, hydrophilicity using 

contact angle measurement, biocompatibility of the MMMs, and confirming the 

molecular structure by FTIR. 

 

8. Evaluating the separation features of MMMs in terms of pure water flux (PWF) 

and protein rejection using 500 ppm bovine serum albumin (BSA) at 0.7 bar.  

 

9. Investigating the antifouling performance of the MMMs based on flux decline 

behavior and flux recovery rate. 

 

10. Studying the leaching phenomenon of MWCNTs from MMMs during water 

permeation by direct filtration and using a conductivity meter. 

 

 

 

 

1.5 Significance of Study 

 

 

This study would have brought upon a huge importance towards the 

development of science and technology for the sake of mankind. The primary outcome 

of the research would benefit scientific community in the sense of filling in the 

knowledge gap in multiple fields which encompass nanotechnology and membrane 

technology. In addition, the research on hemodialysis membranes in Malaysia is still 

at early stages. The employment of MWCNTs in hemodialysis membrane for instance 

could progressively diversify their potential in this biomedical-device application. The 

ingenious approach which combined both unique properties of MWCNTs and 

versatility of polymer as a host showed great potential to combat the fouling issues 

commonly faced by polymeric membranes.  This novel invention is believed to 
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become a stepping stone which could provide a valuable information for 

membranologists and lead the way to further study.  The aftermath of the research will 

also benefit the ESRF patients by providing a sustainable and biocompatible 

hemodialysis membrane that is capable and reliable to perform exceptional blood 

purification with minimal adverse effect. Triggered by the general necessities of 

serving the social community, the study would attract companies that manufacture or 

supply medical equipment as a platform to patent and market the product. Last but not 

least, the outcomes of this research would also help to compensate government’s 

burden to accommodate the subsidy cost of performing hemodialysis with the rising 

population of ESRF patients.  

 

 

   

 

1.6 Limitation of Study 

 

 

Throughout the study, there were a number of elements that have not received 

close attention and have not been taken into account. Hence, the corresponding results 

were generated based on coherent assumptions. The following limitations are 

disclosed below: 

 

 

1. All biocompatibility tests were not performed on the identical hollow fiber 

membrane used for other assessments. Instead, flat sheet membranes from each 

particular membrane composition were utilized. The size of membrane surface 

area in contact with blood might influence the results. It has been assumed that the 

results obtained using flat sheet membrane would reflect the membrane-blood 

interactions of different membrane’s chemical modifications, at least for the 

comparison purpose. Hollow fiber membrane is hard to handle, since the active 

surface is at the inner side. On the other hand, the very small lumen made it even 

difficult to ensure homogeneous interaction with the inner surface. 

 

2. Blood coagulation and complement activation test results might not symbolize the 

membrane compatibility towards human blood of specific types and conditions. 

This is due to some issues and constraints regarding the ethics and method of 
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procuring the supply of ESRF patient’s blood. Instead, the blood samples used for 

biocompatibility tests were collected from 3 healthy volunteers of random blood 

groups. The presented results of each membrane were based on the average value 

obtained from the 3 blood samples. Hence, the outcomes generated from this part 

of studies represent more on the membrane-blood interactions as a whole. 

 

3. The performance data acquired from the separation and antifouling performance 

evaluation was collected using outside-to-inside UF system, while the real 

hemodialysis set up consists of a membrane contactor which utilize both UF and 

diffusion mechanisms for molecules separation. The feed inlet usually channels 

the fluid from inside to outside of the module. Still, the used UF system would be 

sufficient in serving the research purposes at this level. The water permeation, 

which is the interpretation of blood plasma flow was experimented mainly to 

compare the PWF achieved by different formulated membranes, regardless of the 

water inlet direction. As for the protein rejection, the results were highly influenced 

by the membrane hydrophilicity and PWF. 
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