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Ultraviolet (UV) lasers have been employed for many applications such as in 

the food industry, medicine and dentistry. The use of laser and other pulsed light 

systems for phototherapy and other microbial disinfections are based on spectral 

characteristics and configuration of the light used. The objective of this study was to 

use a flash lamp-pumped passive Q-switched Nd:YAG laser for inactivation two 

pathogenic bacteria, namely Escherichia coli and Listeria monocytogenes. A       

1064 nm pulsed infrared (IR) laser and its 2
nd

 and 3
rd

 harmonics were used to 

irradiate Escherichia coli at various values of fluence. A 350 nm continuous wave 

(CW) UV lamp was also used in the inactivation process for the purpose of 

comparison with the 3
rd

 harmonic (355 nm) pulsed laser. The result indicates that 

there is a statistical significant difference between mean log10 reductions for the three 

laser wavelengths. The mean log10 reductions for the 355 nm pulsed (UV) laser are 

higher than the corresponding mean log10 reductions for the CW UV light. A t-test 

conducted on the mean log10 reductions obtained for the pulsed UV laser and the CW 

UV light indicates that there is a significant difference between the two sets of mean 

log10 reductions. When E. coli and L. monocytogenes samples were irradiated with 

the pulsed UV laser at three different pulse frequencies, the result shows higher 

inactivation effect at higher pulse frequency than at lower pulse frequency. Statistical 

analysis, using two-way ANOVA, shows that the mean log10 reductions for the three 

pulsed frequencies were significantly different. However, no statistical significant 

difference was observed between mean log10 reductions obtained for treatment with 

the pulsed UV laser and the CW UV light on three different sample volumes of E. 

coli and L. monocytogenes.   
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Laser lampau ungu (UV) telah digunakan untuk pelbagai aplikasi seperti 

dalam industri makanan, perubatan dan pergigian. Penggunaan laser dan sistem 

denyutan cahaya lain untuk fototerapi dan disinfeksi mikrob lain adalah berdasarkan 

ciri-ciri spektrum dan konfigurasi cahaya yang digunakan. Objektif kajian ini adalah 

untuk menggunakan laser Nd:YAG suis-Q pasif dipam lampu kilat bagi 

menyahaktifkan dua bakteria patogenik, iaitu Escherichia coli dan Listeria 

monocytogenes. Laser denyutan inframerah (IR) 1064 nm dan harmoniknya yong  

ke-2 dan ke-3 telah digunakan untuk menyinari Escherichia coli pada pelbagai nilai 

dos tenaga. Lampu UV gelombang selanjar (CW) 350 nm juga digunakan dalam 

proses menyahaktif bagi tujuan perbandingan dengan denyutan laser harmonik ke-3 

(355 nm). Keputusan menunjukkan bahawa terdapat perbezaan statistik yang 

signifikan antara pengurangan log10 purata bagi tiga panjang gelombang laser. 

Pengurangan log10 untuk 355 nm laser denyut (UV) adalah lebih tinggi daripada 

pengurangan log10 purata sepadan untuk gelombang cahaya UV CW. Ujian-t telah 

dijalankan ke atas pengurangan log10 purata diperoleh bagi laser denyut UV dan 

cahaya UV CW menunjukkan bahawa terdapat perbezaan yang signifikan antara 

kedua-dua set pengurangan log10 purata. Apabila sampel E. coli dan                          

L. monocytogenes telah disinarkan dengan laser denyut UV pada tiga frekuensi 

denyutan yang berbeza, keputusan menunjukkan kesan menyahaktif lebih tinggi pada 

frekuensi denyut tinggi daripada frekuensi denyut lebih rendah. Analisis statistik, 

menggunakan dua-cara ANOVA, menunjukkan bahawa pengurangan log10 purata 

bagi tiga frekuensi denyutan adalah jauh berbeza. Walau bagaimanapun, tiada 

perbezaan statistik yang signifikan telah diperhatikan antara pengurangan log10 

purata diperoleh bagi rawatan dengan laser denyut UV dan cahaya UV CW pada tiga 

jilid sampel yang berbeza E. coli dan L. monocytogenes.  
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INTRODUCTION 

1.1 Background 

Ever since the first laser was constructed by Theodore Maiman in 1960 

(Koechner, 2006), studies aimed at exploring the nature and expanding the 

applicability of lasers has been continued by scientists across the globe. The ruby (or 

Maiman) laser was of the red visible light radiation (694.3 nm) with pulse-duration 

of the order of milliseconds, pulse energy of about 1 J and an average power of the 

order of kilowatts (Abramczyk, 2005).  Progressively, other types of laser were 

developed and today we have gas lasers, liquid lasers, solid state lasers and 

semiconductor lasers, among others. Laser lights are now being produced for 

virtually the entire visible range of the electromagnetic spectrum (Figure 1.1) and 

even beyond (up to the x-ray region), with pulse-duration reaching the order of 

attosecond (10
-18

 s) and an attainable average peak power of zetawatts (10
21 

W) 

(Koechner, 2006; Milonni and Eberly, 2010).  
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Figure 1.1 The electromagnetic spectrum (modified from Shapley (2015)) 

The original energy or power of laser lights obtained from an oscillator is 

usually too low for most applications. Therefore, it needs further amplification for it 

to be useful for such applications. Output pulse energies from femtosecond lasers 

typically do not exceed a few nanojoules, and peak powers of megawatts 

(Abramczyk, 2005). Hence, laser or pulse amplifiers are employed to raise output 

power to useful levels required for various applications.  In seeking methods to 

shorten pulses and to increase peak powers and peak intensities on intended targets, 

researchers often trade-off various design and input parameters in order to obtain an 

optimize state of operation for a particular application. With pre-determined design 

parameters, the next option for optimization is for a researcher to manipulate the 

input parameters. 

Applications of lasers vary as widely as their range of the wavelengths, pulse-

width or peak power. Applications are found in industries (e.g. laser machining, laser 
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cutting or drilling), medicine (e.g. dentistry, neural network, dermatology, and 

surgery), home or office appliances (e.g. laser printer, laser scanner and laser 

pointer), research laboratories (e.g. spectrometry and diffraction experiments), 

military (e.g. laser guided smart bombs and laser blinders), communication (e.g. laser 

fibers), etc (Diels and Arissian, 2011). Lasers are also important parts of common 

devices such as bar-code scanners used in supermarkets, compact disc systems, and 

digital versatile disc (DVD) players. 

In the health sector, laser irradiation has been adopted as a technique for 

curing or controlling various bacteria-related diseases in medicine and dentistry 

(Andrade et al., 2008; Franzen et al., 2011; Nandakumar et al., 2003; Schoenly et al., 

2012). The use of lasers in these and other health-related fields depends on the 

absorption ability of interacting targets or media. The power and wavelength of 

beam, in addition to the absorption properties of the interacting biological tissue 

determine the depth of penetration of a laser beam (Abramczyk, 2005; Diels and 

Arissian, 2011). For bacteria and similar microbes, absorption of radiation is said to 

depend on the wavelength of the incident radiation, with the ultraviolet (UV) region 

providing the most effective absorption when compared to other regions of the 

electromagnetic spectrum.  

The UV laser finds applications in diverse fields such as in material 

processing (Ya et al., 2009b; Zhai et al., 2013), lithography (Ya, et al., 2009b; Yang 

et al., 2009), various spectroscopic techniques (Franzke et al., 1998; Suzuki et al., 

2008; Ya, et al., 2009b; Yang, et al., 2009), medicine (Ya, et al., 2009b), and others. 

One area in which lasers are put into applications that are more closely related to 

human systems is in the interaction of lasers with bio-samples. Studies in this area 

are often fashioned out in such a way that most of the resulting applications are 

tailored towards medicine, surgery or dentistry. Practically all of these applications 

are for curative purpose. 

The UV spectrum is the portion of the electromagnetic spectrum between 

visible light and X-rays, with wavelength ranging from about 10 nm to about 400 
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nm. Depending on its spectral properties and applications, the UV spectrum is further 

subdivided into four regions as shown in Figure 1.2. Another classification mode of 

the UV spectrum refers to the longer wavelengths greater than 200 nm as near-UV 

while those below 200 nm are called far-UV.   

 

 

 

Far UV 

 

 

Near UV 

 

 

Vacuum UV 

 

 

UV-C 

 

 

UV-B 

 

 

UV-A 

 

 

 

Figure 1.2 Divisions of the UV portion of the electromagnetic spectrum showing 

wavelengths in nm 

 

Although the broad spectrum from infrared to UV can be used for microbial 

inactivation, most of the germicidal effects have been attributed to the UV region, 

particularly the UV-C. Several documented studies (Daryany et al., 2009; Bohrerova 

et al., 2008; Farrell et al., 2011; Marquenie et al., 2003; Matafonova and Batoev, 

2012; Villarroel et al., 2012a) indicate that UV light can be used for various 

decontamination and sterilization processes. Specifically, pulsed UV light has been 

reported to be more efficient in inactivation of bacteria and other microbial 

organisms than continuous wave UV light (Bohrerova, et al., 2008; Cheigh et al., 

2012; Farrell, et al., 2011; Hierro et al., 2011). The transmission electron 

micrographs of intense pulsed light (IPL) and UV-C-induced cell damage observed 

by Cheigh, et al. (2012) indicate that bacterial cell structures were destroyed by IPL 

treatment but not by UV-C treatment. Lethal effects of pulsed light on microbes is 

said to also depend on the fluence incident on the sample, the composition of the 

10 nm 100 nm 280 nm 315 nm 400 nm 

200 nm 

(Wavelength) 

10 nm 400 nm 
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emitted light spectrum and the distance of the sample from the light source (Artíguez 

et al., 2011). Other factors that affect microbial inactivation in liquid samples are 

thickness, colour, opacity, viscosity, product flow conditions and presence of 

particulate material (Pataro et al., 2011). 

 By the nature of pulsed laser, it should have more power than an ordinary 

continuous wave light because of its coherence and directionality.  Hence, it is 

premised that the interaction of pulsed UV laser with bacteria should have more 

lethal effect than continuous wave UV light of similar output configuration. 

However, it was stated (López et al., 2007) that there are no independent 

experimental reports to confirm some claims of pulse light having more penetrating 

power  than continuous wave light. Studying the effects of parameters of pulsed 

laser, such as, fluence, spectral distribution and pulse frequency on inactivation of 

bacteria in comparison to result obtained for continuous wave UV light could verify 

the veracity of this supposition. So far, most of the studies conducted using laser for 

either direct (Dinu et al., 2002; Nandakumar, et al., 2003) or indirect (Andrade, et 

al., 2008; Baudelet et al., 2009; Franzen, et al., 2011; Schoenly, et al., 2012) 

microbial inactivation were aimed at applications in dentistry and medicine, with 

emphasis on roles played by laser wavelength, pulse power and pulse width.  

Apart from wavelength, other parameters of pulsed laser, like pulse width and 

pulse frequency, could as well play some roles in bacteria inactivation process for a 

particular wavelength of a pulsed laser.  This may have some implications for 

optimization of lasers or other pulsed light systems to maximise performance. This 

study is designed to further explore the potential of pulsed UV laser light as a means 

of inactivation of bacteria in liquid medium by looking into roles played by laser 

fluence and pulse frequency.  The two pathogenic bacteria chosen for this study have 

been known to cause either food poisoning or food spoilage. Certain strains of 

Escherichia coli are known to cause diarrhoea, resulting from intake of contaminated 

water or food. In addition, Listeria monocytogenes is the cause of listeriosis, also 

resulting from eating contaminated food. The food poisoning resulting from the 

actions of these bacteria could lead to illnesses of epidemic proportion. The result of 



6 

food spoilage could lead to economic losses from both production companies and 

retailers. 

1.2 Statement of problem 

Non-thermal methods of inactivating bacteria are being sought because such 

methods leave less damaging effects on processed materials such as food and 

surgical materials. Heat treatment of foods at high temperature can affect texture, 

flavour and appearance of the product whereas less severe thermal treatment may 

result to inadequate decontamination (Maktabi et al., 2011).  Pasteurization of food 

materials and other methods of thermal sterilization also results into rise in 

temperature in the bulk of the material, which may be undesirable. Using chemical 

disinfection is effective, but it may also leave behind residual by-products, which 

may be toxic or be mutagenic (Daryany et al., 2008). Previous studies conducted 

indicate the potentiality of pulsed light, especially of the UV type (Bohrerova, et al., 

2008; Cheigh, et al., 2012; Farrell, et al., 2011; Hierro, et al., 2011), for inactivation 

of bacteria. However, a basic limitation in the use of pulsed light is in the depth of 

penetration of light in the materials being processed, especially coloured liquids. 

Depth of penetration is usually limited by the power of the pulsed light in addition to 

the level of transparency of the sample material being processed. Therefore, pulsed 

UV lasers, which are narrow-banded and provide high-intensity emissions, with 

desirable penetration depth in water and other fluids may be potentially more 

effective (Daryany, et al., 2008).  This study was designed to look into the 

effectiveness of pulsed UV laser in decontamination and sterilization, especially with 

regards to any possible roles by the laser wavelength, pulse frequency and sample 

depth, in liquid sample. Determination of prime values for laser parameters, at which 

inactivation is optimal, may lead to efficient use of laser systems for the purpose of 

bacteria inactivation in liquid food items.   
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1.3 Objectives 

The main objective of the study was to use a flash lamp-pumped passive Q-

switched Nd:YAG laser for inactivation of selected pathogenic bacteria. This main 

objective was pursued through the following sub-objectives: 

(i) To modulate the output of the Nd:YAG laser from IR to its 3
rd

 harmonic 

in the UV region by using non-linear crystals.  

(ii) To examine the effectiveness of the 3
rd

 harmonic of the Nd:YAG laser in 

inactivation of two selected pathogenic bacteria (Escherichia coli and 

Listeria monocytogenes). 

(iii) To observe the effect of pulse frequency (or pulse repetition rate) of the 

3
rd

 harmonic of the Nd:YAG laser in the process of the bacteria 

inactivation. 

(iv) To observe the effect of sample volume in the process of inactivation of 

bacteria with the 3
rd

 harmonic of the Nd:YAG laser. 

1.4 Scope of study 

A flash lamp-pump Q-switched Nd:YAG laser with pulse duration of 6 ns 

was employed for the study. The pulse energy of the laser can be varied in the range 

0 – 1000 mJ. The pulse repetition is in the range of 1 – 5 Hz, in steps 1 Hz. The laser 

wavelengths used for the study are 1064 nm, 532 nm and 355 nm. A 350 nm 

continuous wave UV lamp, rated 4 W, was also used for the study for the purpose of 
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comparison. Two species of pathogenic bacteria, Escherichia coli (ATCC 11775) 

and Listeria monocytogenes (ATCC 7645), obtained from Institute of Bio-

Information Technology, Universiti Selangor, were the samples used for the study. 

The bacteria samples used are common pathogenic bacteria associated with food 

poisoning. All experiments were conducted under ambient conditions of room 

temperature and atmospheric pressure. 

1.5 Significance of study 

Study of the interaction of lasers with microbial organisms (particularly the 

pathogenic types) leads to applications such as food preservation, food safety, 

decontamination of immediate environment, sterilization of equipment, etc; which 

are preventive rather than curative. Hence, possible application from this study is in 

the development of efficient point-of-use UV laser devices for decontamination and 

sterilization for use at homes, hospitals, industries and work places.  

1.6 Original contributions of this study 

The following are some of the academic contributions derivable from this 

study:  

 The study compares the effects of three pulsed laser wavelengths in 

inactivation of Escherichia coli and it was found that 355 nm pulsed laser 

was more efficient in the inactivation process than 532 nm and 1064 nm 

pulsed lasers. 
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 The effectiveness of inactivation of the 355 nm  pulsed laser was compared 

with that of a 350 nm continuous wave UV light of close output 

configuration and it was found that the 355 nm laser was more efficient in 

the inactivation of Escherichia coli.  

 The study also reveals that inactivation of both Escherichia coli and Listeria 

monocytogenes is more efficient at higher laser pulse frequency than at lower 

frequency.  

1.7 Thesis structure and organization 

This thesis is composed of five chapters. Chapter 1 gives a general 

background of the study followed by problem statement, objectives of study, scope 

of study, significance of study and contributions of study,  in that order. In chapter 2, 

literature related to the study was reviewed. This includes review of some past 

studies done on harmonic generation using non-linear optics and microbial 

inactivation with pulsed light. Relevant formulae for the study are also highlighted. 

Chapter 3 describes the methodology employed for the study which includes list of 

materials used, a brief description of experimental procedures and mode of data 

analysis. Details of the experimental results obtained as well as analysis of results for 

harmonic generation by non-linear optical conversion and interaction of laser with 

samples studied are presented in chapter 4. Chapter 5 is the conclusion and 

recommendations. 
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