ANIDOLIC DAYLIGHTING SYSTEM FOR EFFICIENT DAYLIGHTING IN DEEP PLAN OFFICE BUILDING IN THE TROPICS

MOHSEN ROSHAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Architecture)

> Faculty of Built Environment Universiti Technologi Malaysia

> > AUGUST 2014

I would like to dedicate this thesis to my beloved mother and siblings.

ACKNOWLEDGEMENT

First and foremost, all thanks to God for the blessings and opportunity in helping me to get this stage of academic journey. Without His help, I would not have achieved anything.

My deepest gratitude goes to my thesis supervisor Assoc. Prof. Dr. Mohd Zin Bin Kandar for his valuable supervision, resources, motivation and friendship during the study. This thesis would not have been the same as presented here without their continued support and guidance. Besides, I would like specially to thank Assoc. Prof. Dr. Dilshan Remaz Ossen, Dr. Lim Yaik Wah and Dr Ismail Bin Said for their advances, resources, encouragements and friendships during the study.

It has been an absolute pleasure to me throughout my studies as a Ph.D. student at the Department of Built Environment of the Universiti Teknologi Malaysia. I am also indebted to Universiti Teknologi Malaysia (UTM) for providing International Doctoral Fellowship (IDF) to Ph.D. study.

Finally, I am deeply indebted to my family from close and afar for their encouragement and help. My great thanks to my mother for love, concern, support and prayers during my study. Many thanks also go to my brothers and sisters for their supports, concern and prayers.

ABSTRACT

Daylight is a natural resource for space illumination. Providing more available daylight in buildings is highly desirable, not only for energy efficiency but also to enhance the occupants' performance and well-being. Daylight through window is common solution to lit the indoor space, but only provides limited depth of room space. Anidolic Daylighting System (ADS) is one particularly promising technology to be used for transferring daylight into deeper interior spaces. This research determines the ADS variables that are applicable under tropical climate according to modified duct shapes, duct width, duct length and distributor configuration. Experimental scale model and Integrated Environmental Solutions <Virtual Environment> (IES<VE>) computer simulation were employed in conducting the research. Physical scale model (1:10) was used to validate the simulation tool and to determine the appropriate orientation. Subsequently, the ADS was simulated in different variables of duct shapes, duct width, duct length and distributor configuration in open plan office. The analysis of results for daylight quantity was done based on absolute Work Plan Illuminance (WPI), daylight factor and daylight ratio, as well as WPI uniformity for daylight quality. The results illustrated that the ADS performed well for all orientations, but its performance in the South orientation was better than other orientations. It was shown that the developed ADS by rectangular duct shape and three meter duct width can transfer daylight as deep as 12.5m and 20m from window wall in overcast and intermediate sky conditions respectively. Moreover, the results demonstrated that effective daylighting depth could be supported with acceptable performance by developed ADS until 12.5m in both quality and quantity under intermediate sky. The new findings give insights for architects, engineers and built environment scientists to reach the complete potential of ADS in visual comfort as well as energy saving.

ABSTRAK

Cahaya siang adalah sumber semulajadi untuk pencahayaan. Penggunaannya di dalam bangunan adalah sangat dikehendaki, bukan hanya untuk penjimatan tenaga, tetapi juga untuk meningkatkan prestasi dan kesejahteraan penghuni. Keadah lazim cahaya siang melalui tingkap boleh memberikan pencahayaan yang mencukupi, walaubagaimanapun ia hanya memberi pencahayaan di sekitar kawasan tingkap yang berhampiran sahaja. Sistem Pencahayaan Siang Hari Anidolic (ADS) adalah salah satu teknologi berpotensi besar terutamanya untuk memindahkan cahaya ke dalam ruang dalaman yang lebih dalam. Kajian ini menentukan pembolehubah sistem ADS yang sesuai digunakan diiklim tropikal mengikut bentuk, lebar, dan panjang saluran yang diubahsuai dan konfigurasi pengagihan. Model skala fizikal dan Integrated Environmental Solutions komputer digunakan dalam menjalani kajian ini. Model skala fizikal (1:10) digunakan untuk mengesahkan program simulasi dan menentukan orientasi yang sesuai. Seterusnya, simulasi sistem ADS digunakan di dalam pelbagai pembolehubah pada panjang, lebar dan bentuk saluran dan juga konfigurasi pengagihan di dalam pelan pejabat. Penemuan analisis bagi kuantiti cahaya siang diguna pakai berdasarkan pencahayaan tempat kerja mutlak, factor dan purata cahaya siang, dan juga keseragaman pencahayaan tempat kerja bagi kualiti cahaya siang. Keputusan menunjukkan, ADS menghasilkan petunjuk yang baik untuk semua orientasi, tetapi pelaksanaan sistem ini dalam orientasi Selatan adalah lebih baik daripada orientasi lain. Selian itu, ia menunjukkan bahawa sistem tersebut mampu memindahkan cahaya siang sedalam kira-kira 12.5m dan 20m walaupun dalam keadaan langit mendung dan sederhana menggunakan bentuk saluran segi empat tepat dan saluran selebar tiga meter. Penemuan baru ini memberi pendedahan kepada arkitek, jurutera dan ahli sains alam bina untuk mencapai potensi yang lengkap daripada ADS dalam penjimatan tenaga, dan juga keselesaan penglihatan.

TABLE OF CONTENT

CHAP	ΓER	TITLE	PAGE
	DE	ECLARATION	ii
	DE	EDICATION	iii
	AC	CKNOWLEDGEMENT	iv
	AB	STRACT	V
	AB	BSTRAK	vi
	TA	ABLE OF CONTENTS	vii
	LIS	ST OF TABLES	xiii
	LIS	ST OF FIGURES	xvi
	LIS	ST OF SYMBOLS	xxiii
	LIS	ST OF ABBREVIATION	XXV
	LIS	ST OF APPENDICES	xxvii
1	INT	FRODUCTION	1
	1.1	Introduction	1
	1.2	Problem statement	4
	1.3	Research Question	5
	1.4	Aim and Objectives	5
	1.5	Research Gap	6
	1.6	Scope and Limitation	7
	1.7	Importance of Research	8
	1.8	Thesis Organization	9
2	LIT	TERATURE REVIEW	13
	2.1	Introduction	13

2.2	Daylighting in Tropical Climate	15
	2.2.1 Sky Condition in Tropical Climate	15
	2.2.1.1 Cloud Cover Ratio	15
	2.2.1.2 Nebulosity Index (NI)	16
	2.2.1.3 Sunshine Duration	17
	2.2.2 Daylight Availability in Malaysia	18
	2.2.3 Daylight Potentials in Tropical Climate	20
	2.2.3.1 Inconstant Cloud Formation	20
	2.2.3.2 Glare	21
	2.2.3.3 Tropical Sky and lack of Sufficient	
	Research	21
	2.2.3.4 Comparison of Performance Indicators in	
	International and Malaysia	22
	2.2.4 Performance Indicators to Measure Daylight in	
	Office	22
	2.2.4.1 Absolute Work Plane Illuminance (WPI)	24
	2.2.4.2 Daylight Factor (DF)	24
	2.2.4.3 WPI Uniformity	25
	2.2.4.4 Daylight Ratio	25
	2.2.4.5 Performance Indicators in Malaysia	26
2.3	Daylighting System Technology	27
	2.3.1 Light Guides	28
	2.3.1.1 Remote Lighting	29
	2.3.1.2 Vertical Light Pipes	30
	2.3.1.3 Horizontal Light Pipes	31
	2.3.2 Light Collection for Horizontal Light Pipe	32
	2.3.2.1 Active Collection System	33
	2.3.2.2 Passive Collection System	34
2.4	Anidolic Daylighting System	35
	2.4.1 Component of ADS	36
	2.4.1.1 Collector of Anidolic	37
	2.4.1.2 Duct of Anidolic	40
	2.4.1.3 Distributor of Anidolic	42

	2.4.1.4 Coating Material	43
2.5	Previous Researches on Anidolic	46
	2.5.1 Anidolic Configuration	49
	2.5.1.1 Collector of Anidolic	49
	2.5.1.2 Duct of Anidolic	51
	2.5.1.3 Distributor of Anidolic	54
	2.5.2 Office Configuration	55
	2.5.3 Other Parameters in Previous Research	57
	2.5.3.1 Method	57
	2.5.3.2 ADS in Tropical	60
	2.5.3.3 Existing Install ADS in Buliding	61
	2.5.4 Significant of Study According to Literature	61
2.6	Existing Offices with Anidolic Daylighting System	64
2.7	Proposed ADS in Scale and Simulation Models	64
2.8	Summary	67
RES	EARCH METHODOLOGY	68
3.1	Introduction	68
3.2	Methods of Daylighting Analysis	68
	3.2.1 Experimental	69
	3.2.2 Physical Scale Model	69
	3.2.3 Mathematical Method	70
	3.2.4 Computer Simulation Method	71
	3.2.5 Thesis Methodology	74
3.3	Physical Scaled Model	76
	3.3.1 Objective of Scaled Model	76
	3.3.2 Configuration of Physical Scaled Model	76
	3.3.2.1 Model Configuration	77
	3.3.2.2 Coating Material	78
	3.3.3 Test Cases	81
	3.3.4 Important Limitations and Assumptions	82
	3.3.5 Instrumentations in the Scale model	83
	3.3.5.1 Calibration Process for Instruments	84

3

	3.3.6 Experimental Procedure	86
	3.3.7 Analysis Criteria	86
3.4	Simulation Method	87
	3.4.1 IES <ve> Software</ve>	87
	3.4.2 CIE Sky Model and Malaysian Tropical Sky	89
	3.4.3 Absolute Actual Internal Illuminance	90
	3.4.4 Objective of Simulation	91
	3.4.5 Base Simulation Model	91
	3.4.5.1 Configuration of Base Simulation Model	92
	3.4.6 Development of the Base Model Configuration	93
	3.4.6.1 Surface Properties and Glazing	93
3.5	Design Variable for Simulation	94
	3.5.1 Collector of ADS	95
	3.5.2 Duct of ADS	95
	3.5.3 Distributor of ADS	100
	3.5.4 Simulation Conditions	101
	3.5.4.1 Location and Sky Condition	101
	3.5.4.2 Selected Date in Simulation	102
	3.5.5 Simulation Procedure	102
	3.5.5.1 Model Design	104
	3.5.5.2 Determination of Materials and Properties	104
	3.5.5.3 Setting up for Simulation	104
	3.5.5.4 Simulation Process	106
	3.5.5.5 Simulation Output	106
	3.5.6 Criteria of Analysis	108
	3.5.6.1 Absolute WPI	109
	3.5.6.2 Daylight Factor (DF)	109
	3.5.6.3 Daylight Ratio (DR)	109
	3.5.6.4 Work place Illuminance Uniformity	110
	3.5.7 Conclusion	111
3.6	Summary	113

4.1	Introduction	114
4.2	Validations of Simulation and Physical Scaled Model	115
	4.2.1 Analysis Criteria	116
	4.2.2 Result and Analysis	116
	4.2.2.1 External Illuminance	116
	4.2.2.2 Absolute WPI	117
	4.2.2.3 Daylight Factor (DF)	120
	4.2.2.4 Daylight Ratio (DR)	121
	4.2.2.5 Pearson Correlation with SPSS Software	121
	4.2.2.6 Discussion	123
4.3	Building Orientation (Objective One)	124
	4.3.1 Physical Scaled Model Results	126
	4.3.1.1 Physical Scale Model on 4 January	127
	4.3.1.2 Physical Scale Model on 21 March	133
	4.3.2 Simulated Results	139
	4.3.2.1 Effective Orientation with Simulated	
	Model During a Year	140
	4.3.2.2 Effective Orientation with Simulated	
	Model on the March	141
	4.3.3 Discussion of Objective 1	143
4.4	Duct Configuration (Objective 2)	145
	4.4.1 Duct Shape	146
	4.4.1.1 Duct Shape in Overcast Sky	147
	4.4.1.2 Duct Shape in Intermediate Sky	148
	4.4.2 Duct Width	150
	4.4.2.1 Duct Width in Overcast sky	151
	4.4.2.2 Duct Width in Intermediate sky	152
	4.4.3 Discussion of Objective 2	154
4.5	The Optimum Duct Length (Objective 3)	156
	4.5.1 Duct Length under Overcast Sky Condition	157
	4.5.2 Duct Length in Intermediate Sky Condition	158
	4.5.3 Discussion of Objective 3	160
4.6	Optimum Cases for Tropical Daylighting (Objective 4)	162

	4.6.1 Quantitative Performance Analysis	164
	4.6.1.1 Work Plane Illuminance (WPI)	164
	4.6.1.2 Improving Daylight with Suggested Cases	183
	4.6.1.3 Discussion of Quantitative Analysis	197
	4.6.2 Qualitative Performance Analysis	199
	4.6.2.1 Work Plane Illuminance (WPI) Distributer	r 199
	4.6.3 Discussion of Qualitative Analysis	211
4.	7 Summary	213
5 C	ONCLUSION	217
5.	1 Introduction	217
5.	2 Summary of Research Objectives	217
	5.2.1 Validation Between Physical Scaled and	1
	Simulation Models	219
	5.2.2 Effectiveness of Orientation to ADS's	5
	Performance	220
	5.2.3 Impact of Duct Configuration on Daylight	t
	Performance	221
	5.2.4 Optimum Depth of Office and Appropriate Duct	t
	Length in ADS	223
	5.2.5 To Determine the Quality and Quantity of Indoor	ſ
	Office Daylight by Developing the ADS Distributor	ſ
	Variables	225
5.	3 Comparison Between Current Research and Previous	5
	Researches	228
5.	4 Contribution of Research	229
5.	5 Research Implication	230
5.	5 Further Research Study	232
REFERENC	ES	234
Appendices A	-P5	259-319

LIST OF TABLES

TABLE NC	D. TITLE	PAGE
2.1	Monthly Nebulosity Index (NI) in the Subang, west Malaysia	16
2.2	Nebulosity Index hourly frequency at Subang, west Malaysia	17
2.3	Comparison of K _G from different sources for Malaysia tropica	1
	climate	19
2.4	Recommendations in different performance indicators	23
2.5	Daylight factor and distribution according to MS 1525:2007	27
2.6	ADS' overall efficiency of different duct width	41
2.7	Maximum variations in ADS overall efficiency for the different	ıt
	design parameters	42
2.8	Impact of coating material in the Anidolic component	43
2.9	Values of surface reflectance, specularity and roughness	S
	employing in daylight simulation model	44
2.10	Overview of results for material modifications in the ADS	5
	coating	45
2.11a	Summary of previous research in anidolic system	47
2.11b	Summary of previous research in anidolic system	48
2.12	Comparison of anidolic systems with performances	63
3.1	Summary of performance variables with simulation tools	73
3.2	Configuration and coating material of scaled model	80
3.3	Summaries of test cases for experimental measure	82
3.4	The equipments used to measure daylight illuminance	83
3.5	Pearson correlation result in SPSS software	85
3.6	Constant parameters and values of surface reflectance in	n
	simulation model	94

3.7	Sub-variables plan of duct shape for simulation	97
3.8	Sub-variables plan of duct width for simulation	98
3.9	Position of sensor points (distributors) in the models	99
3.10	Recommendation in performance indicator WPI for office	
	building	108
3.11	Recommendation in performance indicator daylight factor for	
	office building	109
3.12	Summary of analysis criteria for simulation procedure	111
4.1	SPSS results for correlations between simulated and	
	experimental results under intermediate sky with DR	
	performance	122
4.2	SPSS results for correlations between simulated and	
	experimental results under overcast sky with DF performance	122
4.3	Various values in different orientations on 4 January	132
4.4	Experimental Various Values in Different Orientations on 21	
	March	138
4.5	Illuminance value at points E4 of the simulated model in the four	
	cardinal orientations	143
4.6	Sub-variables plan of duct shape for simulation	146
4.7	Sub-variables plan of duct width for simulation	151
4.8	Location of sensor points (distributors) in the models	157
4.9	Illuminance distribution in cases under overcast and intermediate	
	skies	161
4.10	Illuminance distribution in suggested cases for case E6	189
4.11	Illuminance percentage (%) of cases to achieving more than 300	
	lx	198
4.12	WPI ratio percentage that failed to get uniformity of Emin/Emax	
	> 0.70 and Emin/Emax > 0.50 in Case E2	200
4.13	Percentage of WPI distribution ratio that failed to achieve	
	benchmarks of Emin/Emax>0.70 and Emin/Emax>0.50 in Case	
	E3	201
4.14	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in Case E4	203

4.15	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in Case E5	204
4.16	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in Case E6	206
4.17	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in shape Case E7	207
4.18	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in Case E6-5	208
4.19	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax>0.50 in Case E7-6	210
4.20	Percentage of WPI ratio that failed to achieve benchmarks of	
	Emin/Emax>0.70 and Emin/Emax > 0.50, for all times	211
5.1	Various values in different orientations	220
5.2	Results of simulation and experimental models in four cardinal	
	orientations	221
5.3	Illuminance value of variables at points E7 (12m) and E12 (20m)	
	in simulated models	222
5.4	Comparison of current research and previous researches	228

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
1.1	The research process flow and thesis organization	11
1.2	The research process flow chart	12
2.1	Summary of Literature review	14
2.2	Daylight availability at Subang, West Malaysia	20
2.3	Remote lighting (UFO system with fiber-optics)	29
2.4	Remote lighting (prismatic pipe with a heliostat collector)	30
2.5	Vertical light pipes	31
2.6	Horizontal light pipe	32
2.7	Schematic design of flat heliostat	33
2.8	The basic principle of compound parabolic concentrator (CPC)	
	according to the edge ray principle	36
2.9	Room section with integrated anidolic elements and light duct	36
2.10	Section of anidolic collector	37
2.11	Ray paths in collector	38
2.12	Anidolic with and without LCP	39
2.13	(a) Integrated anidolic system, (b) Anidolic solar blinds	40
2.14	Ray paths in duct of anidolic	41
2.15	Components of Anidolic Daylighting System	42
2.16	Overview of the ADS	45
2.17	Sections of seven anidolic collector systems	50
2.18	The optimum collector in tropical climate (type 5)	51
2.19	Partial efficiencies for collector duct and distributor as a	
	function of decreasing anidolic width	53

3.1	Thesis methodology flow chart	75
3.2	Plan and sections of single office room model configurations	79
3.3	Construction and Installation of scale physical model on	17
5.5	selected site	80
3.4	Proposed collector of ADS	81
3.5	Radiometer/Photometer HD (left) and sensor in scale model	84
3.6	Instruments posision during calibration in the office building	84
3.7	Position of sensor points in model	86
3.8	External illumination comparison between Tropical sky (a) and	00
5.0	CIE standard sky (b)	90
3.9	Base simulated model	92
3.10	Perspective of office room with reference pread grids,	93
3.11	Variables of duct configurations	96
3.12	Distributors position in the model	101
3.12	Operation flow chart of Desktop IES <ve></ve>	101
3.14	Reference line grid, reference point	105
3.14	Plan and section of reference widespread grids, reference point	105
3.15		105
	Perspective of office room with reference widespread grids	100
3.17	Summary of simulated procedure	
3.18	WPI ratios measurement points	111
3.19	Summaries of computer simulated procedures	112
4.1	Summary of objective one to assess optimum orientations	115
4.2	The mean of external illuminance in real condition and	117
	simulated model during	117
4.3	Measured and simulated absolute WPI in the clear sky	119
4.4	Measured and simulated absolute WPI in the intermediate sky	119
4.5	Measured and simulated absolute WPI in the overcast sky	120
4.6	Measured and simulated DF in the overcast sky	120
4.7	Measured and simulated Daylight Ratio (DR) in the sunny sky	121
4.8	Mean percentage of difference between the simulated and	
	experimental measured	123
4.9	Percentage of difference between the experimental measured	
	and simulated in point E4	124

4.10	Summary of objective one to assess optimum orientations	125
4.11	Geometrical configuration and position of points in the model	126
4.12	The mean of external illuminance variation on the typical day	
	on 4 January	127
4.13	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to North on 4	
	January	128
4.14	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to South	129
4.15	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to East	130
4.16	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to West	131
4.17	Illuminance value at points E4 of scaled model in four	
	orientations during the working time	131
4.18	The mean of external illuminance variation on the typical day	
	on 21 March	133
4.19	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to North	134
4.20	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to South	135
4.21	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to East	136
4.22	Illuminance value at points E4 and B in scale model during the	
	working time, when the model is orientated due to West	137
4.23	Illuminance value at points E4 of scaled model in four	
	orientations during the working time	138
4.24	Daylight illuminance value at points E4 of the simulation	
	model in four orientations under intermediate sky	140
4.25	Mean daylight illuminance value at point E4 of the simulation	
	model in four cardinal orientations during a year under	
	intermediate sky	141

4.26	Daylight Illuminance value at point E4 of the experimental and	
	simulation models in four cardinal orientations under	
	intermediate sky on 21 March	142
4.27	Summary of second objective to investigate optimum duct	
	configuration	145
4.28	Designed Duct shapes with different duct lengths of 13m and	
	20.50m	147
4.29	Daylight illuminance value of variables at points E7 and E12 in	
	simulated models	148
4.30	Mean illuminance value of variables in points E7 (12m) and	
	E12 (20m) in the south orientation on 21 March	149
4.31	Mean illuminance value of variables at points E7 (12m) and	
	E12 (20m) in the East orientation on 21 March	150
4.32	Daylight illuminance value of variables at points E7 and E12	152
4.33	Mean illuminance value of variables at points E7 and E12 in	
	the South orientation on 21 March	153
4.34	Mean illuminance value of variables at points E7 and E12 in	
	the East orientation on 21 March	153
4.35	Summary of the third objective to investigate optimum duct	
	length	156
4.36	Measured DF in models under the overcast sky	158
4.37	Measured WPI in models under Intermediate sky	159
4.38	Measured average WPI in models under Intermediate sky	159
4.39	Summary of objective Four to optimum cases	163
4.40	Anidolic system in case E2	165
4.41	Details of point situation and divided into the simulated case E2	165
4.42	Measured daylighting in case E2 on 21 March	166
4.43	Measured daylighting in case E2 on 22 June	166
4.44	Measured daylighting in case E2 on 22 December	167
4.45	Mean daylight illuminance in case E2 during a whole year	167
4.46	Anidolic system in case E3	168
4.47	Measured daylighting in case E3 on 21 March	169
4.48	Measured daylighting in case E3 on 22 June	169

4.49	Measured daylighting in case E3 on 22 December	170
4.50	Mean daylight illuminance in case E3 during a whole year	170
4.51	Anidolic System in case E4	171
4.52	Measured daylighting in case E4 on 21 March	172
4.53	Measured daylighting in case E4 on 22 June	172
4.54	Measured daylighting in case E4 on 22 December	173
4.55	Mean daylight illuminance in case E4 during a whole year	173
4.56	Anidolic system in case E5	174
4.57	Measured daylighting in case E5 on 21 March	175
4.58	Measured daylighting in case E5 on 22 June	175
4.59	Measured daylighting in case E5 on 22 December	176
4.60	Mean daylight illuminance in case E5 during a whole year	176
4.61	Anidolic system in case E6	177
4.62	Measured daylighting in case E6 on 21 March	178
4.63	Measured daylighting in case E6 on 22 June	178
4.64	Measured daylighting in case E6 on 22 December	179
4.65	Mean daylight illuminance in case E6 during a whole year	179
4.66	Anidolic system in case E7	180
4.67	Measured daylighting in case E7 on 21 March	181
4.68	Measured daylighting in case E7 on 22 June	181
4.69	Measured daylighting in case E7 on 22 December	182
4.70	Mean daylight illuminance in case E7 during a whole year	183
4.71	Plan of ADS in case E6 and located sensors in this case	184
4.72	Anidolic system in case E6 with opened distributor E6 and E5	185
4.73	Anidolic system in case E6 with opened distributor E6, E5 and	
	E4	185
4.74	Anidolic system in case E6 with opened distributor E6 and E4	185
4.75	Measured daylighting in suggested cases E6 on 22 June at	
	12:00	186
4.76	Mean daylight illuminance in suggested cases E6 on 22 June at	
	12:00	187
4.77	Measured daylight illuminance in suggested cases E6 on 22	
	June at 15:00	187

4.78	Mean daylight illuminance in suggested cases E6 on 22 June at	
	15:00	188
4.79	Mean daylight illuminance in suggested cases E6 on 22 June at	
	12:00 and 15:00	188
4.80	Anidolic system in case E7 with opened distributor E7 and E6	190
4.81	Anidolic system in case E7 with opened distributor E7, E6 and	
	E5	190
4.82	Measured daylighting in suggested cases E7 on 21 March at	
	9:00	191
4.83	Measured daylight illuminance in suggested cases E7 on 21	
	March at 12:00	192
4.84	Measured daylight illuminance in suggested cases E7 on 21	
	March at 15:00	192
4.85	Mean daylight illuminance in suggested cases E7 on 21 March	
	at the whole day	193
4.86	Measured daylight illuminance in suggested cases E7 on 22	
	June at 9:00	194
4.87	Measured daylight illuminance in suggested cases E7 on 22	
	June at 12:00	194
4.88	Measured daylight illuminance in suggested cases E7 on 22	
	June at 15:00	195
4.89	Mean daylight illuminance in suggested cases E7 on 22 June at	
	whole day	196
4.90	Mean daylight illuminance in case E7-6 on 21 March and 22	
	June at whole day	196
4.91	Mean daylight illuminance in cases E2 to E5 on whole a year	197
4.92	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E2	200
4.93	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E3	202
4.94	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E4	203

4.95	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E5	205
4.96	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E6	206
4.97	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E7	207
4.98	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E6-5	209
4.99	Percentage of WPI ratio that failed to achieve benchmarks in	
	case E7-6	210
4.100	Transferred daylight by anidolic in office building under	
	intermediate condition in quantitative and qualitative	
	performances	212
5.1	Transferred daylight by anidolic in office building under	
	overcast condition	224
5.2	Transferred daylight by anidolic in office building under	
	intermediate condition	224
5.3	Illuminance percentage (%) of points to achieving more than	
	300 lx in all cases and selected cases	226
5.4	Percentage of WPI ratio that failed to achieve benchmarks, for	
	all dates, and selected cases	227
5.5	Implication of study	230
5.6	Plan and section of installed anidolic in single face plan	
	building	231

xxii

LIST OF SYMBOLS

А	-	Area
CC	-	Cloud Cover in Oktas
Cd	-	Candela
CR	-	Cloud Ratio
Cv	-	Cloud Cover Ration on Illuminance
d	-	Depth
E _b	-	Direct Illuminance
Ed	-	Diffuse Illuminance
Е	-	Illuminance
Ee	-	External Illuminance
E _G	-	Global Illuminance
Eg	-	Ground Reflected Illuminance
Ei	-	Interior Illuminance
E _{in}	-	Average Internal Illuminance
Ev	-	Vertical Illuminance
E _n	-	Test Point
f(x)	-	Indicatrix Function
hr	-	Hour
Ι	-	Irradiance
I _d	-	Diffuse Irradiance
I _G	-	Global Irradiance
I _V	-	Luminous Intensity
K _G	-	Global Luminous Efficacy
1	-	Length
L	-	Luminance

n	-	Daily Sunshine Duration
NI	-	Nebulosity Index
no	-	Maximum possible sunshine duration
S	-	Relative Sunshine Duration
T _d	-	Light Transmittance of Glass
W	-	Width
Z	-	Zenith Angle of a sky Element
Zs	-	Zenith Angle of the Sun
Φ	-	Luminous Flux

LIST OF ABBREVIATIONS

2-D	-	Two dimensional
3-D	-	Three dimensional
ADS	-	Anidolic Daylighting System
AIC	-	Anidolic Integrated Ceiling
ASEAN	-	Association of South East Asian Nations
ASHRAE	-	American Society of Healthing, Refrigerating and Air
		conditioning engineers
CIBSE	-	Chartered Institution of Building Services Engineers
CIE	-	International commission of Illumination
CPC	-	Compound Parabolic Collector
DF	-	Daylight Factor
DR	-	Daylight Ratio
DS	-	Daylighting System
EXP		Experimental
FAB	-	Faculty of Built Environment
GBI	-	Green Building Index
IEQ	-	Indoor Environmental Quality
IES <ve></ve>	-	Integrated Environmental Solution <virtual environment=""></virtual>
IES	-	Illumination Engineering Society
IRIF	-	Illuminance Ratio Improvement Factor
IT	-	Information Technology
IR	-	Infrared
JB	-	Johor Bahru
LCP	-	Laser Cut Panel
LEO	-	Low Energy Office
Min	-	Minimum

MS	-	Malaysian standard
NI	-	Nebulosity Index
N,S,E,W	-	North, South, East & West
PV	-	Photovoltaic
PTMZEO	-	Pusat Tenaga Selangor Zero Energy Office
RE	-	Renewable Energy
RGB	-	Red, Green and blue
RP	-	Reference Point
SC	-	Sky Component
SI	-	International System
SIM	-	Simulation
SR	-	Sky Ratio
UTM	-	Universiti Teknologi Malaysia
UV	-	Ultraviolet
VLT	-	Visible Light Transmittance
VSD	-	Visual Sky Dome
VT	-	Visible Transmittance
WFR	-	Window-to-floor Ratio
WPI	-	Work Plane Illuminance
WWR	-	Window-to-wall Ratio
ZEB	-	Zero Energy Building
HVAC	-	heating, ventilation, and air conditioning

xxvii

LIST OF APPENDICES

APPENDIX	K TITLE	PAGE	
А	Theory of Light and Daylight	259	
В	The Advantage of Daylight	263	
С	Daylight Availability	268	
D	Daylight Design Devices in Office	271	
E	Recommended Illuminance Values According to MS		
	1525:2007	274	
F1	Existing Offices with ADS in Tropical Climate	275	
F2	Existing Offices with ADS in Other Climate	281	
G1	Review on Several Famous Computer Simulation		
	Tools	285	
G2	Review on Several Famous Computer Simulation		
	Tools	286	
Н	Description of 15 CIE Standard Skies	287	
Ι	Designed Model in IES <ve> Simulation Software</ve>	288	
J	Daylight Simulated Results for Office in Overcast to		
	Validate (DF)	289	
Κ	Daylight Simulated Results on E4 Point in South		
	Orientation for Objective 1.	290	
L1	Daylight Simulated Results on M.3 Case for Objective		
	2 in South and East Orientations.	292	
L2	Daylight Simulated Results on M.4 Case for Objective		
	2 in South and East Orientations	293	
L3	Daylight Simulated Results on all Cases for Objective		
	2 in South and East Orientations	294	

Μ	Daylight Simulated Results under Overcast Sky in	
	South Orientation for Objective 3	295
N1	Daylight Simulated Results under Intermediate Sky in	
	South Orientation on E10 case for Objective 3	296
N2	Daylight Simulated Results under Intermediate Sky in	
	South Orientation on E12 case for Objective 3	297
N3	Daylight Simulated Results under Intermediate Sky in	
	South Orientation on E14 case for Objective 3	298
N4	Results under Intermediate Sky in South Orientation	
	on Cases E10, E12 and E14 in Objective 3	299
01	Daylight Simulated Results on E2 Case for Objective 4	300
O2	Daylight Simulated Results on E3 Case for Objective 4	302
O3	Daylight Simulated Results on E4 Case for Objective 4	304
O4	Daylight Simulated Results on E5 Case for Objective 4	306
O5	Daylight Simulated Results on E6-5 Case for	
	Objective 4	308
O6	Daylight Simulated Results on E7-6 Case for	
	Objective 4	309
P1	Daylight Simulated Results on E3 Case for Qualitative	
	Performance in Objective 4.	310
P2	Daylight Simulated Results on E4 Case for Qualitative	
	Performance in Objective 4	312
P3	Daylight Simulated Results on E5 Case for Qualitative	
	Performance in Objective 4.	314
P4	Daylight Simulated Results on E6-5 Case for	
	Qualitative Performance in Objective 4.	316
P5	Daylight Simulated Results on E7-6 Case for	
	Qualitative Performance in Objective 4.	319
R	LIST OF PUBLICATIONS	321

CHAPTER I

INTRODUCTION

2.1 Introduction

Daylighting has been an integral part of the Architecture studies. Light illuminate and serves a lot of purpose in a building; hence daylighting is one of the conditions taken into consideration during building design processes. In order to create quality of life in the living environment, architects must design structures that have illumination by the daylighting in spaces that is natural light. Therefore, natural daylighting is essential in building because visual perception and lifestyle of people influenced by daylight which in turn affects their behaviour, working pattern, emotion and so on. Moreover, daylight plays an imperative role in achieving sustainable and healthy living environment.

Furthermore, sustainable energy consumption in a building has become relevant, and there has been an increased interest in saving energy over the last couple of decades. This quest together with growing concern for the environment has spurred the growth of daylight technology in the field of Sustainable Architecture. Several researches in the past focused on daylighting in buildings. One of the prominent research on daylighting centered on perception of daylight as a function that increases human activities performance and comfort within indoor spaces (Omer, 2008; Baker and Steemers, 2002). Thus, using daylight in a building seems to be an excellent strategy to offset artificial illumination and to make a space more comfortable and enjoyable for any human activities. In office building, daylight quantity and quality are essential, therefore it is very reasonable to ensure that daylighting has important role in the design and construction of building for any purpose, especially office building. Previous researches have proved that the amount of daylight needed in an office is lesser than artificial light in the same task (Ander, 2003; Robbins, 1986). Moreover, daylight has influence on the productivity as the better illuminated office encourages proper attendance by the users and reduced absenteeism of office users (Galasiu and Veitch, 2006). On the other hand, it is prerogative to know that daylight in office building has positive impact on the users and provide peaceful and aesthetic environment compared to electric light that can fail over time.

In the tropics, there is abundance of daylight because of high intensity of the sun and longer period of its illumination in the tropical climate. The global illuminance in clear sky can reach around 120,000 lx. On the other hand, studies carried out by researchers show that the high daylight in a tropical area has not been utilised to the maximum (Yeh *et al.*, 2011; Ahmad, 1996). The solar radiation, intensity and hours of radiation is high and uniform throughout the year in the tropical climate, which suppose to be an advantage for daylighting. However, there may be a variation in global illuminance for tropical sky within a few minutes due to cloud formation, though this may cause unpredictable indoor daylight availability. On the contrary, Malaysian tropical sky is mostly intermediate, in other words, it is neither overcast nor clear (Lim *et al.*, 2008; Ossen, 2005).

In buildings design for any purpose, windows are on the vertical facades that provide the aperture for daylight penetration into the building. However, daylight can only penetrate a limited depth through the window, even if there is no obstruction to the sky (Tregenza, 1980). Using taller and larger windows with higher transmittance glazing can improve the daylight area within an office or room as the case might be. However, adopting this method to achieve small gains in daylighting at the back of a room may lead to introducing disproportionate amount of solar radiation into the front part of a room, which increases cooling load and glare. Also, this gives rise to large non-uniformity of illuminance and luminance gradient within the space, resulting in visual discomfort and/ or unfavourable psychological effects on habitation of such room by the users.

In order to solve the above-mentioned problems, the use of some form of daylight and sunlight redirection system to transfer light to a greater distance inwards from the facade is encouraged. The following are some of the daylighting systems that could be used to transfer and redirect the intensity and illumination ability of daylight in a building: light pipes, Anidolic daylight, minor louvers, holographic grating, laser cut panels and prismatic glazing (Littlefair, 1990).

This research focused on Anidolic Daylighting System (ADS). It is a highly effective daylighting system that provides opportunity for ray of light to be transferred to back of the room (Scartezzini and Courret, 2002). Anidolic was designed according to the non-imaging optics principles (Linhart and Scartezzini, 2010; Wilson *et al.*, 2002). Moreover, it has the advantage of collecting external daylight ray and redistributes it into the deeper part of the plan building with a minimum reflection number. This has been carried out in various climatic regions and different sky conditions (Linhart and Scartezzini, 2010; Wittkopf *et al.*, 2006). Experiments performed by researchers on the Anidolic in various sky conditions; climatic regions and system configurations have proved that this system can considerably decrease the electric lighting in buildings (Linhart and Scartezzini, 2010; Wittkopf *et al.*, 2006).

Therefore, it is an attempt to understand the varying condition that affect the interior daylight in deeper area of building. Further research on the use of Anidolic is very important to improve daylight in rear area of building and provide a potential to energy-efficiency as well as improvement of occupant's health and well-being. This research focus on improving the quantity and quality of daylight performance by Anidolic in open plan office in tropical climate. The next part of this research looked at the problems of Anidolic system in tropical climate.

2.2 Problem Statement

Due to the need for energy conservation and raising demand in utilization of daylight has become a crucial issue in the design and construction of buildings. Providing natural light in the rear area of the open plan buildings has always been a challenge for architects and building designers. As daylight can penetrate only a limited depth from the window, the question is: how natural light can be transferred into the deeper area in open plan office to improve visual comfort in workplace conditions for office workers and energy efficiency?

Innovative daylighting systems may be the answer to this question. ADS can bring natural light to the deeper area of the building. Previous researches have shown that the this system has enormous potential to transfer daylight into deeper area of building. Despite this potential, there is a lack of adequate data about the Anidolic performance in open plan office buildings in the tropical climate. there is insufficient research in configuration of duct shape, duct width, duct length and distributor of ADS. Furthermore, there is inadequate data on design methodology for innovative daylighting systems in tropical climate. Majority of existing ADS systems were designed in temperate or subtropical climate under clear sky and there were insufficient research in ADS under tropical climate. Therefore, this study investigates the performance of ADS and develop this device for transferring light horizontally in building.

There are problems in open plan office about daylighting. As open plan office has deep area and windows only provide limited daylight, artificial lighting is employed to provide light in interior of office. Using larger and taller window will increase non-uniformity of lighting and glare problem. Furthermore, due to inconstant cloud formation and glare problem in tropical climate, workers usually close their windows and use artificial lighting.

2.3 Research Question

For the purpose of this research the following research questions were formulated to achieve the aim of the study. This include the following:

- i. What is the best orientation for an office with installed ADS for optimum daylight performance?
- ii. Which design variables (various duct shape and duct width of ADS) indicate the optimum daylight performance in ADS?
- iii. How deep is the optimum depth of office and appropriate duct length to provide sufficient illuminance with ADS?
- iv. How is the daylight quality and quantity of indoor office determined by the ADS distributor variables (location and number)?

2.4 Aim and Objectives

The aim of this research is to provide sufficient daylight illuminance in the deeper area of open plan office in tropical climate. In order to achieve the stated aim, the following specific objectives are formulated.

- i. To investigate the influence of different office facade orientation with installed ADS for optimum daylight performance.
- ii. To evaluate the design variables (different duct shape and duct width of ADS) on determining daylight performance in ADS.
- iii. To assess the appropriate duct length of ADS that provide sufficient illuminance.

iv. To determine the daylight quality and quantity of indoor office by introducing the ADS distributor variables (location and number).

2.5 Research Gap

Many research in ADS were carried out under subtropical and temperate climates in clear sky condition (Kwok, 2011; Lau and Baharuddin, 2009; Hien and chirarattananon, 2009; Singal *et al.*, 2009; Tsikaloudaki *et al.*, 2008; Wilson *et al.*, 2005; Scartezzini & Courret, 2002), while the configurations of Anidolic system in tropical climate are different from Anidolic configuration under other climates. Although, some researches were carried out using ADS under tropical climate (Wittkopf *et al.*, 2010; Linhart & Scartezzini, 2010; Linhart *et al.*, 2010; Wittkopf *et al.*, 2006). These researches are not sufficient in configuration of duct shape, duct width, duct length and distributor of ADS. Thus, it is necessary to investigate the design variables in duct shape, duct width, duct length and distributor of ADS in tropical climate. Thus, the investigation into the design variables and Anidolic performance that can be applied in a tropical climate under overcast and intermittent sky conditions is required.

Although there are some researchers who have investigated the Daylighting Systems, most of them studied on the simulation tools that were done CIE sky (International commission of Illumination) (Hu *et al.*, 2013; Linhart *at el.*, 2010; Wittkopf *et al.*, 2006; Canziani *et al.*, 2004). CIE sky is remarkably different from tropical sky condition. For this reason, real model or scaled model to measure daylighting at real climate can improve the accuracy of results and also simulation tool. Hence, it is necessary to employ physical scale model with simulation software for this research.

Moreover, majority of previous researchers investigated daylight quality or quantity separately (Linhart *at el.*, 2010; Wittkopf *et al.*, 2010; Lau and Baharuddin,

2009; Wilson *et al.*, 2005). For having an optimum daylight in space, an appropriate situation regarding the daylight quantity and quality of daylight is important too. Thus current research determine optimum cases of ADS for tropical daylighting on quantitative and qualitative daylight performance.

Therefore, in current research is an attempt to study previous research gaps on Anidolic in tropical climate and also use two method of physical scale and simulation tool for ADS. Furthermore, this research focuses on determining the daylight quality and quantity base on uniformity of indoor office simultaneously.

2.6 Scope and Limitation

This research focuses on the daylight efficiency in the rear of the office building by installed ADS. This research studies Anidolic Daylighting System under tropical climate where the sky is not clear (intermediate and overcast sky conditions) and. Other aspect of Anidolic Daylighting System such as thermal comfort, solar heat gain and energy consumption are not considered in this research.

There are various types of spaces in office buildings such as meeting room, cubical office room, open plan office and so forth. The area of current study is limited to open plan offices. In open plan offices, there are many users that perform various tasks simultaneously. Therefore, users adjust their workplace and lighting condition to obtain comfortable setting according to task performance. Open plan offices are more critical for achieving visual comfort. These kinds of offices need more consideration for daylighting efficiently.

Two methods are employ in this research which are physical scale model and simulation model. The scale model approximates the characteristics of full-scale office and furniture of that is ignored in this research. Four cardinal orientations were selected to experiment.

2.7 Importance of Research

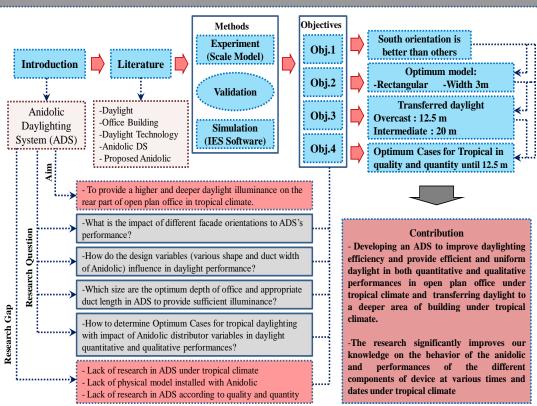
Innovative daylighting systems have been an extremely popular topic in recent area of research. Anidolic is a promising system that distributes daylight in the rear of building which is deeper than what ordinary window can provide especially in open plan office. ADS is essential in a building with one side façade due to vertical wall as a barrier to daylighting. This has always been an impediment for designer to introduce ADS in the tropical climate. This research is essential to identify the critical variables to improve ADS for open plan office in tropical region of the world with particular reference to Malaysia as a choice location in the tropics.

The process of designing the Anidolic Daylighting System with tropical climate under intermittent and overcast sky conditions will allow for utilization of ADS in this region. The research will establish the criteria needed to enable ADS to function properly and effectively in the tropical climate. The recommendations can provide visual comfort for the occupant's health and effective productivity. Moreover, optimum ADS can reduce energy consumption in electric lighting.

2.8 Thesis Organization

This thesis is arranged in five chapters and are summarized as the following in a chronological order:

Chapter one is the introduction which reviews the main research issue. It contains the following sub sections such as background to the study, the problem statement, aim and objectives, hypothesis of study and research questions of the study. Moreover, the research gap, research objectives, scope and limitations of the study, importance of research and the overall thesis structure are also explained in this chapter.


Chapter two focuses on literature review of the daylight, office building, tropical climate and daylight devices. Theory of light is discussed in this chapter to give an understanding of the characteristics of light and human vision. Moreover, benefits of daylight in architecture is discussed. The daylight availability and issues in tropical daylighting is explained to understand the sky condition. Besides, standards in the building are mentioned. In the next section, daylight systems are discussed on issues such as in properties, advantages and disadvantages in various climate condition. Elaborate literature from the previous researchers on ADS provide the opportunity for proposing the improved ADS for tropical climate.

Chapter three explains the methodology used in this research to achieve the stated objectives and daylight analysis. This chapter first reviews the research methodology used in daylight analysis. Secondly, it discusses the methodology used in this thesis that includes: physical scaled model measurement and daylight simulation model. Next, designed variables are explained in detail in this chapter. The assumptions and criteria used for the experiments and simulations are explained.

Chapter 4 include the process of validations physical scale model and simulation model. In this part base simulation model office room base simulation

office room with the ADS was designed and compared with the base physical scaled model. The four objectives were also discussed. Firstly, physical scale model and simulation model were tested to analyse first objective. In this case, quantitative performance analysis of absolute WPI under real sky condition and simulated model was examined to evaluate the effective test case for the four cardinal orientations. Secondly, the simulation results of Daylight Factor (DF), Work Plane Illuminance (WPI) and Daylight Ratio (DR) were evaluated to analyse quantitative and qualitative performance in order to determine the effective variable design in objective two, three and four. In this section, quantitative and qualitative performances analysis of selected variable were studied. Finally, the optimum cases for tropical daylight efficiency were selected.

Finally, chapter five presents the overall review of the research questions and research objectives. Moreover, this chapter concludes on the findings of principle and design recommendations for ADS in the open plan office. This chapter summarizes contribution of research and recommendations for the future research to complement with findings of this thesis. The research process flow and thesis organization are summarized in Figure 1.1 and Figure 1.2.

ASSESSING DAYLIGHT PERFORMANCE BY ANIDOLIC DAYLIGHTING SYSTEM IN TROPICAL CLIMATE

Figure 1.1 The research process flow and thesis organization

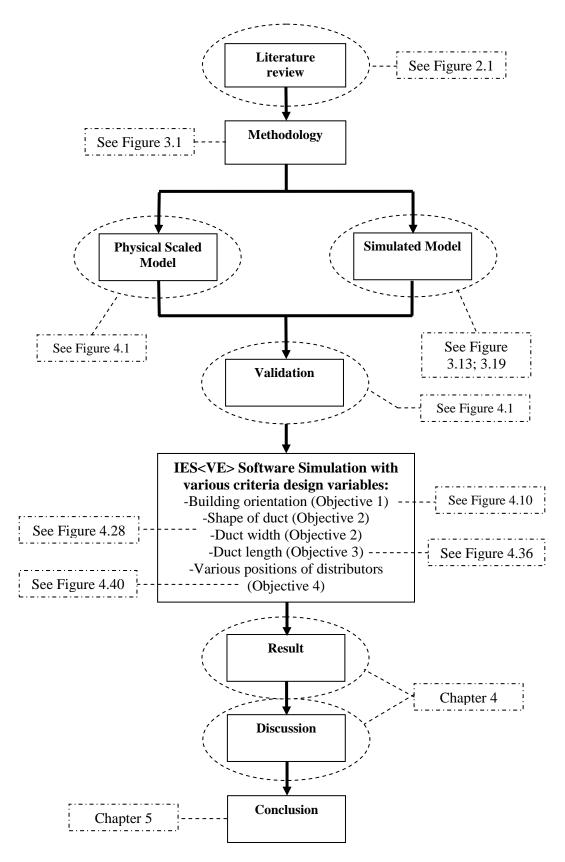


Figure 1.2 The research process flow chart

REFERENCES

- AbouRizk, S. (2010). Role of simulation in construction engineering and management. *Journal of construction engineering and management*, 136(10), 1140-1153.
- Acosta, I., Navarro, J. and Sendra, J. J. (2011). Towards an analysis of daylighting simulation software. *Energies*, 4(7), 1010-1024.
- Acosta, I., Navarro, J. and Sendra, J. J. (2013). Predictive method of the sky component in a courtyard under overcast sky conditions. *Solar Energy*, 89, 89-99.
- Aghemo, C., Pellegrino, A. and LoVerso, V. R. M. (2008). The approach to daylighting by scale models and sun and sky simulators: A case study for different shading systems. *Building and environment*, 43(5), 917-927.
- Ahmad, M. H. (1996). The Influence of Roof Form and Interior Cross section on Daylighting in the Atrium Spaces in Malaysia. Doctor of Philosophy, University of Manchester.
- Ahmad, N., Sh Ahmad, S. and Talib, A. (2013). Surface Reflectance for Illuminance Level Control in Daylit Historical Museum Gallery under Tropical Sky Conditions. Advanced Materials Research, 610, 2854-2858.
- Ahmed, S., Zain-Ahmed, A., Rahman, S. A. and Sharif, M. (2006). Predictive tools for evaluating daylighting performance of light pipes. *International Journal* of Low-Carbon Technologies, 1(4), 315-328.
- Akasah, Z. A. (2011). An overview of Malaysia green technology corporation office building: A showcase energy-efficient building project in Malaysia. *Journal* of Sustainable Development, 4(5), p212.
- Almanac, E. B. (2002). Encyclopaedia Britannica: Chicago.

- Al-Obaidi, K., Ismail, M. and Abdul Rahman, A. (2013). An innovative roofing system for tropical building interiors: Separating heat from useful visible light. *Journal homepage: www. IJEE. IEEFoundation. org*, 4(1), 103-116.
- Alrubaih, M., Zain, M., Alghoul, M., Ibrahim, N., Shameri, M. and Elayeb, O. (2013). Research and development on aspects of daylighting fundamentals. *Renewable and Sustainable Energy Reviews*, 21, 494-505.
- Al-Tamimi, N. A. and Fadzil, S. F. S. (2011). The Potential of Shading Devices for Temperature Reduction in High-Rise Residential Buildings in the Tropics. *Procedia Engineering*, 21, 273-282.
- Altomonte, S. (2008). Daylight for Energy Savings and Psycho-Physiological Well-Being in Sustainable Built Environments. *Journal of Sustainable Development*, 1(3), P3.
- Alzoubi, H. H. and Al-Zoubi, A. H. (2010). Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for Southern exposure facades. *Energy Conversion and Management*, 51(8), 1592-1599.
- An, J. and Mason, S. (2010). Integrating Advanced Daylight Analysis into Building Energy Analysis. In SimBuild - Fourth National Conference of IBPSA-USA , New Yor City, USA.
- Ander, G. D. (2003). Daylighting performance and design. New Jersey: John Wiley & Sons, Inc.
- Appelfeld, D. and Svendsen, S. (2013). Performance of a daylight-redirecting glassshading system. *Energy and buildings*, 64(2013), 309-316.
- Aries, M. B., Veitch, J. A. and Newsham, G. R. (2010). Windows, view, and office characteristics predict physical and psychological discomfort. *Journal of Environmental Psychology*, 30(4), 533-541.
- Aries, M. B. C. and Newsham, G. R. (2008). Effect of daylight saving time on lighting energy use: A literature review. *Energy Policy*, 36(6), 1858-1866.
- Athari, N., Golabchi, M. and Saghatforoush, E. (2011). Development of new evaluation methods for qualitative alternatives, using fuzzy calculations. *European Journal of Scientific Research*, 51(3), 305-314.

- Athienitis, A. and Tzempelikos, A. (2002). A methodology for simulation of daylight room illuminance distribution and light dimming for a room with a controlled shading device. *Solar Energy*, 72(4), 271-281.
- Audin, L. (1995). Plasma lighting, fiber optics, and daylight collectors: toward the next revolution in high-efficiency illumination. *Strategic planning for energy and the environment*, 14(4).
- Azhar, S., Brown, J. and Farooqui, R. (2009). BIM-based sustainability analysis: An evaluation of building performance analysis software. Proceedings of the 2009 Proceedings of the 45th ASC Annual Conference, 1-4.
- Azhar, S., Carlton, W. A., Olsen, D. and Ahmad, I. (2011). Building information modeling for sustainable design and LEED< sup>®</sup> rating analysis. *Automation in construction*, 20(2), 217-224.
- Bahar, Y. N., Pere, C., Landrieu, J. and Nicolle, C. (2013). A Thermal Simulation Tool for Building and Its Interoperability through the Building Information Modeling (BIM) Platform. *Buildings*, 3(2), 380-398.
- Baharvand, M., Ahmad, M. H. B., Safikhani, T. and Majid, R. B. A. (2013). DesignBuilder Verification and Validation for Indoor Natural Ventilation. *Journal of Basic and Applied Scientific Research*, 3(4), 182-189.
- Baker, N. and Steemers, K. (2002). *Daylight Design for Buildings*. Londen: Earthscan.
- Baroncini, C., Chella, F. and Zazzini, P. (2008). Numerical and experimental analysis of the 'Double Light Pipe', a new system for daylight distribution in interior spaces. *International Journal of Low-Carbon Technologies*, 3(2), 110-125.
- Begemann, S., Van den Beld, G. and Tenner, A. (1997). Daylight, artificial light and people in an office environment, overview of visual and biological responses. *International Journal of Industrial Ergonomics*, 20(3), 231-239.
- Belakehal, A., Tabet Aoul, K. and Bennadji, A. (2004). Sunlighting and daylighting strategies in the traditional urban spaces and buildings of the hot arid regions. *Renewable Energy*, 29(5), 687-702.
- Bell, J. (2004). Indoor environments: design, productivity and health (Q. U. o. thechnology, Trans.) (Vol. 2): CRC for Construction Innovation.

- Bellia, L., Cesarano, A., Iuliano, G. F. and Spada, G. (2008). Daylight glare: a review of discomfort indexes. Visual Quality and Energy Efficiency in Indoor Lighting: Today for Tomorrow, Rome.
- Beltran, L., Lee, E. and Selkowitz, S. (1997). Advanced optical daylighting systems: light shelves and light pipes. *Journal-Illuminating Engineering Society*, 26(2), 91-106.
- Benya, J. (2003). Daylighting and Electric Lighting. CHPS (Collaborative for High Performance Schools), "Lighting Manual", USA, 20.
- Binarti, F. (2009). Energy-Efficient Window For Classroom In Warm Tropical Area. Proceedings of the 2009. Eleventh International IBPSA Conference. Glasgow. Scotland,
- Bodart, M., Deneyer, A., De Herde, A. and Wouters, P. (2007). A guide for building daylight scale models. *Architectural Science Review*, 50(1), 31-36.
- Booth, A. (2009). *Modelling and Simulation of Building Physics*. Fourth-year undergraduate project in Group D, Robinson College.
- Boyce, P., Hunter, C. and Howlett, O. (2003). The benefits of daylight through windows. *Lighting Research Center, Rensselaer Polytechnic Institute*. Troy, New York.
- Boyce, P. R. (2010). Review: the impact of light in buildings on human health. *Indoor and Built Environment*, 19(1), 8-20.
- Building and Construction Authority, 2006. *Singapore's Zero Energy Building ontrack to meet net zero power consumption*. <u>http://www.bca.gov.sg</u> (accessed September 28, 2013).
- Callow, J. M. (2003). *Daylighting using tubular light guide systems*. PhD thesis, University of Nottingham.
- Canziani, R., Peron, F. and Rossi, G. (2004). Daylight and energy performances of a new type of light pipe. *Energy and buildings*, 36(11), 1163-1176.
- Carter, D. (2004). Developments in tubular daylight guidance systems. *Building Research & Information*, 32(3), 220-234.
- Chaiwiwatworakul, P., Chirarattananon, S. and Rakkwamsuk, P. (2009). Application of automated blind for daylighting in tropical region. *Energy Conversion and Management*, 50(12), 2927-2943.

- Chaiyakul, Y. (2004). Estimating daylight in urban streets in Bangkok. *Architectural Science Review*, 47(2), 121-130.
- Chel, A., Tiwari, G. and Chandra, A. (2009). A model for estimation of daylight factor for skylight: An experimental validation using pyramid shape skylight over vault roof mud-house in New Delhi (India). *Applied Energy*, 86(11), 2507-2519.
- Chen, C.-A., Chen, Y.-Y. and Whang, A. J.-W. (2009). An active lighting module with natural light guiding system and solid state source for indoor illumination. *Proceedings of the 2009 Proc. SPIE*, 74220Z.
- Chirarattananon, S., Chedsiri, S. and Renshen, L. (2000). Daylighting through light pipes in the tropics. *Solar Energy*, 69(4), 331-341.
- Chou, C.-P. (2004). The performance of daylighting with shading device in architecture design. *Tamkang Journal of Science and Engineering*, 7(4), 205-212.
- Christoffersen, J. and Wienold, J. (2004). Monitoring Procedure for assessment of user reaction to glare (Report ECCO-DBUR-0303-01): European Community.
- CIBSE. (1994). *Code for Interior Lighting*. London, UK: Chartered Institusion of Building Services Engineers (CIBSE).
- CIE. (2003). Spatial distribution of daylight CIE standard general sky. *CIE*, *S* 011/*E*. Viennna, Austria: Commission International de Eclairage.
- Compagnon, R. (2004). Solar and daylight availability in the urban fabric. *Energy and buildings*, 36(4), 321-328.
- Courret, G., Scartezzini, J.-L., Francioli, D. and Meyer, J.-J. (1998). Design and assessment of an anidolic light-duct. *Energy and buildings*, 28(1), 79-99.
- Couture, P., Nabbus, H., Al-Azzawi, A. and Havelock, M. (2011). Improving passive solar collector for fiber optic lighting. Proceedings of the 2011 *Electrical Power and Energy Conference (EPEC), 2011 IEEE*, 68-73.
- Crawley, D. B., Hand, J. W., Kummert, M. and Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. *Building and environment*, 43(4), 661-673.

- Cui, Y., Zhao, N. and Liu, Y. (2012). Design and Simulative Evaluation of Buildings with Ecotect. Proceedings of the 2012 *Civil Engineering and Urban Planning* 2012, 194-199.
- Cunill, E., Serra, R. and Wilson, M. (2007). Using daylighting controls in offices?
 Post occupancy study about their integration with the electric lighting.
 Proceedings of the 2007 PLEA2007-The 24th Conference on Passive and Low Energy Architecture. Singapore.
- Dahlan, N. (2013). Perceptive-cognitive aspects investigation in relation to indoor environment satisfaction collected from naturally ventilated multi-storey student accommodations in Malaysia. *Indoor and Built Environment*. 0(0), 1-12
- Dahlan, N., Jones, P., Alexander, D., Salleh, E. and Alias, J. (2009). Daylight ratio, luminance, and visual comfort assessments in typical Malaysian hostels. *Indoor and Built Environment*. 18(4), 319-335.
- Dauda, A. M. and Gao, H. (2013). Improving Sustainability of Housing in Ghana through Energy Efficient Climate Control Strategies. Advanced Materials Research. 608, 1698-1704.
- Day, J., Theodorson, J. and Van Den Wymelenberg, K. (2012). Understanding controls, behaviors and satisfaction in the daylit perimeter office: a daylight design case study. *Journal of Interior Design*. 37(1), 17-34.
- Department of Standards Malaysia (2007). *MS 1525: 2007*. Malaysia Standard: Code of Practice on Energy efficiency and Use of renewable Energy for Non-Residential Buildings (1st Revision).
- de Nadal, B. G. M. M. (2005). An experimental setup to evaluate the daylighting performance of an advanced optical light pipe for deep-plan office buildings. Master of Science, Texas A&M University.
- de Souza, C. B. (2009). A critical and theoretical analysis of current proposals for integrating building thermal simulation tools into the building design process. *Journal of Building Performance Simulation*, 2(4), 283-297.
- Djamila, H., Ming, C. C. and Kumaresan, S. (2011). Estimation of exterior vertical daylight for the humid tropic of Kota Kinabalu city in East Malaysia. *Renewable Energy*, 36(1), 9-15.

- Du, J. and Sharples, S. (2010). Daylight in atrium buildings: Geometric shape and vertical sky components. *Lighting Research and Technology*. 42(4), 385-397.
- Dubois, M.-C. (2001a). Impact of Solar Shading Devices on Daylight Quality: Measurements in Experimental Office Rooms. Sweden: Lund Institute of Technology, Department of Building Science.
- Dubois, M.-C. (2001b). Impact of solar shading devices on daylight quality: simulations with radiance. Sweden: Lund Institute of Technology, Lund.
- Dubois, M.-C. and Blomsterberg, Å. (2011). Energy saving potential and strategies for electric lighting in future North European, low energy office buildings: A literature review. *Energy and buildings*, 43(10), 2572-2582.
- Eang, L. S. (2011). The Design, Development and Performance of a Retrofitted Net Zero Energy Building in Singapore. Department of Building, National University of Singapore.
- Edmonds, I. and Greenup, P. (2002). Daylighting in the tropics. *Solar Energy*, 73(2), 111-121.
- Edmonds, I., Moore, G., Smith, G. and Swift, P. (1995). Daylighting enhancement with light pipes coupled to laser-cut light-deflecting panels. *Lighting Research and Technology*, 27(1), 27-35.
- Egan, M. D. and Olgyay, V. (2002). *Architectural lighting*. New York: McGraw-Hill New York.
- Encyclopaedia Britannica. (2002). De Luxe edition CD ROM Encyclopaedia Britannica, Inc.
- Fakra, A. H., Boyer, H., Miranville, F. and Bigot, D. (2011). A simple evaluation of global and diffuse luminous efficacy for all sky conditions in tropical and humid climate. *Renewable Energy*, 36(1), 298-306.
- Freewan, A., Shao, L. and Riffat, S. (2008). Optimizing performance of the lightshelf by modifying ceiling geometry in highly luminous climates. *Solar Energy*, 82(4), 343-353.
- Freewan, A. A., Shao, L. and Riffat, S. (2009). Interactions between louvers and ceiling geometry for maximum daylighting performance. *Renewable Energy*, 34(1), 223-232.

- Fruergaard, T., Astrup, T. and Ekvall, T. (2009). Energy use and recovery in waste management and implications for accounting of greenhouse gases and global warming contributions. *Waste Management & Research*, 27(8), 724-737.
- Fuziah, S., Azni, Z. A., Shuzlina, A. R. and Adizul, A. (2004). Daylight modelling and thermal performance of atrium of new MECM building at Putrajaya: The Institution of Engineers, Malaysia
- Galasiu, A. D. and Veitch, J. A. (2006). Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review. *Energy and buildings*, 38(7), 728-742.
- Gall, M. and Lalek, J. (2010). Method and arrangement for simulation of highquality daylight spectra. US Patent App: Google Patents.
- Garcia Hansen, V., Isoardi, G., Hirning, M. and Bell, J. M. (2012). An assessment tool for selection of appropriate daylighting solutions for buildings in tropical and subtropical regions: Validation using radiance simulation. Proceedings of the 2012 World Renewable Energy Forum (WREF) 2012, 3600-3608.
- García-Fernández, B., Vázquez-Molini, D. and Fernández-Balbuena, A. Á. (2011). Lighting quality for aluminum and prismatic light guides. Proceedings of the 2011 SPIE Optical Systems Design, 81700T-81700T-81709.
- Garcia-Hansen, V. R. (2006). Innovative daylighting systems for deep-plan commercial buildings. Doctor of Phylosophy, Queensland University of Technology.
- GBI. (2009). Green Building Index: Design Reference Guide (1st ed.). Kuala lumpur, Malaysia: Green Building Index Sdn. Bhd.
- Government, S. (Producer). (2010). Building and Counstruction Authority. [Singapore's Zero Energy Building on-track to meet net zero power consumption]
- Guan, L.-S. (2006). The implication of global warming on the energy performance and indoor thermal environment of air-conditioned office buildings in Australia. Doctor of Phylosophy, Queensland University of Technology.
- Guglielmetti, R., Pless, S. and Torcellini, P. (2010). On the use of integrated daylighting and energy simulations to drive the design of a large net-zero energy office building. Proceedings of the 2010 Proc. Fourth National Conference of IBPSA-USA. New York, NY,

- Haddock, C. and McKee, J. (1991). Solar Energy Collection, Concentration, and Thermal Conversion—A Review. *Energy sources*, 13(4), 461-482.
- Hien, V. D. and Chirarattananon, S. (2009). An experimental study of a façade mounted light pipe. *Lighting Research and Technology*, 41(2), 123-142.
- Hien, W. N. and Istiadji, A. D. (2003). Effects of external shading devices on daylighting and natural ventilation. *Proceedings of the 2003, Proceedings of the 8th International IBPSA Conferenc.* Eindhoven, The Netherlands, 475-482.
- Hirsch, A., Pless, S., Guglielmetti, R., Torcellini, P. A., Okada, D. and Antia, P. (2011). The role of modeling when designing for absolute energy use intensity requirements in a design-build framework. *Golden, CO: National Renewable Energy Laboratory*, NREL/CP-5500-49067.
- Hsieh, C. (1981). Thermal analysis of CPC collectors. Solar Energy, 27(1), 19-29.
- Hu, J. and Olbina, S. (2013). A Simulation-Based Model for Integrated Daylighting System Design. *Journal of Computing in Civil Engineering*. doi: 10.1061/(ASCE)CP
- Hung, W. and Chow, W. (2001). A review on architectural aspects of atrium buildings. *Architectural Science Review*, 44(3), 285-295.
- Hunt, D. (1979). The use of artificial lighting in relation to daylight levels and occupancy. *Building and environment*, 14(1), 21-33.
- Husin, S. N. F. S. and Harith, Z. Y. H. (2012). The Performance of Daylight through Various Type of Fenestration in Residential Building. *Procedia-Social and Behavioral Sciences*, 36(2012), 196-203.
- Husini, E., Arabi, F. and Kandar, M. (2011). On Post Occupancy Evaluation of the Preferred Luminous Environment and Occupants' Satisfaction for Office Buildings in Malaysia: A Survey. *OIDA International Journal of Sustainable Development*, 2(8), 47-58.
- Hwang, T. and Kim, J. T. (2012). Assessment on the indoor environmental quality in office building. *Paper presented at the 7th International Symposium on Sustainable Healthy Buildings*, Seoul, Korea.
- Ibarra, D. and Reinhart, C. F. (2009). Daylight factor simulations-how close do simulation beginners 'really'get? Proceedings of the 2009 Building Simulation, 196-203.

- IES. (1993). *Lighting Handbook: Reference and Application*. Illuminating Engineering Society of North America (IESNA).
- Igawa, N. and Nakamura, H. (2001). All Sky Model as a standard sky for the simulation of daylit environment. *Building and environment*, 36(6), 763-770.
- Integrated Environmental Solutions, 2011. *IES*<*VE*> *Training* <u>http://www.iesve.com</u> (Accessed October 10, 2013).
- Jacksonville Architects, 2010. *Daylight Harvest*, <u>http://www.contentdg.com</u> (accessed March 5, 2013).
- Jenkins, D. and Newborough, M. (2007). An approach for estimating the carbon emissions associated with office lighting with a daylight contribution. *Applied Energy*, 84(6), 608-622.
- Kamaruzzaman, S. (2011). Green Building Design Features For A Better Smart School: Lesson Learnt From Geo and Leo Office Buildings. Proceedings of the 2011 Proceedings of 1st International Symposium on Conducive Learning Environment for Smart School (CLES) Malaysia, 57.
- Katanbafnasab, M. and Abu-Hijleh, B. (2013). Assessment of the Energy Impact of Using Building Integrated Photovoltaic and Electrochromic Glazing in Office Building in UAE. 2013(5), 56-61.
- Kazanasmaz, T., Günaydin, M. and Binol, S. (2009). Artificial neural networks to predict daylight illuminance in office buildings. *Building and environment*, 44(8), 1751-1757.
- Kesten, D., Fiedler, S., Thumm, F., Löffler, A. and Eicker, U. (2010). Evaluation of daylight performance in scale models and a full-scale mock-up office. *International Journal of Low-Carbon Technologies*, 5(3), 158-165.
- Kim, C.-S. and Chung, S.-J. (2011). Daylighting simulation as an architectural design process in museums installed with toplights. *Building and environment*, 46(1), 210-222.
- Kim, J. T. and Kim, G. (2010). Overview and new developments in optical daylighting systems for building a healthy indoor environment. *Building and environment*, 45(2), 256-269.
- Kim, J. T. and Kim, G. (2013). Optical Daylighting Performance of an Active Mirror System for Visual Sustainability of Residential Environment. *Indoor and Built Environment*, 22(1), 212-225.

- Kischkoweit-Lopin, M. (2002). An overview of daylighting systems. *Solar Energy*, 73(2), 77-82.
- Kittler, R. and Darula, S. (2006). The method of aperture meridians: a simple calculation tool for applying the ISO/CIE Standard General Sky. *Lighting Research and Technology*, 38(2), 109-119.
- Kómar, L., Rusnák, A. and Dubnička, R. (2013). Analysis of diffuse irradiance from two parts of sky vault divided by solar meridian using portable spectral skyscanner. *Solar Energy*, 96, 1-9.
- Koo, S. Y., Yeo, M. S. and Kim, K. W. (2010). Automated blind control to maximize the benefits of daylight in buildings. *Building and environment*, 45(6), 1508-1520.
- Koppel, T. and Tint, P. (2013). A dynamic lighting system for workplaces deficient of daylight. *Environmental Health Risk VII*, 7, 105.
- Kristensen, P. E. (2007). THE DESIGN OF THE ZERO ENERGY OFFICE BUILDING FOR PUSAT TENAGA MALAYSIA. *Paper presented at the Conference on Sustainable Building South East Asia*, Malaysia.
- Kunjaranaayudhya, I. (2005). *The Design of Daylight-Transporting Systems For Deep Space Illumination*. Master of Science, Citeseer, Blacksburg, Virginia.
- Kwok, C. and Chung, T. (2008). Computer simulation study of a horizontal light pipe integrated with laser cut panels in a dense urban environment. *Lighting Research and Technology*, 40(4), 287-305.
- Kwok, C.M. (2011). A study of horizontal light pipe system for interior daylighting in a dense urban environment. Doctor of Phylosophy, The Hong Kong Polytechnic University, Hong Kong.
- Laboratory, L. B. N. (2001). Desktop Radiance 2.0 BETA User Manual. California, US: Lawrence Berkeley National Laboratory, Environmental Technologies Division Building Technologies Department.
- Lam, J. C. and Li, D. H. (1999). An analysis of daylighting and solar heat for cooling-dominated office buildings. *Solar Energy*, 65(4), 251-262.
- Laouadi, A. and Atif, M. (2000). Daylight availability in top-lit atria: prediction of skylight transmittance and daylight factor. *Lighting Research and Technology*, 32(4), 175-186.

- Laouadi, A. and Coffey, B. (2012). The energy performance of the Central Sunlighting System. *Journal of Building Performance Simulation*, 5(4), 234-247.
- Lau, S., Baharuddin, A. and Wittkopf, S. (2007). The use of anidolic lighting system in improving daylight illuminance of high-rise buildings in Hong Kong. Proceedings of the 2007 Proceedings of the 24th Conference on Passive and Low Energy Architecture Singapore, 389-395
- Lau, S. and Baharuddin, B. (2009). Anidolic daylighting system: a sustainable daylighting technology for high-rise and high-density residential buildings. Proceedings of the 2009. 29-31 May 2009. Guilin, Guangxi, China, 1572-1579.
- Lau, S. S. (2011). Physical Environment of Tall Residential Buildings: The Case of Hong Kong *High-Rise Living in Asian Cities* (pp. 25-47): Springer.
- Lee, E., DiBartolomeo, D. and Selkowitz, S. (1998). Thermal and daylighting performance of an automated venetian blind and lighting system in a full-scale private office. *Energy and buildings*, 29(1), 47-63.
- Leslie, R. P. (2003). Capturing the daylight dividend in buildings: why and how? *Building and environment*, 38(2), 381-385.
- Leung, A., Lupton, M. and Carter, D. (1994). Standard obstructions for lighting calculations. *Lighting Research and Technology*, 26(3), 161-165.
- Leung, T. C., Rajagopalan, P. and Fuller, R. (2013). Performance of a daylight guiding system in an office building. *Solar Energy*, 94, 253-265.
- Li, D., Tsang, E. and Edmonds, I. (2011). Performance of light redirection systems in model buildings under typical sky and building obstruction conditions encountered in Hong Kong. *Indoor and Built Environment*, 20(6), 638-648.
- Li, D. H. (2007). Daylight and energy implications for CIE standard skies. *Energy Conversion and Management*, 48(3), 745-755.
- Li, D. H. (2010). A review of daylight illuminance determinations and energy implications. *Applied Energy*, 87(7), 2109-2118.
- Li, D. H., Cheung, G. H., Cheung, K. and Lam, T. N. (2010). Determination of vertical daylight illuminance under non-overcast sky conditions. *Building and environment*, 45(2), 498-508.

- Li, D. H., Lam, J. C. and Lau, C. C. (2002). A study of solar radiation daylight illuminance and sky luminance data measurements for Hong Kong. *Architectural Science Review*, 45(1), 21-30.
- Li, D. H., Lam, T. N., Cheung, K. and Tang, H. (2008). An analysis of luminous efficacies under the CIE standard skies. *Renewable Energy*, 33(11), 2357-2365.
- Li, D. H., Lam, T. N. and Wong, S. (2006). Lighting and energy performance for an office using high frequency dimming controls. *Energy Conversion and Management*, 47(9), 1133-1145.
- Lieberman, J. (1991). *Light: Medicine of the future—how we can use it to heal ourselves now*. Vrmont: Bear & Company.
- Lim, Y. and Hamdan, M. (2010). Daylight and users' response in high rise open plan office: a case study of Malaysia. Proceedings of the 2010 3rd International Graduate Conference on Engineering, Science, and Humanities. 2-3 Dec 2009. Penang, Malaysia: Universiti Sains Malaysia, 174e185.
- Lim, Y. W. (2011). Internal shading for efficient tropical daylighting in high-rise open plan office. Doctor of Phylosophy
- Universiti Teknologi Malaysia, Faculty of Built Environment, Johor.
- Lim, Y. W., Ahmad, M. and Ossen, D. R. (2008). Review on measuring tools for energy efficient solar shading strategies in tropical climate. *Jurnal Alam Bina*, 14(5), 33-42.
- Lim, Y.-W., Ahmad, M. H. and Ossen, D. R. (2010). Empirical validation of daylight simulation tool with physical model measurement. *American Journal of Applied Sciences*, 7(10), 1426.
- Lim, Y.-W., Kandar, M. Z., Ahmad, M. H., Ossen, D. R. and Abdullah, A. M. (2012). Building façade design for daylighting quality in typical government office building. *Building and environment*, 57, 194-204.
- Linhart, F. and Scartezzini, J. (2007). Efficient lighting strategies for office rooms in tropical climates. *Paper submitted to PLEA*, 360–367.
- Linhart, F. and Scartezzini, J.-L. (2010). Minimizing lighting power density in office rooms equipped with anidolic daylighting systems. *Solar Energy*, 84(4), 587-595.

- Linhart, F., Wittkopf, S. K., Münch, M. and Scartezzini, J.-L. (2009). Recent research on anidolic daylighting systems: highly reflective coating materials and chronobiological properties. Proceedings of the 2009 *Proceedings of SPIE* NUS, Singapore, 74230K.
- Linhart, F., Wittkopf, S. K. and Scartezzini, J.-L. (2010). Performance of Anidolic Daylighting Systems in tropical climates–Parametric studies for identification of main influencing factors. *Solar Energy*, 84(7), 1085-1094.
- Littlefair, P. (2002). Daylight prediction in atrium buildings. *Solar Energy*, 73(2), 105-109.
- Littlefair, P. J. (1981). The luminance distribution of an average sky. *Lighting Research and Technology*, 13(4), 192-198.
- Littlefair, P. J. (1990). Review Paper: Innovative daylighting: Review of systems and evaluation methods. *Lighting Research and Technology*, 22(1), 1-17.
- Littlefair, P. J. (1994). A comparison of sky luminance models with measured data from Garston, United Kingdom. *Solar Energy*, 53(4), 315-322.
- Lo Verso, V. R., Pellegrino, A. and Serra, V. (2011). Light transmission efficiency of daylight guidance systems: An assessment approach based on simulations and measurements in a sun/sky simulator. *Solar Energy*, 85(11), 2789-2801.
- Loewen, J., Levine, M. and Busch, J. (1992). ASEAN-USAID Buildings Energy Conservation Project. Final report, Volume 3: Audits: Lawrence Berkeley Lab., CA (United States).
- Loutzenhiser, P. G., Maxwell, G. M. and Manz, H. (2007). An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows. *Energy*, 32(10), 1855-1870.
- Lumena Daylight Systems, 2007. *Heliostats*. <u>http://www.lumena.ch</u> (accessed June 13, 2013)
- Luther, M. B. (2012). Studies on a Daylight-guiding System for an Office. Proceedings of the 2012 Clean Energy? Can Do: proceedings of Solar 2006, 1-8.
- Macdonald, L. (2012). Solar Position Measurements *How to Observe the Sun Safely* (pp. 63-81). London: Springer.

- Mahdavi, A., Rao, S. and Inangda, N. (2013). Parametric Studies on Window-To-Wall Ratio for Passive Design Optimisation of Day lighting in High-Rise Office Buildings in Kuala Lumpur, Malaysia. *Journal of Design and Built Environment*, 12(1).
- Mahmoud, B. H., Hexsel, C. L., Hamzavi, I. H. and Lim, H. W. (2008). Effects of Visible Light on the Skin[†]. *Photochemistry and photobiology*, 84(2), 450-462.
- Malaysia. (1984). Uniform Building By-laws. G.N. 5178/85.
- Mandalaki, M., Zervas, K., Tsoutsos, T. and Vazakas, A. (2012). Assessment of fixed shading devices with integrated PV for efficient energy use. *Solar Energy*, 86(9), 2561–2575.
- Mardaljevic, J., Heschong, L. and Lee, E. (2009). Daylight metrics and energy savings. *Lighting Research and Technology*, 41(3), 261-283.
- McNeil, A. and Lee, E. S. (2013). Annual daylighting performance of a passive optical light shelf in sidelit perimeter zones of commercial buildings. University of California. USA.
- Miloni, R. (1997). DEMONA-Research and Demonstration modules for innovative daylighting technology. Switzerland: NEFF Report, ARGE Miloni, Elektrowatt and EPFL, Zurich and Lausanne, Switzerland.
- Mirkovich, D. (1993). Assessment of beam lighting systems for interior core illumination in multi-story commercial buildings. TRANSACTIONS-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR CONDITIONING ENGINEERS, 99, 1106-1106.
- Mirrahimi, S., Ibrahim, N. L. N. and Surat, M. (2013). Estimation Daylight to Find Simple Formulate Based on the Ratio of Window Area to Floor Area Rule of Thumb for Classroom in Malaysia. *Research Journal of Applied Sciences, Engineering and Technology*, 6(5), 931-935.
- Miyazaki, T., Akisawa, A. and Kashiwagi, T. (2005). Energy savings of office buildings by the use of semi-transparent solar cells for windows. *Renewable Energy*, 30(3), 281-304.

- Mohd Zin, K., Yong Razidah, Ossen, D. R., Hamdan Ahmad, Lim Yaik Wah, Mansour Nikpour. (2011a). Survey of Surface Reflectance, Work Plane Illuminance Level and Uniformity in Malaysian Government Office Buildings. Paper presented at the International Conference on Ecosystems, Environment and Sustainable Development (ICEESD), Venice, Italy.
- Mohd Zin, K., Sulaiman, M. S., Rashid, Y. R., Ossen, D. R., Abdullah, A. M., Wah, L. Y., et al. (2011b). Investigating Daylight Quality In Malaysian Government Office Buildings Through Daylight Factor and Surface Luminance. *Engineering and Technology*, 59.
- Molteni, S. C., Courret, G., Paule, B., Michel, L. and Scartezzini, J. (2001). Design of anidolic zenithal lightguides for daylighting of underground spaces. *Solar Energy*, 69, 117-129.
- Moore, F. (1993). *Environmental control systems: heating, cooling, lighting*. New York: McGraw-Hill.
- Morello, E., Gori, V., Balacco, C. and Ratti, C. (2009). Sustainable Urban Block Design through Passive Architecture. Proceedings of the 2009 26th Conference on Passive and Low Energy Architecture Quebec City, Canada, 6.
- Mukherjee, S. and Roy, B. (2011). Correlating Indian measured sky luminance distribution and Indian Design clear sky model with five CIE Standard clear sky models. *Journal of Optics*, 40(4), 150-161.
- Müller, H. (1994). Application of holographic optical elements in buildings for various purposes like daylighting, solar shading and photovoltaic power generation. *Renewable Energy*, 5(5), 935-941.
- Muneer, T. and Gul, M. (2000). Evaluation of sunshine and cloud cover based models for generating solar radiation data. *Energy Conversion and Management*, 41(5), 461-482.
- Mursib, G. (1999). AN EXPERIMENT TO COMPARE DAYLIGHT FACTORS DETERMINED FROM ADELINE 2.0 SIMULATION AND FIELD MEASUREMENT. Proceedings of the 1999 Proceedings, 383.
- Nair, M., Ramamurthy, K. and Ganesan, A. (2013). Classification of indoor daylight enhancement systems. *Lighting Research and Technology*, 1-23. doi: 10.1177/1477153513483299

- Nassar, K. and Al-Mohaisen, A. (2006). A practical approach for cost/benefit analysis of early design decisions: application to architectural daylighting. *Architectural Science Review*, 49(3), 295-300.
- Nazzal, A. A. (2005). A new evaluation method for daylight discomfort glare. *International Journal of Industrial Ergonomics*, 35(4), 295-306.
- Ng, E., Cheng, V., Gadi, A., Mu, J., Lee, M. and Gadi, A. (2007). Defining standard skies for Hong Kong. *Building and environment*, 42(2), 866-876.
- Nicolow, J. (2004). Getting the green light from the sun-The benefits of daylight harvesting. *Construction Specifier*, 57, 58-65.
- Nielsen, M. V., Svendsen, S. and Jensen, L. B. (2011). Quantifying the potential of automated dynamic solar shading in office buildings through integrated simulations of energy and daylight. *Solar Energy*, 85(5), 757-768.
- Nikpour, M., Kandar, M. Z. and Mosavi, E. (2012). Investigating Daylight Quality Using Self Shading Strategy in Energy Commission Building in Malaysia. *Indoor and Built Environment*, 1-14.
- Nikpour, M., Kandar, M. Z. and Roshan, M. (2013). Empirical Validation of IES
 VE> Simulation in Term of Daylight in Self-Shading Office Room in Malaysia. *Journal of Basic and Applied Scientific Research*, 3(10), 106-112.
- LESO-PB (Website). Solar Energy and Building Physics Laboratory of the Swiss Federal Institute of Technology, Lausanne, http://lesowww.epfl.ch (accessed October 4, 2013)
- Oakley, G., Riffat, S. and Shao, L. (2000). Daylight performance of lightpipes. *Solar Energy*, 69(2), 89-98.
- Olesen, B. W. (2007). The philosophy behind EN15251: Indoor environmental criteria for design and calculation of energy performance of buildings. *Energy and Buildings*, 39(2007), 740-749.
- Omer, A. M. (2008). Renewable building energy systems and passive human comfort solutions. *Renewable and Sustainable Energy Reviews*, 12(6), 1562-1587.
- Ossen, D. R. (2005). Optimum overhang geometry for high rise office building energy saving in tropical climates. Doctor of Philosophy, Faculty of Built Environment, Universiti Teknologi Malaysia, Johor.
- Öztürk, L. D. (2008). Determination of energy losses in lighting in terms of good vision efficiency. *Architectural Science Review*, 51(1), 39-47.

- Page, J., Scartezzini, J.-L., Kaempf, J. and Morel, N. (2007). On-site performance of electrochromic glazings coupled to an anidolic daylighting system. *Solar Energy*, 81(9), 1166-1179.
- Pan, Y., Wu, G., Yang, F. and Huang, Z. (2008). CFD and daylight simulation calibrated with site measurement for waiting hall of Shanghai south railway station. Proceedings of the 2008 *Third National Conference of IBPSA-USA*, *July*, Berkeley, California,
- Paroncini, M., Calcagni, B. and Corvaro, F. (2007). Monitoring of a light-pipe system. *Solar Energy*, 81(9), 1180-1186.
- Phillips, D. (2000). *Lighting modern buildings*. Boston: Routledge, Architectural Press, Oxford.
- Pomozi, I., Horváth, G. and Wehner, R. (2001). How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. *Journal of Experimental Biology*, 204(17), 2933-2942.
- Pritchard, D. C. (1999). *Lighting* (6th ed ed.). Longman scientific and technical, Harlow, England,: Longman.
- Rabl, A. (1976). Comparison of solar concentrators. Solar Energy, 18(2), 93-111.
- Rahim, R. and Mulyadi, R. (2004). Preliminary study of horizontal illuminance in Indonesia. Proceedings of the 2004 5th SENVAR 10-12 December 2004. University Teknologi Malaysia, Johor,
- Ramos, G. and Ghisi, E. (2010). Analysis of daylight calculated using the EnergyPlus programme. *Renewable and Sustainable Energy Reviews*, 14(7), 1948-1958.
- Reeves, T., Olbina, S. and Issa, R. (2012). Guidelines for Using Building Information Modeling (BIM) for Environmental Analysis of Highperformance Buildings. Proceedings of the 2012 Computing in Civil Engineering: Proceedings of the 2012 Asce International Conference on Computing in Civil Engineering, June 17-20, 2012, Clearwater Beach, Florida, 277.
- Reinhart, C. F., Mardaljevic, J. and Rogers, Z. (2006). Dynamic daylight performance metrics for sustainable building design. *LEUKOS*, 3(1), 1-25.

- Rietveld, M. (1978). A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. *Agricultural Meteorology*, 19(2), 243-252.
- Resource Solar (1956). Solar Energy. http://www.resource-solar.com (accessed June 9, 2014)
- Robbins, C. L. (1986). *Daylighting. Design and analysis*. New York: Van Nostrand: Van Nostrand Reinhold Co. Inc.,.
- Romm, J. J. and Browning, W. D. (1998). Greening the building and the bottom line: Increasing productivity through energy-efficient design. Snowmass: Rocky Mountain Institute.
- Rosa, J. (2012). US Patent No. U.S. PATENT DOCUMENT: N.-i. d. l. concentrator.
- Rosemann, A., Cox, G., Upward, A., Friedel, P., Mossman, M. and Whitehead, L. (2007). Efficient dual-function solar/electric light guide to enable costeffective core daylighting. *LEUKOS*, 3(4), 265-269.
- Rosemann, A. and Kaase, H. (2005). Lightpipe applications for daylighting systems. *Solar Energy*, 78(6), 772-780.
- Roshan, M., Kandar, M. Z., Mohammadi, M. P. and Dodo, Y. A. (2013a). Empirical Validation of Daylight Simulation Tool for a Test Office with Anidolic Daylighting System. *Journal of Basic and Applied Scientific Research*, 3(9), 104-112.
- Roshan, M., Kandar, M. Z. B., Nikpur, M., Mohammadi, M. P. and Ghasemi, M. (2013b). Investigating the performance of Anidolic Daylighting System with respect to building orientation in tropical area. *Engineering Science and Technology: An International Journal* 3(3), 74-50.
- Ruck, N. and Aschehoug, Ø. (2000). Daylight buildings. A source book on daylighting systems and components. Berkeley, CA: International Energy Agency.
- Saidur, R. (2009). Energy consumption, energy savings, and emission analysis in Malaysian office buildings. *Energy Policy*, 37(10), 4104-4113.
- Samant, S. and Medjdoub, B. (2006). Reflectance distributions and atrium daylight levels: a comparison between physical scale model and Radiance simulated study. *International Journal of Low-Carbon Technologies*, 1(2), 177-182.

- Samant, S. R. (2011). A parametric investigation of the influence of atrium facades on the daylight performance of atrium buildings. Doctor of Phylosophy, University of Nottingham.
- Samuhatananon, S., Chirarattananon, S. and Chirarattananon, P. (2011). An experimental and analytical study of transmission of daylight through circular light pipes. *LEUKOS*, 7(4), 203-219.
- Santiago, G. (2011). Towards daylight guidelines for tropical climates. Proceedings of the 2011 *People and Buildings held at the offices of Arup UK*. 23rd September 2011. London,
- Scartezzini, J. L. and Courret, G. (2002). Anidolic daylighting systems. *Solar Energy*, 73(2), 123-135.
- Schlegel, G., Burkholder, F., Klein, S., Beckman, W., Wood, B. and Muhs, J. (2004). Analysis of a full spectrum hybrid lighting system. *Solar Energy*, 76(4), 359-368.
- Schwiegerling, J. (2011). Visual optics *Molded Optics: Design and Manufacture* (pp. 37). Boca Raton: CRC Press.
- Selkowitz, S. (1998). The elusive challenge of daylighted buildings: A brief review 25 years later. Proceedings of the 1998 Proceedings of the Daylighting'98 Conference, Ottawa,
- Shahriar, A. (2012). Algorithm for determining CIE Standard General Sky occurrence from digital sky images. Architectural Science Review, iFirst(2012), 1-6.
- Shahriar, A. N. M. and Mohit, M. A. (2007). Estimating depth of daylight zone and PSALI for side lit office spaces using the CIE Standard General Sky. *Building and environment*, 42(8), 2850-2859.
- Shen, H. and Tzempelikos, A. (2012). Daylighting and energy analysis of private offices with automated interior roller shades. *Solar Energy*, 86(2), 681-704.
- Sicurella, F., Evola, G. and Wurtz, E. (2012). A statistical approach for the evaluation of thermal and visual comfort in free-running buildings. *Energy and buildings*, 47, 402-410.

- Singhal, N., Tathagat, T. and Rawal, R. (2009). ANALYSIS OF DAYLIGHTING DEVICES FOR TYPICAL OFFICE BUILDINGS OF NEW DELHI, INDIA. Proceedings of the 2009 Eleventh International IBPSA Conference, Glasgow, Scotland July, 27-30.
- Slater, A. I. and Boyce, P. R. (1990). Illuminance uniformity on desks: Where is the limit? *Lighting Research and Technology*, 22(4), 165-174.
- Smiley, F. (1996). Students delight in daylight. *International Association for Energy Efficient Lighting Newsletter*, 5(2), 11-12.
- Smith, B. J., Phillips, G. M. and Sweeney, M. (1983). Environmental science. UK: Longman scientific & Technical.
- SPIE, (2008). *Connecting minds. Advancing light.* http://spie.org (accessed October 4, 2013)
- Steemers, K., Baker, N. V. and Fanchiotti, A. (1993). *Daylighting in architecture: a European reference book*. London: Commission.
- Su, Y., Yu, X., Zhang, L., Karagianni, M. and Khan, N. (2012). Energy saving potential of MonodraughtTM sunpipes installed in a supermarket. *Energy Procedia*, 14, 578-583.
- Sweitzer, G. (1993). Three advanced daylighting technologies for offices. *Energy*, 18(2), 107-114.
- Syed, A. W. (2012). Evaluating The Daylighting Potential In The Monetary Times Building. Master of Building Science, Ryerson University, Toronto, Canada.
- Szokolay, S. V. (2008). Introduction to architectural science: the basis of sustainable design. UK: Architectual Press.
- Thanachareonkit, A. and Scartezzini, J.-L. (2010). Modelling Complex Fenestration Systems using physical and virtual models. *Solar Energy*, 84(4), 563-586.
- Thanachareonkit, A., Scartezzini, J.-L. and Andersen, M. (2005). Comparing daylighting performance assessment of buildings in scale models and test modules. *Solar Energy*, 79(2), 168-182.
- Thompson, J., Donn, M. and Osborne, J. (2011). Variation of Green Building Ratings Due to Variances in Sky Definitions. Proceedings of the 2011 Proceedings of Building Simulation 2011: 12th Conference of International Building Performance Simulation Association,

- Tregenza, P. (1980). The daylight factor and actual illuminance ratios. *Lighting Research and Technology*, 12(2), 64-68.
- Tregenza, P. (1999). Standard skies for maritime climates. *Lighting Research and Technology*, 31(3), 97-106.
- Tsangrassoulis, A. (2008). A Review of Innovative Daylighting Systems. *Advances in Building Energy Research*, 2(1), 33-56.
- Tsangrassoulis, A., Doulos, L., Santamouris, M., Fontoynont, M., Maamari, F., Wilson, M., et al. (2005). On the energy efficiency of a prototype hybrid daylighting system. *Solar Energy*, 79(1), 56-64.
- Tsikaloudaki, K. (2005). A study on luminous efficacy of global radiation under clear sky conditions in Athens, Greece. *Renewable Energy*, 30(4), 551-563.
- Tsikaloudaki, K., Anagnostou, S. and Nichoritis, K. (2008). Investivating the performance of anidolic vertical openings under real conditions in Greece. *Paper presented at the 25th Conference on Passive and Low Energy Architecture*, Dublin.
- Tural, M. and Yener, C. (2006). Lighting monuments: Reflections on outdoor lighting and environmental appraisal. *Building and environment*, 41(6), 775-782.
- Ünver, R., Öztürk, L., Adıgüzel, Ş. and Çelik, Ö. (2003). Effect of the facade alternatives on the daylight illuminance in offices. *Energy and buildings*, 35(8), 737-746.
- Urmee, T., Thoo, S. and Killick, W. (2012). Energy efficiency status of the community housing in Australia. *Renewable and Sustainable Energy Reviews*, 16(4), 1916-1925.
- Veitch, J. A., Hine, D. W. and Gifford, R. (1993). END USERS 'KNOWLEDGE, BELIEFS, and PREFERENCES FOR LIGHTING. Journal of Interior Design, 19(2), 15-26.
- Vine, E., Lee, E., Clear, R., DiBartolomeo, D. and Selkowitz, S. (1998). Office worker response to an automated venetian blind and electric lighting system: a pilot study. *Energy and buildings*, 28(2), 205-218.
- Waewsak, J., Hirunlabh, J., Khedari, J. and Shin, U. (2003). Performance evaluation of the BSRC multi-purpose bio-climatic roof. *Building and environment*, 38(11), 1297-1302.

- Wald, L. (2007). Solar radiation energy (fundamentals). Solar Energy Conversion and Photoenergy Systems, edited by Julian Blanco and Sixto Malato, in Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK,[http://www.eolss. net], 1.
- Wang, N. (2009). In Broad Daylight: An investigation of the multiple environmental factors influencing mood, preference, and performance in a sunlit workplace.
 Doctor of Phylosophy, University of Illinois at Urban-Champaign.
- Waritanant, T., Boonruang, S. and Chung, T.-Y. (2013). High angular tolerance thin profile solar concentrators designed using a wedge prism and diffraction grating. *Solar Energy*, 87, 35-41.
- Webb, A. R. (2006). Considerations for lighting in the built environment: Non-visual effects of light. *Energy and buildings*, 38(7), 721-727.
- Welford, W. T. and Winston, R. (1989). High collection nonimaging optics. San Diego: Academic Press.
- Wen, Y.-J., Bonnell, J. and Agogino, A. M. (2008). Energy conservation utilizing wireless dimmable lighting control in a shared-space office. Proceedings of the 2008 Proceedings of the 2008 Annual Conference of the Illuminating Engineering Society of North America (IESNA), Savannah, GA,
- Wilson, M., Jacobs, A., Solomon, J., Pohl, W., Zimmermann, A., Tsangrassoulis, A., et al. (2002). Creating sunlight rooms in non- daylit spaces. Proceedings of the 2002 Proceedings of the 5th International Conference on Energy Efficient Lighting—Right Light France, 29-31.
- Wilson, T., Hoffmann, P., Somasundaran, S., Kessler, J., Wiebe, J., Choi, Y., et al. (2005). OpinionFinder: A system for subjectivity analysis. Proceedings of the 2005 Proceedings of HLT/EMNLP on Interactive Demonstrations, 34-35.
- Winston, R. (1974). Principles of solar concentrators of a novel design. Solar Energy, 16(2), 89-95.
- Wittkopf, S. (2007). Daylight performance of anidolic ceiling under different sky conditions. *Solar Energy*, 81(2), 151-161.
- Wittkopf, S., Oliver Grobe, L., Geisler-Moroder, D., Compagnon, R., Kämpf, J., Linhart, F., et al. (2010). Ray tracing study for non-imaging daylight collectors. *Solar Energy*, 84(6), 986-996.

- Wittkopf, S. and Soon, L. (2007). Analysing sky luminance scans and predicting frequent sky patterns in Singapore. *Lighting Research and Technology*, 39(1), 31-51.
- Wittkopf, S., Valliappan, S., Liu, L., Ang, K. S. and Cheng, S. C. J. (2012). Analytical performance monitoring of a 142.5 kW< sub> p</sub> gridconnected rooftop BIPV system in Singapore. *Renewable Energy*, 47, 9-20.
- Wittkopf, S. K., Yuniarti, E. and Soon, L. K. (2006). Prediction of energy savings with anidolic integrated ceiling across different daylight climates. *Energy and buildings*, 38(9), 1120-1129.
- Wong, L., Eames, P. and Perera, S. (2012). Energy simulations of a transparentinsulated office façade retrofit in London, UK. Smart and Sustainable Built Environment, 1(3), 253-276.
- Wong, N. H., Kwang Tan, A. Y., Chen, Y., Sekar, K., Tan, P. Y., Chan, D., et al. (2010). Thermal evaluation of vertical greenery systems for building walls. *Building and environment*, 45(3), 663-672.
- Wu, Y., Jin, R., Li, D., Zhang, W. and Ma, C. (2009). Experimental investigation of top lighting and side lighting solar light pipes under sunny conditions in winter in Beijing. Proceedings of the 2009 Proc. of SPIE Vol, 715710-71571.
- Xia, C., Zhu, Y. and Lin, B. (2008). Building simulation as assistance in the conceptual design. *Building Simulation*, 1(1), 46-52.
- Yeh, T., Ke, T. and Lin, Y. (2011). Algal growth control within natural water purification systems: macrophyte light shading effects. *Water, Air, & Soil Pollution*, 214(1-4), 575-586.
- Yunus, J., Ahmad, S. S. and Zain-Ahmed, A. (2011). Analysing the Impact of Roof Obstructions on Daylight Levels in Atrium Buildings: Physical Scale Model Measurements under Real Sky Conditions. Proceedings of the 2011 2nd International Conference on Environmental Science and Technology Singapore,
- Zain Ahmed, A. (1999). A study on the potential of solar irradiation as a source of natural lighting in buildings and its implication on energy-efficiency. Doctor of Phylosophy, Institute of Research, Development and Commercialization, Universiti Teknologi MARA.

- zain-Ahmed, A. (2000). *Daylighting and shading for thermal comfort in Malaysian buildings*. PhD thesis, University of Herfordshire, uk.
- Zain-Ahmed, A., Omar, H., Alwi, M., Omar, M. and Ahmed, S. (2007). Estimation of outdoor illuminance for passive solar architecture in Malaysia. Paper presented at the 2nd PALENC Conference and 28th AIVC Conference on Building Low Energy Cooling and Advanced Ventilation Technologies in the 21st Century,, Crete island, Greece.
- Zain-Ahmed, A., Sopian, K., Zainol Abidin, Z. and Othman, M. (2002a). The availability of daylight from tropical skies—a case study of Malaysia. *Renewable Energy*, 25(1), 21-30.
- Zain-Ahmed, A., Sopian, K., Othman, M., Sayigh, A. and Surendran, P. (2002b). Daylighting as a passive solar design strategy in tropical buildings: a case study of Malaysia. *Energy Conversion and Management*, 43(13), 1725-1736.
- Zakaria, R., Amirazar, A., Majid, A., Zaimi, M., Mohammad Zin, R. and Mustaffar, M. (2013). Daylight Factor for Energy Saving in Retrofitting Institutional Building. Advanced Materials Research, 724, 1630-1635.
- Zhu, Y. (2006). Applying computer-based simulation to energy auditing: A case study. *Energy and buildings*, 38(5), 421-428.