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ABSTRACT 

 

In multiple linear regression models, the ordinary least squares (OLS) method 

has been the most popular technique for estimating parameters of model due to its 

optimal properties and ease of calculation. OLS estimator may fail when the 

assumption of independence is violated. This assumption can be violated when there 

are correlations between the exploratory variables. In this situation, the data is said to 

contain multicollinearity and eventually will mislead the inferential statistics. 

However, the problem becomes more complicated when there are abnormal 

observational data known as outliers. It is now evident that presence of outliers has a 

serious threat on model with multicollinearity. In this research new procedures on how 

to improve the parameter estimation method in the presence of multicollinearity and 

outliers are put forward. The Principal Component Regression (PCR) and Ridge 

Regression (RR) individually are not resistant to outliers. The results of the research 

have showed that even if the PCR and RR produced good results with multicollinearity 

model, it may fail in the presence of outliers. The motive behind this research to find 

new procedures which are best with high break down point to estimate the model of 

regression with multicollinearity and outliers characteristics. The proposed methods 

are called Principal Component regression with Least Trimmed Squares (LTS) based 

on Tukey bisquare weighted (RWPCLTS) and Principal Component regression with 

Least Median Squares (LMS) based on Tukey bisquare weighted (RWPCLMS).  

Empirical applications of cigarette data according to its weight, tar, nicotine, and 

carbon monoxide contents for different brand of domestic cigarette were used to 

compare the performance between RWPCLTS and RWPCLMS with the existing 

methods of PCR and RR methods.  A comprehensive simulation study evaluates the 

impact of multicollinearity and outliers on the proposed methods and existing methods. 

The considered percentages of outliers in the simulation are 0%, 5%, 10%, 15% and 

20%.  A selection criterion is proposed based on the best model with bias and root 

mean squares error for the simulated data and low standard error for real data. Results 

for both real data and simulation study suggest that the proposed criterion is effective 

for RWPCLTS and RWPCLMS in multicollinearity and outliers.  Moreover, for both 

methods, the RWPCLTS tend to be the best followed by RWPCLMS when 

multicollinearity and outliers are present. This research shows the ability of the 

computationally intense method and viability of combining weighting procedures 

namely robust LTS-estimation or LMS-estimation and multicollinearity diagnostic 

methods of PC to achieve accurate regression model.  In conclusion, the proposed 

methods are able to improve the parameter estimation of linear regression by 

enhancing the existing methods to handle the problem of multicollinearity and outliers 

in the data set.  This improvement will help the analyst to choose the best estimation 

method in order to produce the most accurate regression model in the presence of 

multicollinearity and outliers. 
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ABSTRAK 

 

 

Dalam pelbagai model regresi linear, Kaedah kuasa dua terkecil biasa (OLS) telah 

menjadi teknik yang paling popular untuk menganggar parameter yang ada pada model 

kerana sifat-sifat  optimumnya dan cara pengiraan yang mudah. Penganggar OLS 

mungkin akan gagal apabila andaian kemerdekaan dilanggar. Andaian ini boleh 

dilanggar apabila terdapat korelasi antara pembolehubah penerokaan. Dalam situasi 

ini, data tersebut dikatakan mengandungi multikolinearan dan akhirnya akan 

memesongkan statistik inferensi. Walau bagaimanapun, masalah ini menjadi lebih 

rumit apabila terdapat ketaknormalan data pemerhatian yang dipanggil titik terpencil. 

Ia kini jelas bahawa kehadiran titik terpencil boleh menjadi satu ancaman yang serius 

kepada model dengan adanya multikolinearan. Dalam kajian ini, prosedur baharu 

untuk memperbaiki kaedah anggaran parameter dengan kehadiran multikolinearan dan 

titik terpencil dikemukakan. Regresi Komponen Prinsipal (PCR) dan Ridge Regresi 

(RR) secara individu tiada daya tahanan pada titik terpencil. Keputuson kajian telah 

menunjukkan bahawa walaupun PCR dan RR menghasilkan keputusan yang baik 

dengan model multikolinearan, ia mungkin gagal dengon kehadiron titik terpencil. 

Motif di sebalik kajian ini untuk mencari prosedur baharu yang terbaik dengan titik 

pecahan tinggi untuk menganggarkan model regresi dengan multikolinearan dan yang 

mempunyai ciri-ciri titik terpencil. Kaedah yang dicadangkan adalah dipanggil regresi 

Komponen Prinsipal yang LTS berdasarkan Tukey bisquare berwajaran (RWPCLTS) 

dan Principal Component regresi dengan LMS berdasarkan Tukey bisquare 

berwajaran (RWPCLMS). Aplikasi empirikal data rokok mengikut berat, tar, nikotin, 

dan kandungan karbon monoksida untuk pelbagai jenama rokok tempatan telah diguna 

untuk membandingkan prestasi antara RWPCLTS dan RWPCLMS dengan kaedah 

PCR yang sedia ada dan kaedah RR. Satu kajian simulasi menyeluruh menilai kesan 

multikolinearan dan titik terpencil pada kaedah yang dicadangkan dan juga pada 

kaedah yang sedia ada. Peratusan titik terpencil yang dipertimbangkan dalam simulasi 

adalah 0%, 5%, 10%, 15% dan 20%. Satu kriteria pemilihan adalah dicadangkan 

berdasarkan model terbaik dengan kecenderungan dan ralat punca kuasa dua min bagi 

data simulasi dan ralat piawai yang rendah untuk data sebenar. Keputusan untuk 

kedua-dua data sebenar dan kajian simulasi menunjukkan bahawa kriteria yang 

dicadangkan itu adalah berkesan untuk RWPCLTS dan RWPCLMS dalam 

multikolinearan dan titik terpencil. Lebih-lebih lagi, untuk kedua-dua kaedah, 

RWPCLTS cenderung untuk menjadi kaedah yang terbaik diikuti oleh RWPCLMS 

dengon kehodiron multikolinearan dan titik terpencil. Kajian ini menunjukkan 

keupayaan kaedah berkomputer yang amat rumit dan daya kebolehan menggabungkan 

prosedur-prosedur berpemberat iaitu teguh LTS-anggaran atau LMS-anggaran dan 

kaedah multikolinearan diagnostik PC untuk mencapai model regresi tepat. 

Kesimpulannya, kaedah yang dicadangkan dapat meningkatkan anggaran parameter 

regresi linear dengan meningkatkan kaedah sedia ada untuk menangani masalah 

multikolinearan dan titik terpencil dalam set data. Peningkatan ini akan membantu 

penganalisis untuk memilih kaedah anggaran yang terbaik untuk menghasilkan model 

regresi yang paling tepat dengan kehadiran multikolinearan dan titik terpencil. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Problem.  

 

Regression analysis is a technique used in all fields of engineering, science, and 

management that required fitting a model to a set of data. It is a customary method used 

to mathematically model a response variable as a function of the explanatory variables. 

Explanatory variables can be defined as factors that can be different or manipulated in an 

experiment and normally denoted by x. Dependent variables are the response variables to 

the explanatory variables that are present in an experiment. We can have several 

independent variables which influence one or more dependent variables at the same time. 

This situation was known as multiple linear regressions. There are many methods 

available for estimating the model parameters, but ordinary least squares (OLS) method 

is the most popular method in statistics applications.  

 

The ordinary least squares (OLS) is usually used to estimate the parameter 

coefficients of the linear regression model because of its optimal properties and straight 

forward computation. It is one of the oldest statistical methods, dating back to the age of 

slide rules until today. Computers are abundant, high-quality statistical software is free, 

and statisticians have developed several new estimation methods in making it easier to 

understand this model and thus, linear regression is still popular (Rao et al., 2008). The 

OLS method was discovered independently by Gauss in 1795 and Legendre in 1805 
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(Sorenson, 1970). OLS minimizes the sum of the squared distances for all points from the 

actual observation to the regression surface. The least squares estimator is attractive 

because of computational simplicity, availability of software, and statistical optimality 

properties. From the Gauss-Markov theorem, least squares are always the best linear 

unbiased estimator (BLUE). BLUE means that among all unbiased estimators, OLS has 

the minimum variance. If   is assumed to be normally, independently distributed with 

mean 0 and variance I , least squares is the uniformly minimum variance unbiased 

estimator. In multiple linear regression thus, BLUE property no longer exists in the 

presence of multicollinearity. 

 

Under this assumption, inference procedures such as hypothesis tests, confidence 

intervals, and prediction intervals are powerful. However, if   is not normally distributed, 

then the OLS parameter estimates and inferences can be flawed.  

 

Violations of the independent assumption can results to multicollinearity in the 

data set. The inference procedures estimated based on the presence of multicollinearity 

will invalidate the model parameter. Multicollinearity or collinearity refers to the situation 

where there is either an exact or approximately exact linear relationship among the 

explanatory variables (Gujarati, 2003). When multicollinearity is present in a set of 

explanatory variables, the ordinary least squares (OLS) estimates of the multiple linear 

regression coefficients tend to be unstable. This will results in causes the ratios of one or 

more coefficients tend to be statistically insignificant (Chatterjee and Hadi, 2006). 

Because of its large variances and covariance matrix, the parameter estimate to be less 

precise (Adnan., 2006) and can result in the wrong inferences. 

 

 Therefore, the greater the multicollinearity, the less interpretable are the 

parameters. In such circumstances, there are many alternative estimation reduction 

regression methods that are used such as Ridge Regression (RR), Principal 

Component Regression (PCR) and Partial Least Squares Regression (PLSR). 

Although all three reduction regression models are biased (with big variances), they 

tend to have more precision when measured by Mean Square Error (Hoerl and 
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Kennard, 1976) and (Draper and Smith, 1998). OLS estimates are preferred because 

they are unbiased, consistent, and have smaller standard errors when there are no 

problems in model like multicollinearity and the model is robust.  

 

Coefficient of Determination ( 2R ) is one of the most important tools in statistics 

which is widely used in data analysis in economics, physics, chemistry and many more 

fields. The coefficient of determination is equal to the regression sum of squares (that is, 

explained variation) divided by the total sum of squares (that is, total variation). 

Coefficient of determination allows us to forecast or predict the possible outcomes and 

possible variability in data. Coefficient of determination is denoted by R2. The value of 

coefficient of determination lies between 0 and 1. The higher the value of R2, the better 

the prediction becomes. That is, 
20   1R   in mathematical terms. An 2R =0, means that 

the dependent variable cannot be predicted from the independent variable. An 2R of 1 

means the dependent variable can be predicted without error from the independent 

variable. 

 

However, the problem of multicollinearity is usually occurs in a multivariate 

situation, not bivariate variables. That means the bivariate correlation matrix is not 

sufficient to eliminate consideration of the problem of multicollinearity. The problem is 

not only that the two independent variables are highly correlated, but that one independent 

variable is highly correlated with at least one of the other independent variables. That 

means we need to examine the R2 ’s of each independent variable regressed on the other 

independent variables. Evidence of collinearity is provided by the correlation matrix 

among the regression coefficients. The weight/coefficient in regression model indicate the 

contribution of independent variable to the dependent variable.   

 

Therefore, the existing of multicollinearity in regression model can be misleading 

of the effects or contribution of independent variables. Additionally, the standard errors 

of the coefficients are artificially inflated. Hence, there is a greater probability that we will 

incorrectly conclude that a variable is not statistically significant. Multicollinearity is 
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likely to be present to some extent in most economic models. The issue is whether the 

multicollinearity has a significant effect on the regression results (Mela and Kopalle, 

2002). 

 

However, outliers are values in a data set that are far from the other values and far 

from the line implied by the rest of the data. An observation in which its standardized 

residual is large relative to other observations in the data set, it is considered an outlier 

that lies at a distance from the rest of the data set (Montgomery et al., 2015). Outliers, 

which occur in real data, are due to many reasons including interchanging of values, typing 

or computation errors, unintended observations from different populations and transient 

effects. Outliers can also be due to genuinely long-tailed distributions. Hampel et al. 

(2011) summarized the results of numerous studies of the frequency of outliers in real data 

and concluded that altogether 1-10% outliers in routine data are more the rule rather than 

the exception.  

 

However, there are several methods proposed in the literature that handle the 

multicollinearity and outlier identification problems yet, there is little guidance for the 

practitioner on which methods perform well in representative under multicollinearity and 

outlier scenarios. Few methods are readily available on standard statistical packages for 

multicollinearity and outlier identification. 

 

However, the use of the Variance Inflation Factors (VIF) is the most reliable way 

to examine multicollinearity. As a rule of thumb, if any of the VIF is greater than 10 

(greater than 5 to be very conservative) there is a multicollinearity problem. Prior to 

estimating the regression equations, if we notice that any of the bivariate correlations 

among the independent variables are greater than 0.70, we may be facing the problem of 

multicollinearity (Ethington, 2013). 

 

Mostly, analysts used method to detect outliers is visualization. For this thesis, we 

will use visualization method, like box plot to detection outlier values. Typically, for each 

of the independent variables (predictors) and dependent variable, the following plots are 
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drawn to visualize the following behavior by box plot. Box plot is to spot any outlier 

observations in the variable. Having outliers in the predictor can drastically affect the 

predictions as they can easily affect the direction/slope of the line of best fit. By default, 

any value is higher than the 1.5* interquartile range’ (1.5 * IQR) above the upper quartile 

(Q3), the value will be considered as outlier. Similarly, if any value is lower than the 1.5* 

interquartile range’ (1.5 * IQR) below the lower quartile (Q1), the value will be considered 

as outlier. 

 

Adnan et al., (2006) discussed several approaches for handling multicollinearity 

problem that have been developed such as Principal Component Regression, Partial Least 

Squares Regression and Ridge Regression. Principal Components Regression (PCR) is a 

combination of principal component analysis (PCA) and ordinary least squares (OLS) to 

handle multicollinearity. Partial Least Squares (PLS) is an approach similar to PCR 

because one needs to construct a component that can be used to reduce the number of 

variables. Ridge Regression is the modified least squares method that allows biased 

estimators of the regression coefficient. 

 

The criterion is obtained by minimizing the ordered squared residual. Thus, the 

procedure leads to estimated regression coefficients that minimize the median of the 

squared residual. The ordinary least squares regression (OLS) can be duly effected by the 

presence of outliers and the multicollinearity measures. 

 

However, it is now evident that the ordinary least squares regression (OLS) can be 

duly effected by the presence of outliers. Many robust regressions have been introduced 

to handle the problems of outliers, for example, Least Median Squares (LMS) regression. 

There is another robust regression which uses the Least Trimmed of Squares (LTS). LTS 

regression is obtained by minimizing the sum of squared residuals, where the squared 

residuals are ordered from smallest to largest. We might let h have the same value as for 

LMS, so that it will be a high breakdown point estimator. But sometimes 50% breakdown 

point produces poor results in this case when 
2

n
h  . The results imply that it is better to 
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use the larger value of n when explaining a trimming percentage α. Rousseeuw and Leroy 

(1987) proposed that h be selected as [ (1 )] 1h n    .  

 

 

 

1.2 Statement of the Problem 

 

In multicollinearity diagnostics methods, the methods used to estimate the 

regression model are based on OLS estimate which will be affected by the presence of 

outliers.  Thus there is a requirement to find a suitable robust estimators that will not be 

much affected by outliers and multicollinearity problems. This prompted us to introduce 

a new method that is reliable in situations where the problems of outliers and 

multicollinearity occur simultaneously.  

 

 

 

1.3 Objectives of the Study 

  

The research objectives are: 

(i) To develop an alternative robust estimation techniques for multiple linear 

regression model in the presence of multicollinearity and outliers by combining 

robust LTS  with initial and scale estimate of LTS-estimator and principal 

component using Tukey bisquares weighting procedures. 

(ii) To propose new approaches of robust estimation techniques for multiple linear 

regression model in the presence of multicollinearity and outliers by combining 

robust LMS  with initial and scale estimate of LMS-estimator and principal 

component using Tukey bisquares weighting procedures. 

(iii) To compare the performance of the proposed methods with RR,PCR and OLS 

estimation method for handling the multicollinearity problem in the presence of 

outliers. 
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1.4 Scope of the Study 

 

This research will emphasize the problem of multicollinearity and outliers in linear 

regression models using real data and simulated data. The method of Ridge Regression 

(RR), Principal Component Regression (PCR) and ordinary least squares (OLS) are 

discussed in detail. The linear regression techniques based on multicollinearity diagnostic 

measures are used to remedy the problems of multicollinearity in the data. The method of 

Ridge Regression is obtained by adding a suitable small bias estimator to the diagonal 

elements which is considered as modified procedures of least squares estimator. On the 

other hand, the principal component analysis computes the linear combination of the 

independent variables. However, outliers have a great impact on the regression model, and 

the presence of outliers will invalidate the parameter estimate results in producing wrong 

inferential statistics. This work will compare the performance of robust estimators, Least 

Median Square (LMS) and Least Trimmed of Square (LTS) which are combined with 

Principal Component and weighting procedures of Tukey weighted function to handle 

multicollinearity in the presence of outliers.  

 

However, the robust methods of LTS and LMS with the multicollinearity measures 

will be computed using the weighted least squares method procedures of Tukey bisquares 

weighted function introduced by Huber (1973). The performance of the proposed methods 

Robust Weighted Principal Component Regression Least Trimmed Squares (RWPCLTS) 

and Robust Weighted Principal Component Regression Least Median Squares 

(RWPCLMS) will be compared with the existing OLS and the multicollinearity measures 

of RR and PCR which are also obtained based on OLS-estimator using real data and 

simulated study.  

 

Real data and simulation studies are the primary tool used to accomplish the 

objectives outlined in Section 1.3. In most cases, the simulation studies are set up as design 

instruments to gain the maximum performance of each estimation method.  
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In this thesis, there are enough replicates for the simulation procedures to get a 

clear indication of the performance of each estimator. The simulation data of 

multicollinearity and outliers problems in linear regression model will consider the 

number of parameters p to be significantly smaller than the number of cases of sample 

size (n). This study will be analyzed using R-programme software version 3.2.4. 

 

 

 

1.5  Significance of Study 

 

Presence of multicollinearity results in producing large variance and covariance 

for the least squares estimator of the regression coefficients causing biases in the variance 

of the covariance matrix that are used to estimate the standard error, confidence intervals 

and other coefficients of the regression model. However, the problem becomes more 

complicated when there are outliers in the data which will cause inaccurate parameter 

estimation of the regression model resulting in producing unreliable result. The existing 

methods deal with outliers and multicollinearity problems separately; therefore there is a 

need to introduce a new robust method that will handle the problems of multicollinearity 

in the presence of outliers at the same time. 

 

The finding of this study will help us in modeling any complicated data where 

multicollinearity and outliers usually occur simultaneously. This study will also help us 

to promote the medical impact of the growing nation. The real dataset is useful for 

introducing the ideas of multiple regression and provides examples of multicollinearity 

and an outlier in variables. We have also modified a workable friendly computer coding 

method for the data with the situation of this kind using R software and Microsoft Excel. 
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1.6  Summary and Outline of Study 

 

The aim of this study is to find the best method and procedure to handle 

multicollinearity and outlier problems by comparing the performances of the five methods 

to determine which method is superior to the others in terms of practicality. Practicality 

means how effective or convenient a method is in actual use. The algorithms for each 

method used in this study are shown in Chapter 3. 

 

Chapter 2 reviews the relevant literature on published work done recently 

concerning the problems of multicollinearity and outliers. Discussion on methods for 

handling multicollinearity and outliers problems in linear regression analysis are 

presented in Chapter 3. Chapter 4 describes the simulation data set and real data and the 

analysis of the five methods. Chapter 5 discusses the performances of the five methods 

and makes comparisons among them and concludes the study and makes 

recommendations for further study. 
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