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Fresh water deficit will become crucial and the world will face the crisis in the next 10 years when the 

world population exceeds 8 billion. Agricultural activities which consume more than 70% of the available 

water are in great threat from competition with industrial and domestic use. However least efforts have been 

done to reduce water usage and practice water-saving in agriculture compared to the industrial and domestic 

because of the abundant available of this resource in many arable land. The irrigation management practices 

however are still advancing with newer technologies with higher efficiency. The aim of this study is to 

investigate the feasibility of the fibrous-capillary system for water-saving irrigation system. Capillary 

irrigation has a great potential to save water in agriculture because water is supplied directly into the rooting 

zone by the gradient of soil water potential caused by plant water uptake. An advancement of the capillary 

irrigation system is being introduced in this study in which a fibrous material is used as an interface to 

transport water from reservoir into the rooting zone. Water that flow in this system is managed by capillary 

action.  A nonwoven fibrous sheet or a geo-textile system with high capillarity is used as the interface 

material. Water can be transported easily within the soil area using the fibrous system by the capillary flow. 

Infiltration into the soil from the fibrous system is at the soil natural absorption rate, thus creating a uniform 

wetting pattern by matching the soil capillary absorption properties. This allows the soil to absorb water as 

needed at a slower and more effective rate.  On the other hand, plant uptake water freely from the wetted soil 

for transpiration. As the potential gradient increases, the water flow continues from the reservoir through the 

fibrous to replenish the deficit. The continuous water supply will sustain the soil-plant evapotranspiration at 

very minimum stress. This process is regarded as a plant-based irrigation system, which is being emphasized 

in this study in a new irrigation system. The control of the fibrous-capillary system is done by manipulating 



the distance between the interface of the soil-fibrous to the water in the reservoir known as water supply 

depth.  Manipulation of the depth will affect the capillary flow through the fibrous thus changing the 

irrigation volume rate. As the result the plant evapotranspiration will be affected. An optimal water supply 

depth will ensure sufficient water supply to the plant for healthy growth while minimizing the evaporation 

from the soil. 

  

      Experiments were conducted, by using the fibrous-capillary system apparatus built in a cylindrical and 

a rectangular container. A small reservoir with an adjustable water level controller was located under the 

container. A vertical fibrous sheet used to transfer the water was position on the container floor and buried in 

the soil. The other end of the vertical fibrous was immersed in the reservoir. A closed-climate chamber and a 

phytotron were used to conduct experiments related to water flow and plant water uptake.  The results 

revealed the dynamics of water flow and soil moisture condition in the fibrous-capillary system which was 

largely affected by the climatic change and the plant growth stages. Moreover the dynamics were also 

affected by the change of water supply depth where the advancement of wetting front, soil water content and 

the cumulative infiltration were almost proportional to the decreased of the depth. This phenomenon was 

modeled by using a soil-plant-atmosphere-continuum (SPAC) approach and a modified version of the SPAC 

model was introduced. The time-space variation of water flow and wetting pattern in the fibrous-capillary 

system was successfully simulated and visualized based on Richard equation using HYDRUS.   An adaptive 

strategy is proposed to control this irrigation system in order to adapt the dynamic need of water by the plant 

at various growth stages has shown very substantial results in water-saving strategy.  

 

This study has contributed to a new cultivation management strategy by water-saving irrigation system 

in which the system will significantly reduce the input cost and increase the profit. Proper utilization of the 

system and management assures better plant quality with less water by maintaining near perfect air/water 

content in the soil. All chemicals that may go through the system directly into the rooting zone shall result in 

excellence plant health with substantially less fertilizers by eliminating surface exposure which reducing 

harmful and wasteful run-off. The system offers a great technology for industry to develop a new water-

saving irrigation system. The originalities of this study lies on the mechanism to transport water directly into 

the rooting zone by using the fibrous-capillary system and the measuring-control method for detecting plant 

water demand and supplying the accurate amount based on the detected demand.   
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Chapter 1 

Introduction 

 

1.1 Background 

 

1.1.1 Water crisis 

 

Recent droughts and severe floods around the world have led to the increase 

concerns about water shortages for our daily life, industrial operations and agricultural 

activities. The increase in the world’s population and social-economic development will 

somehow worsen the problem in the near future. Fresh water availability in easily used 

forms on the earth’s surface such as lake and river, however, is extremely limited. Thus 

these limited resources must be used in a sustainable manner as we continue to conserve 

the water circulation. Water crisis will become apparently critical in the next 10 years 

(Roger, 2008). In has been estimated that in 2025 the water scarcity will cover almost 

85% of the world surface when climate change and human population increase (Roger, 

2008). 
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       In Japan, water shortage is becoming a social concern due to excessive use and 

increasing demand of pure water for human use, industrial and agricultural activity. 

Number of water shortage problems has been reported by Japan Water Resources 

Department of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT, 

2008), for the past 20 years. Water shortage is also a very serious problem in disaster 

affected area such as during The Great East Japan Earthquake on March, 11, 2011 

where pure water supply became very limited and people concerned on contaminated 

water resources. 

 

Even the water shortage problem is rare, the modern society in Japan requires 

comfortable lifestyles and high quality services based on stable water supply. Therefore, 

suspended or reduced water supply would have a serious impact on everyday home life 

and social activities as it disables people from doing their routine. Shortage of industrial 

water supply will result in immediate damage such as reduction or suspension of 

operations. While in agricultural, when shortages of water occur, farmers save water by 

means of "water-sharing” (method of distributing water in accordance with designated 

times and turns), intensification of repeated use and so on, though this requires a lot of 

labour and cost. For example, at the time of water shortage in 1994, the agricultural 

production cost was about three times as much as that in an average year (MLIT, 2008). 

As the consequence, when the amount of water available becomes insufficient, crop 

growth is reduced or completely hindered.  

 

While the world's population is tripled in the 20th century, the use of renewable 

water resources has grown tremendously. Within the next fifty years, the world 

population is estimated to increase by another 40 to 50% (Shiklomanov, 1999). This 

population growth coupled with industrialization and urbanization will result in an 

increasing demand in water and will have serious consequences on the environment. 

Despite the increasing population the problem of water crisis reported by World Water 

Resources in 2000 is not originated mainly from having too little water but a very 

inefficient of management process of this resource (Cosgrove and Rijsberman, 2000).   
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With the current policies, correcting measures still can be taken to avoid the 

crisis to be worsening. There is an increasing awareness that the freshwater resources 

are limited and need to be protected both in terms of quantity and quality by every 

human being. "Water is everybody's business" was one of the key messages of the 2
nd

 

World Water Forum in 2000 (Orange and Rijsberman, 2000). 

 

 

1.1.2 Agricultural water consumption 

 

       

                    Fig. 1.1 Increasing water consumption for agricultural activity. 

 

Agricultural production in Asia has been significantly increased in the past fifty 

years along with the increasing demand from the vast growth of population and 

urbanization as shown in Fig. 1.1 (Shiklomanov, 1999). The challenge for food security 

is also becoming the main agenda for all nations in every region. As a result, in 

agricultural production the withdrawals of fresh water for crop irrigation represent 66% 

of the total water withdrawals and up to 90% in arid regions. The other 34% of fresh 

water withdrawal, 10% is being used by domestic households, 20% by industry and 4% 

evaporated from reservoirs (Shiklomanov, 1999). It has been reported by the 
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Department of Water Resources that the largest fresh water used in Japan was from 

agricultural activity that consume approximately 66% of pure water resources, followed 

by human at 19% and industrial at 15% (MLIT, 2008). 

 

Agricultural production provides multifunctional roles such as land 

conservation, recharge of water resources and conservation of the natural environment. 

Despite the fact that agricultural water forms one part of the water circulation cycle, and 

is an indispensable factor for producing food, arguments are also being made that most 

of world’s total volume of fresh water use is consumed by agriculture, this sector should 

reduce its water requirement so that more water can be diverted to other uses. As the per 

capital use increases due to changes in lifestyle and as population increases as well, the 

proportion of water for human use is increasing. This, coupled with spatial and temporal 

variations in water availability, means that the water to produce food for human 

consumption, industrial processes and all the other uses is becoming scarce.  

  

 

1.1.3 Water conservation and water saving 

 

Whatever the use of freshwater (agriculture, industry, domestic use), huge 

saving of water and improving of water management is possible. A new paradigm of 

virtual water use and consumption in lifestyle or food habits, for example, may reduce 

the problem (Zimmer and Renault, 2002). Awareness on water saving and not to own 

unnecessary item has successfully reduce the domestic water consumption the past 10 

years in Japan (MLIT, 2008). On the other hand the use of freshwater in industrial 

operation has also decline significantly in the past few years with the wastewater 

recycling process (MLIT, 2008).  Despite the entire success story on industrial and 

domestic use on water saving, agricultural sectors are still struggling for an effective 

irrigation method to minimize water consumption while at the same time increasing its 

production to meet with the high demand. 
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The advancement of cultivation technology however in many ways has increases 

agriculture productivity while improving the water use efficiency (WUE). The irrigation 

system which plays a very important role in cultivation is being developed with various 

methods to transfer water to the plant from surface and subsurface of the soil. A 

traditional method of surface and subsurface irrigation such as furrow, flood, pitcher 

and pot are still being used in some areas. Because of their inefficiency these methods 

are becoming less popular except flood irrigation that is being used for paddy 

cultivation (Bouman and Toung, 2001). Most traditional methods are being replaced by 

a conventional irrigation method such as sub-irrigation, sprinklers and drip irrigation 

system. These systems are used commonly in arid and semi-arid irrigation area and 

have been used for many years (James, 1988). The challenge for high water saving and 

high WUE in the cultivation process now lies in the advancement of the irrigation 

management and the strategy to adapt the dynamic water demand by the crop (Jones, 

2004; Prasad et al., 2006). Deficit irrigation for example offers one of the strategies for 

high water-saving mainly in arid and semi-arid land (Mahajan and Singh, 2006; Dodd, 

2009; Jensen et al. 2010)  

  

 Drip irrigation system offers key advantages for meeting the water and nutrient 

standards. The system enables the application of small amount of water to the plant 

through the drippers which placed above or below the soil surface with a certain range 

of discharge rates to meet plant water demands. Subsurface drip irrigation (SDI), in 

which water is applied below the soil surface offers many advantages over the surface 

drip irrigation. It helps to conserve water by reducing evaporative water losses in 

agricultural systems since it applies water directly to the rooting zone. It also minimises 

deep percolation losses and elimination of runoff (Camp, 1998; Mahanjan 2006; Patel 

and Rajput, 2008). 

 

Capillary irrigation, which uses a slight pressure difference of soil water, has 

brought new interest based on the traditional phenomenon of pitcher irrigation. The 

pitcher which filled with water is buried in the soil. Water seeps out to the root zone due 

to pressure head gradient across the wall of the pitcher at the soil's absorption rate 

naturally. A uniform wetting area is created around the pitcher by matching the soil 
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capillary properties (Siyal et al., 2009; Setiawan et al., 1998). This method is cheap, 

simple and has high water saving potential. However, in the pitcher irrigation system 

the plants become dependent on the pitcher for water source and do not develop deep 

root system.  

 

An improvement on the pitcher irrigation method is to use porous clay pipe, in 

which both conveyance and seepage of the water can be carried out instantaneously. 

This approach was experimented by Lipiec et al. (1988), Iwama et al. (1991) and Ohaba 

et al. (1998, 2010) using a negative pressure system to transfer water to a micro porous 

ceramic pipe. A similar capillary irrigation system using porous membrane with 

different negative pressures was developed and produced better yield and quality of hot 

pepper (Nalliah and Ranjan, 2010).  

 

 

1.1.4 Research issues 

 

Water crisis will become apparently a disaster in many regions on this earth in 

the next 10 years. Agricultural production which consumes largest portion of the 

available freshwater is the biggest competition to the increasing human population due 

to the limited water resources. A trade by water-saving management in agricultural 

production is a key technology not only for arid and drought-prone areas but also will 

expand to other areas when the water crisis expands. Precision Agriculture (PA) which 

relies on site specific technologies happens to allow comprehensive data on spatial and 

temporal variability and fine scale of plant water demand to be gathered (Shibusawa et 

al., 2006, 2007).  This was the motivation to develop a site-specific irrigation system to 

meet the water demand for plant growth by applying precise control.  

 

Drip irrigation has long been proven to generate high and quality yield.  

Subsurface drip irrigation increases the irrigation efficiency and improves management 

strategy by reducing evaporative water losses since it apply water directly to the root 

zone area (Camp, 1998). A negative pressure capillary irrigation has also shown a 
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significant result in yield and water saving (Lipiec et al., 1988; Iwama et al., 1991; 

Ohaba et al., 1998, 2010; Nalliah and Ranjan, 2010).  A combine method between 

subsurface drip irrigation and capillary irrigation by using negative pressure may lead to 

a new irrigation strategy and very beneficial to this study. Advancement of this method 

will allow precise measurement of individual crop-water characteristics and new 

strategies for efficient management of irrigation supply. Nevertheless, further 

advancement of irrigation management strategy along this new paradigm is required. 

This study was developed based on the phytotechnology platform (Shibusawa, 1989, 

1995) for a site-specific irrigation system to meet the plant-water demand by applying 

precise control. 

 

 

1.2  Literature review 

 

Irrigation is a process to supply water for an agricultural purpose which is not 

satisfied by precipitation or underground water source under controlled circumstance.    

The process encompasses methods and technologies to transport water to the root zone 

of plant with various efficiency (James, 1988; Brouwer and Prins, 1989; Dukes et al., 

2012). These technologies and their management strategy will be discussed in this 

section.  

 

    

1.2.1 Conventional irrigation method 

 

Flood irrigation is where the water is applied to the entire surface of the soil 

until it is covered by a ponded water. A partial flooding however is where the water is 

applied only in rows thus is called furrow irrigation. In this irrigation the concept is to 

supply water up to the saturated regime and to fill the soil reservoir to the maximum 

field capacity. Usually the irrigation is followed by a prolonged period of depletion to 

nearly the permanent wilting point before irrigation was applied to replenish the ‘deficit’ 

to the filed capacity. The disadvantage of flood or furrow irrigation is the root was 
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subjected to alternating period of excessive wetness with consequent disruption of soil 

aeration and then the excessive desiccation to the detriment of root especially in the 

surface area.  

 

Sprinkler irrigation is where the water is sprayed from overhead by using 

perforated pipes or nozzles under pressure so as to form the spray pattern. This system 

is more tolerant of variable soil textures since the rate of application can be more 

adequately controlled. Sprinkler systems that move over the landscapes such as central 

pivot, giving a large circular pattern of irrigated area. The disadvantage of sprinkler 

irrigation is quiet similar to flood or furrow in addition to high evaporation and run off.  

 

Sub-irrigation provides water to plant from beneath the rooting zone. This 

irrigation is also called "seepage irrigation," and it is often used to grow field crops. The 

irrigation is managed by controlling the water table using buried perforated or porous 

pipe system. This method is usually use for organic soils where the water table is raised 

to moisten the soil and then lowered after the soil is at field capacity. Since plants 

naturally absorb water from the roots upwards, this method of irrigation makes a lot of 

sense.  

 

  Drip irrigation is where the water is applied directly into the root zone by means 

of applicators which operated under low pressure. Drip irrigation relies on the concept 

of irrigating only the root zone of a crop while maintaining the soil moisture at the 

optimum level (James, 1988). The applicator is being placed either on or under the 

surface of the ground. Water is continually added to the soil-one drop at a time. This 

keeps the soil at, or just below, field capacity, but only in the immediate area of the root 

zone of the crop. Higher water-use efficiency can easily be achieved by manipulating 

the irrigation frequency and emitter arrangement. Drip irrigation has been proven to 

generate a higher yield and quality of crops grown in either open fields or greenhouse 

farms (Camp, 1998).  

 

Capillary irrigation uses porous material as an interface to disperse water into 

the soil at below the root zone. The porous material is made from ceramic or clay and 
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has very low permeability to regulate infiltration into soil (Siyal et al., 2009; Setiawan 

et al., 1998). The advancement on textile technology allowed a geo-textile material to be 

used in capillary irrigation. The geo-textile fabric has higher permeability, maintains 

moisture uniformity along its area and allows soil to absorb water as needed at a slower 

and more effective rate. Due to high permeability in many cases water is transported 

through the fabric from a negative pressurized system. The irrigation substantially 

reduces water consumption and energy inputs compared to conventional sprinkler and 

drip system. A recent trial using capillary irrigation resulted in higher quality and water-

use efficiency of greenhouse peppers (Nalliah and Ranjan 2010).  

 

 

1.2.2 Fibrous based capillary irrigation 

 

A key point of fibrous-capillary irrigation method is a potential gradient. A 

slight gradient of potential between soil, fibrous and water source will initiate the 

capillary flow. Further reduction of the matric potential in the root zone is caused by 

plant water absorption. A non-permeable material backing on the fibrous prevents water 

loss from downward percolation. The water flow characteristic in a fibrous medium has 

been modelled by Markicevic et al. (2012) and Landeryou et al. (2005). Research has 

been done on the feasibility of this approach and the results showed the capillary water 

supply method can adjust the soil moisture more efficiently and prevent the loss of 

water due to evaporation and drainage (M. Shukri, et al., 2011a). A field test has proven 

that the capillary irrigation using a fabric water mat can save water without reduction in 

yield for Japanese pear (Oya et al., 2011).    

 

 

1.2.3 Crop based irrigation  

 

 A new measurement paradigm in irrigation management uses a crop-based 

method that enables the system to adapt to the variability in crop-water demand 

according to the individual crop-water response (Jones 2004; Raine et al. 2005; Smith 
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and Baillie, 2009). Progress has been made by applying leaf temperature and sap flow 

measurement methods (Giorio and Giorio, 2003; Jones and Leinonen, 2003). However, 

these methods for sensing plant water-stress involve complex measuring systems and 

provide minimum information on irrigation volume and timing; thus they can only be 

used on an experimental scale (Jones, 2004). 

 

The fibrous-capillary irrigation system combines both the irrigation system and 

the water flow sensor. The system provides continuous water supply to the root zone 

and the plant can uptake water from the soil freely based on their dynamic demand. At 

the same time, the flow sensor which embedded in the fibrous-capillary system 

indicates the actual plant water demand. The measurement which used the crop-based 

method enables the system to be managed effectively.  

               

                          

1.2.4 Irrigation management  

 

Irrigation management involves a systematic approach to determine the 

irrigation requirement and scheduling. Irrigation requirement is the amount of water that 

must be supplied by irrigation to a crop. The requirement includes water used for crop 

consumptive use, maintaining a suitable salt balance, the root zone and overcoming the 

non uniformity and inefficiency of the irrigation system (James, 1988). The irrigation 

requirement does not include water from natural sources (such as precipitation) that 

crop can effectively use.  Generally the requirement is based on the soil moisture deficit 

determined by using a soil-water balance model or the crop-water requirement 

estimated using the energy balance method (Ayars et al. 1999; Zhang et al. 2002; Hanks 

and Cardon, 2003; Jones 2004; Bonacheles et al. 2006). Irrigation scheduling is the 

process of determining when to irrigate and how much of water to apply per irrigation. 

Proper scheduling is essential for the efficient use of water, energy and other cultivation 

input such as fertilizer.  The scheduling is usually coordinated with other farming 

activities including cultivation and chemical application. Benefits of proper scheduling 

are, improve yield and quality, water-energy conservation and lower production cost 
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that will be evaluated in this study. The irrigation scheduling process can be determined 

based on plant or soil moisture condition.     

 

a) Plant indicators 

 

Plant indicator is the direct method to determine when to irrigate since the 

primary objective is to supply plant with the water they need and when it is needed. The 

visual appearance of wilting shoot and leaf or low growth rate of stem diameter and 

height may indicate the irrigation requirement (Brouwer and Pins, 1989, Lee and Shin, 

1998). The rises of leaf temperature are associated with low transpiration due to closure 

of stomata (Boonen et al., 2000). Accumulation of the temperature increase beyond a 

critical limit indicates the irrigation time (Wagner, 1992; Mannini and Anconelli, 1993).  

 

b) Soil indicators 

 

The soil moisture indicates the current water content in the soil. Irrigation is 

required to maintain this moisture within the field capacity. The soil moisture deficit 

provides the estimation amount of water to irrigate (James, 1988). The soil water 

content also can be judged based on appearance and feel of the soil which require 

experience from the irrigators. The most accurate indicator is by sampling the soil; 

weighing and oven dry. This destructive method however cannot provide the result 

immediately on site. Methods such as soil water potential or the electrical conductivity 

enable the in-situ measurement by using tension meter, porous block and neutron 

scattering.     

 

c) Amount to apply irrigation 

 

The common way to determine the irrigation amount is to fill the root zone to 

field capacity by using water budget technique (James 1988). It is not necessary to fill 

up to the filed capacity to allow precipitation or during limited water supply. Irrigation 

can be applied to the crop at a full irrigation or deficit irrigation depending on the 
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cropping situation. In full irrigation water is supplied at the entire irrigation requirement 

to gain a maximum production result. However exceeding full irrigation may reduce 

crop yield due to reducing soil aeration and restriction gas exchange between the soil 

and atmosphere (James 1988). In deficit irrigation water is supplied partially from the 

irrigation requirement. However it will reduce yield as smaller amounts of water, energy 

and other input production are used for cultivation.  

 

Deficit irrigation is effectively used when the water supply system limits the 

water availability or the economic return is low (English, 2002; Prasad, 2006; Mahajan 

and Singh, 2006; Dodd, 2009; Jensen et al. 2010). This is accomplished by allowing 

planned plant stress during one or more period of the growing season. Water is supplied 

adequately during critical growth stage to maximize water use efficiency. This method 

focused on partial replacement and depleting of water below field capacity to maximize 

production per unit water or energy instead of maximizes production per unit land.  

 

 

1.2.5 Precision irrigation approach 

 

With the development of information technology, precision irrigation comes 

out and become a main agenda for the optimal irrigation management. Precision 

irrigation is defined as the accurate and precious application of water to meet the 

specific water requirements of individual plants or management units and minimize 

adverse environmental impact (Raine et al., 2005, 2007). Hence, an important 

characteristic of precision irrigation system is that the timing, placement and volume of 

water applied should match the plant water demand resulting in reduced non-

transpiration losses and optimized crop production responses (Raine et al., 2005, 2007). 

A five years project to develop super water-saving system for agriculture has been 

started since 2011 under the Core Research Evolutionary for Science and Technology 

(CREST) funded by Japan Science and Technology (JST) entitled Water Saving System 

for Precision Agriculture (WSSPA).  The advance system comprises three important 

elements of water circulation in soil-plant system as follows. 

 



 

i. Underground capillary irrigation technique to meet the small reduction in 

water potential around the rooting zone during water uptake.

ii. Instrumentation technique of soil water capacity and water stress

iii. Energy-reduced and high

system in greenhouse with a water

 

This study only focused on the first element to develop new irrigation technique 

based on water potential gradient 

affected by many physical parameters such as temperature, humidity, wind, cloud cover, 

size/age/condition of plants, and time of year. Thus the determination of the water need 

is not easy which require specific device and accurate measurements of various physical 

parameters. A subsurface

developed (Ohaba et al., 2010; M. Shukri et al., 2011a

only by capillary water flow, and which is characterized by the precious adaptation to 

requirements of water by plants, the real time measurement of evapotranspiration, and 

non-percolation of water and nutrients, and little evaporation

much great potential to fulfil

 

             

    Fig.1.2 Model of 
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Underground capillary irrigation technique to meet the small reduction in 

water potential around the rooting zone during water uptake. 

Instrumentation technique of soil water capacity and water stress

reduced and high-efficient air–conditioning/environmental

system in greenhouse with a water-purification and water recycle technique.

focused on the first element to develop new irrigation technique 

ater potential gradient for the plant uptake. Water needs for plants are 

affected by many physical parameters such as temperature, humidity, wind, cloud cover, 

size/age/condition of plants, and time of year. Thus the determination of the water need 

specific device and accurate measurements of various physical 

A subsurface irrigation method using fibrous-capillary

al., 2010; M. Shukri et al., 2011a) where the irrigation is driven 

only by capillary water flow, and which is characterized by the precious adaptation to 

requirements of water by plants, the real time measurement of evapotranspiration, and 

percolation of water and nutrients, and little evaporation from soil. This method 

fulfil the water requirements to meet the plant water need.

odel of the proposed capillary-based subsurface irrigation

Underground capillary irrigation technique to meet the small reduction in 

 

Instrumentation technique of soil water capacity and water stresses of plant. 

conditioning/environmental–control 

purification and water recycle technique.   

focused on the first element to develop new irrigation technique 

Water needs for plants are 

affected by many physical parameters such as temperature, humidity, wind, cloud cover, 

size/age/condition of plants, and time of year. Thus the determination of the water need 

specific device and accurate measurements of various physical 

capillary system was 

irrigation is driven 

only by capillary water flow, and which is characterized by the precious adaptation to 

requirements of water by plants, the real time measurement of evapotranspiration, and 

from soil. This method has 

plant water need.  

 

subsurface irrigation.  
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Figure 1.2 shows the model for the proposed capillary-based subsurface 

irrigation system. A high capillarity fibrous is used as a string to transport water from 

the reservoir directly into the rooting zone. Water that flows into the fibrous is driven by 

capillary force against gravity. Water continues to flow upward and forms a wetting 

zone inside the dry soil. The wetting zone diffuses gradually due to infiltration and 

redistribution process until the potential gradient between the fibrous and soil is 

balanced. At the same time, the moisture within the wetting zone decreased due to 

evaporation and root water uptake. The wetting zone thus become smaller and increases 

the gradient again and resumes the water flow.  

 

The dynamics of the water distribution is pre-requisite for the design and 

operation of the capillary-based irrigation system. The distribution is varied 

continuously correspond to the soil properties, irrigation rate, evaporation and root 

uptake. Therefore, a precise control of the water level in the reservoir can produce an 

adaptive wetting zone for plant growth. The theoretical and experimental studies are 

required to elucidate the dynamics of the capillary-based subsurface irrigation.  

 

Preceding research for subsurface irrigations can be seen as references such as 

related infiltration analyses (Green and Ampt, 1911; Moltz et al, 1968; Philip 1972; Al-

Jabri et al., 2002) and irrigation system practices (Bresler et al., 1971; Vellids et al., 

1990). Further studies suggest the mutual interaction between soil and water uptake by 

plants (Feddes et al., 1976; Malik et al., 1988). However, the irrigation technique 

developed by Ohaba et al. (2010) and M. Shukri et al. (2011a) is different from those in 

conventional irrigations. Thus, further studies were planned to determine the 

fundamental characteristics of the water flow and distribution in the fibrous-capillary 

irrigation system and the management strategy of this system to adapt the dynamic need 

of water by plant.  Figure 1.3 shows the model for field application of the capillary-

based subsurface irrigation.  
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     Fig. 1.3 Model for the field application of the capillary-based subsurface irrigation.   

 

1.3  Aim and Objectives 

 

Abundant irrigation supply cannot ensure high agricultural production. Thus, 

new irrigation management is required to maximize the profit. Hence, in light of 

preceding background and literature reviews, the ultimate aim of this study is to develop 

a new irrigation management strategy by using a water-saving system that will improve 

overall efficiencies in agricultural operation. The precision irrigation approach can 

implement this goal and the capillary-based system is chosen and to be investigated. 

The yield of greenhouse tomato production (Stanghellini et al., 2003) will be used as 

guideline to evaluate the proposed water-saving system. Specifically, this study 

intended to achieve the following objectives; 

 

1. To establish a reliable technique based on capillary phenomena to transport 

irrigation water directly into the rooting zone. 

2. To control the irrigation water supply based on the established technique to 

adapt the dynamic need of water by the plant.  
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3. To establish a quantification model for the water flow by using a SPAC system 

based on the established technique.  

 

1.4  Thesis structure 

 

This thesis is divided into six chapters. The first chapter is the Introduction 

which described the background issues, motivation and objective of this study. This 

chapter also includes literature review which discussed the technology in irrigation, 

advantage and disadvantages and their performance. The second chapter is on the 

establishment of capillary-based irrigation system. The third chapter discussed on the 

mechanism and control of water flow in the capillary-based system. The fourth chapter 

discussed along the SPAC modeling approach for the fibrous system. The fifth chapter 

discussed on the field application of the fibrous-capillary system. And the last chapter is 

summary and conclusion.    
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