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ABSTRACT 
 
 
 
 

Sodalite (SOD) is a microporous zeolite having ultra-fine size of pore about 2.8 Å. 
This property limits its role as a catalyst for the reaction involving bulky molecules. 
To overcome this disadvantage, suitable mesotemplate can be added to create 
mesoporosity in microporous SOD. This study focused on the synthesis of SOD 
having mesoporosity using dual templates approach. A series of SOD were 
synthesized by mixing tetrapropylammonium (TPA) with different quaternary 
ammonium cations. As comparison, microporous SOD (Na-SOD) has also been 
synthesized without the presence of templates. The resulting SOD samples were 
characterized using XRD, FTIR and N2 adsorption-desorption measurement. The 
successful formation of SOD crystal phase for all SOD samples was confirmed from 
XRD patterns and supported by FTIR results that showed all SOD samples have the 
characteristic of SOD framework. However, N2 adsorption-desorption results 
confirmed that only SOD sample prepared by mixing TPA with organosilane (SOD-
TO) showed the characteristic of mesoporosity with a narrow pore distribution peak 
centered at ca. 66 Å. For basicity study, Hammett indicator test showed that the 
strength of the basicity of all SOD samples was estimated in the range:  8.2 ≤ pKa ≤ 
18.4. The results from back titration method found that the SOD-TO sample 
possessed the highest average amount of basicity as compared with other SOD 
samples. The comparison of the strength and the amount of basicity for microporous 
SOD, Na-SOD and mesoporous SOD, SOD-TO samples were measured using TPD-
CO2 analysis. The results showed that the SOD-TO sample has higher strength and 
amount of basic sites than the Na-SOD sample at temperature below 500°C. The 
catalytic testing of all SOD samples in the Knoevenagel condensation reaction of 
benzaldehyde and diethyl malonate was carried out giving diethyl-2-
benzylidenemalonate as a main product. Results showed that all SOD catalyst were 
active for the Knoevenagel condensation reaction. From the result of catalyst testing, 
the basicity and surface area does give an impact during the reaction. The SOD-TO 
catalyst possessing the highest amount of basicity and the highest surface area with 
mesoporosity in its structure gave the highest percentage of conversion which was 
96.29%. 
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ABSTRAK 
 
 
 
 

Sodalit (SOD) ialah zeolit mikroliang yang mempunyai liang bersaiz sangat halus 
iaitu sekitar 2.8 Å. Ciri ini menghadkan peranan SOD sebagai mangkin bagi tindak 
balas yang melibatkan molekul-molekul yang besar. Untuk mengatasi kekangan ini, 
mesotemplat yang sesuai boleh ditambahkan bagi menghasilkan mesoliang dalam 
SOD mikroliang.  Kajian ini memberi fokus dalam mensintesis SOD yang 
mempunyai mesoliang menggunakan pendekatan dwi templat. Satu siri SOD telah 
disintesis dengan campuran tetrapropilamonium (TPA) dengan kation amonium 
kuaterner yang berbagai. Sebagai perbandingan, SOD mikroliang (Na-SOD) juga 
telah disintesis tanpa kehadiran templat. Sampel SOD yang terhasil telah dicirikan 
menggunakan XRD, FTIR dan penjerapan gas Nitrogen (N2). Corak XRD telah 
mengesahkan pembentukan fasa kristal SOD untuk semua sampel SOD dan telah 
disokong dengan keputusan FTIR yang menunjukkan semua sampel SOD 
mempunyai ciri-ciri kerangka SOD. Walau bagaimanapun, keputusan penjerapan gas 
N2 telah mengesahkan hanya sampel SOD yang disintesis hasil campuran TPA 
dengan organosilana (SOD-TO) menunjukkan ciri-ciri  mesoliang dengan puncak 
penyebaran liang berpusat di ca. 66 Å. Untuk kajian kebesan, ujian penunjuk 
Hammet menunjukkan kekuatan kebesan semua sampel SOD dianggarkan dalam 
lingkungan: 8.2 ≤ pKa ≤ 18.4. Hasil daripada kaedah titratan berbalik mendapati 
sampel SOD-TO mempunyai amaun purata kebesan paling tinggi berbanding dengan 
sampel SOD yang lain. Perbandingan untuk kekuatan dan jumlah kebesan untuk 
SOD mikroliang (Na-SOD) dan SOD mesoliang (SOD-TO) telah dijalankan 
menggunakan analisis TPD-CO2. Keputusan mendapati sampel SOD-TO mempunyai 
kekuatan dan jumlah kebesan yang lebih tinggi berbanding sampel Na-SOD pada 
suhu di bawah 500°C. Ujian mangkin untuk semua sampel SOD dalam tindak balas 
kondensasi Knoevenagel antara benzaldehid dan dietil malonat telah dijalankan 
untuk menghasilkan dietil-2-benzilidenemalonat sebagai hasil utama. Keputusan 
menunjukkan semua mangkin SOD adalah aktif untuk tindak balas kondensasi 
Knoevenagel. Hasil daripada ujian mangkin, kebesan dan luas permukaan kawasan 
memberi impak semasa tindak balas. Mangkin SOD-TO yang mempunyai amaun 
kebesan dan luas permukaan yang paling tinggi dengan kehadiran mesoliang dalam 
strukturnya memberikan peratusan penukaran yang paling tinggi iaitu 96.29%.   
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Background of Study 
 
 

Zeolites are crystalline aluminosilicate solids made up of three dimensional 

(3D) framework structures of SiO4 and AlO4 tetrahedra. These tetrahedra are linked 

together by sharing all the oxygen atoms and formed a uniformly pores or channels 

of molecular dimensions. As a result, most of zeolites are acted as a sieve on a 

molecule scale which adsorbs only molecules that can fit inside the pores [1]. 

Besides, the aluminosilicate framework of zeolites carried a net of negative charged 

which later balanced by the positive cations. Some common cations that help to 

preserve the electroneutrality of the zeolites are elements from the IA and IIA groups 

of the periodic table. Those cations are able to cation exchanged and result in the 

narrowing of the pore diameter of the zeolite channels [2]. These properties play 

important roles to the uses of zeolite in many applications.    

 
 
 Zeolites are participated in a variety of applications due to their unique 

porous properties. Three most important areas of zeolites are catalysis, ion exchange 

and gas separation. In catalytic applications, zeolites are involved in wide range of 

catalytic reactions including acid-base and metal induced reactions. Some processes 

are hydrocracking of heavy petroleum distillates, the synthesis of ethylbenzene and 

the disproportionation of toluene. In ion exchange applications, synthetic zeolites 

with a maximum cation exchange capacity are of interest as ion exchangers and 

adsorbents. These zeolites are used as builders in laundry detergents that help to 

encapsulate other cations such as calcium (Ca2+) and magnesium (Mg2+) cations in 
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exchange for sodium ions (Na+) [3]. In gas separation areas, the contribution of 

synthetic zeolites is in pressure swing adsorption (PSA) technology for the 

production of oxygen from air. The capability of zeolites to adsorb polar compounds 

makes them often used in separation and purification of gases [4].  

 
 
 The versatility properties of zeolites mainly their microporous pores have 

brought significant uses in several industrial processes nowadays. However, in the 

catalytic reactions, the presence of micropores (< 2 nm) on the zeolites will limit its 

performance usually in the reaction that involving bulky molecules. The micropore 

structures lead to diffusion limitations that hinder larger or bulky sized reactant or 

product molecules from approach or leave the active site of zeolites [5]. Previous 

study has found that ZSM-5 zeolite fails to catalyze reaction with large molecules 

due to their diffusion restrictions in the micropore channels [6]. Therefore, in the last 

few years, researchers have conducted many studies in order to overcome the 

limitations faced by microporous zeolites. Many studies are focusing in creating a 

new structure of zeolite that has ability to enhance diffusion and accessibility for 

larger or bulky molecules. 

 
 
 One of the best strategies to overcome the limitation faced by microporous 

zeolites is by synthesizing a new zeolite that consists of micropores and mesopores 

(2-50 nm) in one material. This strategy leads to the formation of hierarchical porous 

zeolites or also known as mesoporous zeolites [7]. The formation of mesoporous 

zeolites will then enhance the approachability to the active site and thus improve the 

catalytic performance involving large or bulky molecules [8]. There are many 

approaches or methods to create the mesoporosity in the zeolite structure such as 

destructive strategies, dealumination or desilication post-synthetic procedures and the 

direct or “one-pot” synthesis method with the presence of hard or soft templates. 

Among them, the direct synthesis with the presence of templates allows reducing in 

the number of synthetic steps during the preparation of mesoporous zeolites. Thus, 

low cost method for synthesizing mesoporous zeolites is available. In addition, this 

approach leads to simultaneously formation of mesoporosity in zeolite structure [9].  
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 Recently, soft templating approaches have great attention in the formation of 

mesoporous zeolites. Some examples of soft templates are surfactants and polymers 

[10]. An amphiphile organosilane is an example of amphiphilic surfactants that 

contained a quaternary ammonium site along with a trimethoxysilyl site. Both these 

sites are responsible for the interaction between the surfactant with the growing 

zeolite entities. In addition, a long hydrophobic tail presence in the amphiphile 

organosilane leads to the formation of mesostructure in the zeolite framework. 

Previous study successfully synthesized a microporous-mesoporous ZSM-12 zeolite 

with the presence of [3-(trimethoxy-silyl)propyl] octadecyldimethylammonium 

chloride (TPOAC) as a mesopores directing agent [11]. Cationic surfactants are 

another example of surfactants that contained quaternary ammonium sites in their 

structure. Cetyltrimethylammonium bromide (CTAB) is a cationic surfactant that 

often used for the synthesis of ordered mesoporous zeolites [12]. Previous study has 

reported the preparation of mesoporous zeolite Y from an alkaline solution 

containing CTAB. The major advantage by using soft templates is these templates 

can be easily removed through a calcination process [13].  

 
 

In spite of using only one soft template, the mesoporous zeolites can also be 

prepared through a direct synthesize by dual templating with soft templates. By using 

this method, one of the templates is responsible for the formation of zeolite 

framework and another template is for the formation of mesoporous. Previous study 

illustrated the synthesis of mesoporous ZSM-5 using dual templates. The study has 

used CTAB in order to create mesopore channels while tetrapropylammonium (TPA) 

for the crystalline wall of ZSM-5 [14]. Another study has successfully synthesized a 

highly stable mesoporous molecular sieve with a structure similar to MCM-48 with 

the presence of TPA and CTAB [15]. 

 
 
 The formation of mesoporous zeolites gives lots of advantages in many 

applications especially in various catalytic reactions. They are primarily useful in 

improving the catalytic performances of conventional zeolites that having only 

micropores [16]. Some examples of catalytic reactions that used mesoporous zeolites 

are cracking, alkylation, isomerization and hydrogenation [17]. Knoevenagel 

condensation reaction is another example of catalytic reactions being catalyzed by 
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mesoporous zeolites (alkaline X and Y zeolites) [18]. This reaction involved the 

condensation of carbonyl compounds with active methylene compounds that usually 

forming bulky molecules as products. Some important intermediates produced from 

Knoevenagel condensation reactions have significant applications in industries such 

as therapeutic drugs, perfumes and cosmetics [19].  

 
 
 
 
1.2 Problem Statement 
 
 

In catalytic applications, the uses of zeolites are limited by slow diffusion of 

reactants into their micropores for bulky reactions. To solve the problem, many 

studies have focused on synthesizing a zeolite with proper pore size in order to 

accelerate the conversion of bulky molecules. One of the best strategies is by 

synthesizing mesoporous zeolites. Mesoporous zeolites offered some advantages 

such as fast diffusion and accessible for bulky molecules [20].  

 
 
Recently, most studies were focused on synthesizing high silica mesoporous 

zeolites which are useful for acid-catalyzed reactions. It is therefore interest to 

synthesize a high aluminium-containing mesoporous zeolite that exhibited a basicity 

that could be used for base-catalyzed reactions. At present, sodalite (SOD) is an 

example of basic zeolite with high aluminium content (Si/Al = 1) and high stability 

in basic solution. However, the framework structure of SOD consists of a six 

membered ring with small pore openings size about 2.8 Å. Because of its small pores 

size, only small molecules such as helium (He), hydrogen (H) and water (H2O) can 

go into the pore of SOD. The sole presence of micropores then limits the role of 

SOD’s as catalysts for the reaction that involving bulky molecules [21].  

 
 
The Knoevenagel condensation is an organic reaction between an aldehyde or 

ketone with an activated methylene to produce a substituted olefin. A base is 

commonly used to catalyze the reaction. Instead of using small reactants, this 

reaction can also be modified using large or bulky reactants. Since the SOD is a basic 

zeolite, it can be used as basic catalyst in Knoevenagel condensation reaction. 
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However, the presence of micropores in its structure limited only to the reaction 

involving small reactants. Therefore, this study is expected to solve the problem by 

synthesizing mesoporous SOD in order to catalyze Knoevenagel condensation 

reaction involving large or bulky reactants.  

 
 
 
 
1.3 Objectives of Study 

 
 

The objectives of this study are: 
 
 

1. To synthesize mesoporous SOD by mixing of tetrapropylammonium (TPA) 

with various quaternary ammonium cations,  

2. To characterize the synthesized mesoporous SOD, 

3. To study the basicity properties of the synthesized mesoporous SOD, 

4. To test the catalytic activity of the synthesized mesoporous SOD as a base 

catalyst in the Knoevenagel condensation reaction.  

 
 
 
 
1.4 Scopes/Limitations of Study 
 
 

This study focused on the direct synthesis of mesoporous SOD by dual 

templates approach. Sodium aluminate (NaAlO2) was used as the source of alumina 

while fumed silica was used as the source of silica. Meanwhile, sodium hydroxide 

(NaOH) was used as alkali and counter ion sources in this study. For synthesis 

mesoporous SOD’s, different quaternary ammonium cations such as 

dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (organosilane), 

cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide 

(DTAB) and dimethyldioctadecylammonium bromide (DDAB) were used as 

mesotemplates and mixed with tetrapropylammonium (TPA). Besides, the synthesis 

of microporous SOD (Na-SOD) was done using the same method as in the 

preparation of mesoporous SOD’s except without the presence of templates. 
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The resulting SOD samples were characterized using three techniques which 

were X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR) and 

nitrogen (N2) adsorption-desorption measurement. While, the basicity properties of 

all SOD samples were studied by Hammett indicators test and back titration method. 

Besides, the basicity of successfully mesoporous SOD formed was compared with 

the synthesized microporous SOD (Na-SOD) using temperature programmed 

desorption of carbon dioxide (TPD-CO2) technique. 

 
 
The catalytic testing for all SOD samples was carried out in the Knoevenagel 

condensation reaction. The reaction of benzaldehyde with diethyl malonate was 

selected as a model of the reaction. Products of the reaction were separated using gas 

chromatography (GC) and determined by gas chromatography-mass spectroscopy 

(GC-MS). Evaluation of catalysts reactivity in term of percentages of conversion and 

selectivity were studied from the reaction. 

 
 
 
 
1.5 Significances of Study 
 
 

A new mesoporous SOD were successfully synthesized. By having larger size 

of pores, mesoporous SOD could be used to catalyze reaction involving larger 

molecules.  In addition, mesoporous SOD could be further modified and used as a 

heterogeneous bases catalyst in others organic synthesis. Mesoporous SOD also may 

meet environmentally friendly practice that can reduce toxicity waste as compared 

with the conventional homogenous catalysts. 
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