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ABSTRACT 

 

 

 

 

Polymer-inorganic nanocomposite membrane was successfully prepared via 

incorporation of nitrogen doped (N-doped) titanium dixide (TiO2) anatase/rutile 

mixed phase nanorods in the cellulose microfiber by using phase inversion 

technique. The use of the non-toxic solvent-based system and recycled newspapers 

as the cellulose source in this study provides a significant contribution towards the 

development of a green technology system. The incorporation of N-doped TiO2 

nanorods that have been calcined at 400°C (T400) in regenerated cellulose 

membrane matrix has altered significantly its morphological and physicochemical 

properties, as revealed by Fourier Transform Infrared (FTIR), Field Electron 

Scanning Microscopy (FESEM), Transmission Electron Microscopy (TEM), Atomic 

Force Microscopy (AFM), UV-vis spectroscopy, Thermal Gravimetric Analysis 

(TGA), X-ray Diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) 

analysis. The UV-vis spectroscopy and XPS analysis confirmed that the highly 

visible light absorption capability of the prepared regenerated cellulose/titanium 

dioxide (RC/TiO2) nanocomposite membrane is due to the existence of nitrogen as 

dopant in the TiO2 lattice structure at 396.8, 397.5, 398.7, 399.8, and 401 eV. It was 

found that 0.5 wt % of N-doped TiO2 nanorods (T400) is the best loading in the 

regenerated cellulose/titanium dioxide (RC/TiO2) nanocomposite membrane with 

desirable morphological, physicochemical and photocatalytic properties. The 

RC/TiO2-0.5 exhibited the highest photocatalytic activity of 96 % and 78.8 % in 

degradation phenol after 360 minutes under visible and UV lights irradiation. From 

the findings, this study promotes the use of RC/TiO2 nanocomposite membrane as a 

new green portable photocatalyst in the field of wastewater treatment without any 

residue of photocatalyst in the reaction system.   
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ABSTRAK 

 

 

 

 

Membran polimer-bahan tak organik nanokomposit telah berjaya dihasilkan 

dengan menggabungkan titanium dioksida (TiO2) fasa bercampur anatasa/rutil yang 

telah didopkan dengan nitrogen (N-doped) bersama-sama dengan mikrofiber selulosa 

dengan menggunakan teknik fasa penyonsangan. Penggunaan sistem berasaskan 

pelarut-bukan toksik serta penggunaan akhbar kitar semula sebagai sumber selulosa 

dalam kajian ini adalah sangat penting untuk ke arah pembangunan sistem teknologi 

hijau. Gabungan N-doped TiO2 nanorod yang dikalsinasi pada 400°C (T400) sebagai 

nanokomposit di dalam membran selulosa terjana semula telah merubah sifat 

morfologi dan fizikokimia seperti dibuktikan melalui analisis Inframerah 

Transformasi Fourier (FTIR), Mikroskopi Medan Pengimbas Elektron (FESEM), 

Mikroskopi Transmisi Elektron (TEM), Mikroskopi Daya Atom (AFM), UV-vis 

spektroskopi, Analisis termal gravimetrik (TGA), Pembelauan sinar-X (XRD) dan 

spektroskopi sinar-X fotoelektron (XPS). Analisa UV-vis spektroskopi dan XPS 

telah mengesahkan bahawa keupayaan penyerapan cahaya nampak yang sangat 

tinggi adalah disebabkan oleh kewujudan nitrogen sebagai pendopan di dalam 

struktur kekisi TiO2  dan tenaga pengikatannya dikesan pada kedudukan 396.8, 

397.5, 398.7, 399.8, dan 401 eV. Didapati bahawa berat peratusan TiO2 nanorod 

(T400) sebanyak 0.5 merupakan jumlah kandungan terbaik dalam membran selulosa 

terjana semula/titanium dioksida (RC/TiO2) nanokomposit membran dengan ciri-ciri  

morfologi, fizikokimia, dan sifat fotopemangkinan yang diinginkan. Sampel 

RC/TiO2-0.5 menunjukkan aktiviti fotopemangkinan yang paling tinggi dengan 

peratusan degradasi fenol pada 96% dan 78.8% selepas diradiasikan di bawah cahaya 

nampak dan UV selama 360 min. Hasil dapatan menerusi kajian ini menggalakkan 

penggunaan RC/TiO2 membran nanokomposit sebagai fotomangkin mudah alih hijau 

baru bagi merawat air sisa tanpa meninggalkan sisa fotomangkin di dalam sistem 

tindak balas.  
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INTRODUCTION  

 

 

 

 

1.1 Background of Study 

 

 

The ability of titanium dioxide (TiO2) semiconductor to degrade organic and 

inorganic pollutants comes from redox environment that is generated from 

photoactivation, and this makes it intensively utilized as a photocatalyst in 

wastewater treatment (Chun et al., 2000; Fan et al., 2011; Manilal et al., 1992). The 

photoactivation of TiO2 photocatalyst occurs when the absorption of UV irradiation 

onto TiO2 particles surface takes place. The UV irradiation absorption can be equal 

or higher than the band gap value of 3.2 eV for anatase or 3.0 eV for rutile (Ouzzine 

et al., 2014; Scanlon et al., 2013). TiO2 exists in three distinct polymorphs, which are 

anatase, rutile (both tetragonal crystal systems), and brookite (orthorhombic crystal 

system) (Devilliers 2006; Wu et al. 2012). A previous study on the band gap 

alignment of rutile and anatase TiO2 has proven that the mixed phase of 

anatase/rutile TiO2 has synergistic effects and higher photocatalytic activity as 

compared to pure phase of either in anatase or rutile (Scanlon et al. 2013). Degussa 

P25 and Aeroxide TiO2 P25 are the common commercial mixed phases of 

anatase/rutile TiO2, containing about 80 % anatase and 20 % rutile. The reason for 

the synergistic effects of the mixed phase of anatase/rutile TiO2 nanoparticles in 

photocatalytic properties, however, still remains elusive. It is believed that the mixed 

phase of anatase/rutile TiO2 can improve the charge carrier separation through 

electron trapping in rutile and consequently reduce the electron recombination. As a 

result, the formation of radical species for oxidation of substrate molecules can be 

maintained (Ohtani et al., 2010).  
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Today, membrane technology has expanded broadly and has been applied in 

various applications and industries such as in water and wastewater treatment, 

petrochemical, pharmaceutical, and water desalination. The introduction of 

membrane technology in such applications and industries have given a lot of 

advantages such as low energy consumption, low chemicals consumption, production 

of water of stable quality almost independent on the quality of the treated water, 

automatic, flexible and stable operation, low maintenance cost, as well as easy to 

scale up by simple connecting additional membrane modules (Mozia, 2010). Typical 

membrane processes involved separation operation by means of filtration including 

reverse osmosis, micro-, ultra-, and nanofiltration, gas separation, pervaporation, and 

ion exchange membrane processes-electrodialysis (Baker, 2004). Membrane 

processes are already utilized in many applications but currently, with new 

membrane system such as photocatalytic membrane, has its own prestigious 

reputation in the separation and purification technology (Hou et al., 2013; Patsios et 

al., 2013; Kumakiri et al., 2010; Mozia et al., 2008; Choo et al., 2008). Based on 

previous studies, TiO2 is used as a photocatalyst and has been integrated with 

specific membrane materials (Chin et al., 2006; Moustakas et al., 2014; Shi et al., 

2012; Sun et al., 2012).  

 

 

 The combination of membrane and photocatalytic technology creates 

fascinating approach in order to ensure that water and wastewater treatments become 

more effective. The developments of photocatalytic membranes technology have 

been broadly studied. Many studies are focused on the type and modification of the 

catalyst and membrane, the optimization of photocatalytic membrane reactor and 

system in terms of design and performance, detailed fundamental of photocatalytic 

membrane, factors that affect the photocatalytic activity in terms of percentages of 

photodegradation, and the efficiency of the systems and processes (Mozia, 2010; 

Zeng et al., 2010; Mozia et al., 2008). 

 

 

Cellulose is one of the membrane materials that gives a great promise in 

nano-photocatalytic membrane.  In addition, cellulose is considered as a good 

candidate for host material of nanoparticles due to the ability of improve the stability, 

retain the special morphology, and control the growth of nanoparticles (Zeng et al., 
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2010). Environmental friendly, nanostructured, high porosity, thermal insulator and 

very high impact strength material have also made cellulose becomes one of the 

potential materials in many fields. There are various potential applications such as in 

electronics, chemistry, mechanics, engineering, energy production and storage, 

sensors, medicine, nanotechnology, military and aerospace, oil and gas recovery, 

thermal insulation and household uses. Regenerated cellulose membrane (RCM) has 

been extensively commercialized in the field of membrane science and technology, 

which involved various membrane separation processes such as microfiltration, 

ultrafiltration, nanofiltration, reverse osmosis, gas separation, pervaporation and 

many more (Dogan and Hilmioglu, 2010; Fukuzumi et al., 2009; Ma et al., 2012; 

Ramesh Babu and Gaikar, 2001; Singh et al., 2008; X. Xiong, et al., 2010; Q. Yang 

et al., 2011; Zhu et al., 2012). Cellulose films showed an average Young‘s modulus 

of 14 GPa (Henriksson and Berglund, 2007). A study has shown that a sheet-shaped 

material prepared from bacterial cellulose has Young's modulus more than 15 GPa 

across the plane of the sheet (Yamanaka et al. 1989). The nanoscale of cellulose 

fibers is approximately 10 to 100 nm have a web-like network microstructure make 

cellulose one of the most high porous material (Takagi 2011).  

 

 

It is believed that the performance of membrane processes can be improved 

by introducing nanomaterials in the membrane matrix. The overviews from recent 

studies about the knowledge of nanoparticles in modification of TiO2 and cellulose-

based membrane matrix in nanoscale offer great promises in the wastewater 

treatment industry. In addition, the understanding and modification of 

microstructures of photocatalytic membrane gives a positive impact towards 

development of high performance and effective wastewater treatment. 

 

 

 

 

1.2 Problem Statement 

 

 

Titanium dioxide (TiO2) is one of the semiconductors that has been widely 

used as a photocatalyst in water and wastewater treatments due to its chemical 

stability, low cost, excellent optical and electronic properties, as well as high 
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photocatalytic activity (Li et al., 2009; Liu et al., 2010). Compared to rutile and 

brookite, anatase has shown the highest photocatalytic activity in the degradation of 

various organic pollutants in wastewater treatment. Most of the previous studies have 

focused on the preparation of single-phase TiO2 nanostructures (Ao et al., 2008a; Li 

et al., 2009;  Li et al., 2013; Liu et al., 2010; Liu, 2012). In addition, a recent study 

revealed that the combination of anatase/rutile mixed phase exhibited excellent 

photocatalytic activity compared to its single constituents (Apopei et al., 2014; 

Kalashnikova et al., 2013; Scanlon et al., 2013; Xiong et al., 2014; Zhang et al., 

2010). The excellent photocatalytic activity is due to the synergy effect between 

anatase and rutile, which promotes interfacial electron transfer from rutile to anatase 

(Apopei et al., 2014).     

 

 

A major drawback of TiO2 pure is its large band gap, which means it can only 

be activated under UV region (λ ≤ 387 nm), thus limiting the practical efficiency for 

solar applications (Pelaez et al., 2012). Therefore, it is important to develop 

photocatalyst that can be utilized under visible light. Recently, many studies have 

been conducted to improve the photoabsorption features of TiO2 under UV and 

visible light irradiation (Khan et al., 2014; Ruzimuradov et al., 2014). Currently, 

increasing attention has been paid to the doping of TiO2 with non-metal atoms since 

it provide a promising way to avoid deteriorating thermal stability of the TiO2 lattice 

structure (Kumar and Devi 2011). An effective way to narrow the band gap is to 

dope TiO2 with non-metal elements such as B, S, C, N, F, Cl, Br and I (Hu et al., 

2014; Wang et al., 2012). However, nitrogen has been found to be one of the 

promising non-metal dopant materials for TiO2 lattice to induce visible absorption 

(Lee et al., 2014; Viswanathan and Krishanmurthy 2012; Selvaraj et al., 2013). The 

main reasons of utilizing nitrogen as the dopant material are due to its comparable 

atomic size with oxygen, small ionization energy, eco-friendly, higher stability and 

simple synthesis methods (Viswanathan and Krishanmurthy 2012; Zhang et al., 

2013; Gai et al., 2012). In a present study conducted by Hu and co-worker (2014), N-

doped anatase/rutile TiO2 hybrid material was synthesized in low-temperature by 

direct nitridization in order to enhance photoactivity under UV and visible light 

irradiations (Hu et al., 2014). The substitution of lattice oxygen via nitrogen doping 

in TiO2 lattice crystals leads to narrowed band gap and facilitated visible light 
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absorption capability (Viswanathan and Krishanmurthy 2012). On top of that, 

nitrogen doping also inhibited the recombination of the photoinduced carriers and 

therefore increased the quantum efficiency of TiO2 photocatalyst (Hu et al., 2014; 

Ruzimuradov et al., 2014; Viswanathan and Krishanmurthy 2012). Basically, this 

approach has expanded the versatility of TiO2 photocatalyst in a broader range of UV 

and visible regions. The combined effects of N-doping and synergistic effects have 

improved the photocatalytic activity of TiO2 in the mineralization of hazardous 

pollutants. 

 

 

Recently, there are several advanced synthesis method have been applied to 

prepared visible light active TiO2 included Flame Spray Pyrolysis (FSP), sputtering 

technique, Angle Deposition (AOD) technique, Successive Ion Layer Adsorption and 

Reaction (SILAR), and Flame Spray Pyrolysis (FSP) (Inturi et al., 2014; Asahi et al., 

2001; Xie et al., 2014; Xie et al., 2013). The common defect of these techniques is 

the requirement of complicated and relatively expensive equipment. The 

development of novel TiO2 photocatalyst with enhanced UV and visible light activity 

via economic, simple and direct synthetic method has become necessitous. Sol-gel is 

one of the most prominent methods used to prepare mixed phase of anatase/rutile 

TiO2 nanoparticles due to its simplicity and low equipment requirements. The 

preparation of TiO2 from sol-gel had some advantages, such as the production of 

high purity nanocrystalline through precipitation and the flexibility to control the 

synthesis process (You et al., 2014). There are three main chemical reagents required 

in the preparation of TiO2 via sol-gel method, which are a precursor or the starting 

material for Ti source, an acid catalyst, and a solvent as dispersing media. The 

common precursors used for the preparation of anatase nanocrystalline are titanium-

n-butoxide (Ao et al., 2008; Li et al., 2009; You et al., 2014), titanium (IV) 

isopropoxide (Cimieri et al., 2013; Ananth et al., 2014), and tetrabutyl orthotitanate 

(You et al., 2012). The highly crystalline TiO2 nanoparticles can be prepared via sol-

gel method, and followed by heat treatment that ranges from 0 to 600 °C (Li et al., 

2009; Liu, 2012). It has been reported that the high quality of mixed phase of 

anatase/rutile TiO2 nanoparticles, which contributes to high photocatalytic activity, 

can also be obtained by manipulating the types of reagents and heat treatment 

conditions (Bakardjieva et al., 2005; Mahshid et al., 2009; Wu et al., 2012). 



6 

 

However, to the best of our knowledge, there is hardly a report on the simple and 

direct preparation of nitrogen doped (N-doped) anatase/rutile mixed phase TiO2 

nanostructures (Peng et al., 2013; Schütz et al., 2012). 

 

 

The rapid developments in synthetic polymer have provided great benefits to 

the modern society. Microporous and mesoporous synthetic membranes have 

attracted considerable attention for water treatment due to their excellent thermal, 

chemical, and mechanical stability, and their reusability after burning over 

conventional polymeric membranes such as polysulfone (PSf), polyamide, 

polyvinylidene fluoride (PVDF), and polytetrafluoroethylene (PTFE) (Choi et al., 

2006). However, waste from synthetic polymer is difficult to degrade and dispose of, 

resulting in severe urban environmental consequences. As environment sustainability 

is concerned, the world has urged the demand to search for alternative sources in 

order to prevent and control white pollution.  The white pollution will lead to 

detrimental effects on soil structure, water and nutrient transport, as well as crop 

growth, thereby disrupting agricultural environment and reducing crop production 

(Liu et al., 2014). Among the alternatives, polymer recycling and return to 

biologically-based renewable polymers may be emphasized (Qi et al., 2009; 

Rodrigues Filho et al., 2008).  

 

 

Cellulose is unquestionably the most abundant naturally occurring 

reproducible organic compound and it will become the main chemical resource in the 

future (Schurz 1999).  The versatility of cellulose to be applied in various 

applications is due to the low cost, strong hydrophilicity properties, fascinating 

structure, biocompatible, and derivable properties (Yang et al., 2011). In recent 

years, the green comprehensive utilization of cellulose resources has drawn much 

attention from governments and researchers (Qi et al., 2009). Previous studies have 

utilized various sources of cellulose in the fabrication of RCM such as cotton linter, 

softwood pulp, and microcrystalline cellulose (Ichwan and Son, 2011; Mahmoudian 

et al., 2012; Mao et al., 2006). To the best of our knowledge, there is no research has 

been attempted in the preparation of RCM by utilizing old recycled newspaper as 

cellulose sources. This would be an environmental friendly approach since tonnes of 

newspapers are discarded every year. Therefore, it is important to assess the 
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feasibility of old recycled newspaper as cellulose sources in the preparation of green 

and low cost RCM. 

 

 

The development of photocatalytic membrane as the new treatment 

technology can enhance the effectiveness of water and wastewater treatment. The 

combination of photocatalyst and membrane is believed to improve the efficiency 

and effectiveness in water and wastewater treatments. Various studies have been 

done to incorporate TiO2 nanoparticles in various membrane matrices such as 

polyvinylidene fluoride (PVDF), polyvinylidene fluoride-grafted-polyacrylic acid 

(PVDF-g-PAA), polyvinylidene fluoride/sulfonated polyethersulfone (PVDF/SPES), 

polysulfone (PSf), polyethersulfone and γ-alumina membrane (Bae and Tak, 2005; 

Damodar et al., 2009; Emadzadeh et al, 2014; Moustakas et al., 2014; Rahimpour et 

al., 2011; Yang et al., 2007; You et al., 2012). The introduction of TiO2 into these 

polymeric membranes can improve the hydrophility, self-cleaning, anti-fouling, anti-

bacterial and photocatalytic properties of polymeric membranes (Damodar et al., 

2009; Shi et al., 2013; You et al., 2012).  

 

 

The feasibility study of RC/TiO2 nanocomposites membrane in water and 

wastewater treatment has been studied by previous studies. For example, Zeng et al. 

(2010) proposed TiO2 immobilization in cellulose matrix for photocatalytic 

degradation of phenol under weak UV light irradiation (Zeng et al., 2010).  Tianrong 

et al., (2012) developed a novel inorganic–polymer hybrid membrane by the 

incorporation of nano-TiO2 into regenerated cellulose (RC) with high performance 

for dehydration of caprolactam by pervaporation. Furthermore, Zhang and co-

workers prepared bacterial cellulose/TiO2 composite membrane doped with rare earth 

elements and its photocatalytic properties have been evaluated (Zhang et al., 2011). 

The resultants composites membrane has high strength, ultrafine nanoporosity, and 

water absorption characteristics, whereas the photocatalysis efficiency was 

significantly enhanced after TiO2/BC membrane was doped with rare earth ions. 

Furthermore, the obtained RC/TiO2 nanocomposites membrane also exhibited high 

UV- vis light absorption (Morawski et al., 2013). Moreover, reusable photocatalytic 

titanium dioxide-cellulose nanofiber films show the potential for degradation of 

organic molecules in natural water sources (Snyder et al., 2013). 
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However, the study on immobilization and incorporation, as well as 

dispersion of N-doped TiO2 mixed phase anatase/rutile nanoparticles in RCM has not 

yet been reported. Therefore, it is important to study the potentiality, feasibility and 

compatibility of both materials; cellulose and N-doped TiO2 anatase/rutile mixed 

phase in the field of photocatalytic membrane. The preparation of this membrane will 

improve the photodegradation of water pollutants under broad range of UV and 

visible light irradiations. Furthermore, this approach is a truly green process and 

cost-effective in terms of its development, preparation and application. The 

knowledge of modification of titanium dioxide and cellulose-based membrane in 

nanoscale needs to be considered, high-performance photocatalytic membrane 

reactors need to be developed. The preparation of membrane nanocomposites with 

proper methods and techniques is crucially important in the development of high-

performance photocatalytic membrane in removal of pollutants in water and 

wastewater. 

 

 

 

 

1.3 Objectives of Study 

 

 

Based on the research background and the problem statements 

aforementioned, the objectives of this study are: 

 

 

1) To evaluate the effect calcination temperature on physicochemical and 

photocatalytic activity of N-doped anatase-rutile mixed phase TiO2 nanorods 

via a direct and simple sol-gel method. 

 

2) To access the effect of different step of pretreatment for the extraction 

cellulose microfiber from old recycled newspaper as a cellulose source for 

RC/TiO2 nanocomposite membrane fabrication.  

 

3) To study the effect of loading ratio of TiO2 to RCM matrix on 

physicochemical properties and photocatalytic membrane activities.   
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1.4 Scope of Study 

 

 

In order to fulfil the objectives of the study, the following scopes of work 

have been drawn: 

 

 

1) Synthesize and characterize N-doped anatase-rutile mixed phase TiO2 

nanorods via a direct and simple sol-gel method. 

 

 

The aim of this part is to prepare N-doped TiO2 anatase/rutile nanorods 

assembled microspheres with high photocatalytic properties in UV and visible 

regions via a direct sol-gel method by manipulation of calcination temperature. The 

calcination temperatures are varied from 200, 400, 600, and 800 °C. In this part, 

titanium-n-butoxide, Ti(OBu)4 was used as the Ti precursor, nitric acid as the 

catalyst, and isopropanol as the dispersing media. The photocatalytic activity of the 

prepared TiO2 nanoparticles was evaluated under UV and visible light irradiations. 

The physicochemical and structural characterization of high photocatalytic of the 

prepared TiO2 was evaluated by x-ray diffraction (XRD), Brunauer, Emmett and 

Teller (BET) surface area, field emission scanning electron microscopy (FESEM), 

transmission electron microscopy (TEM) and atomic force microscopy (AFM), 

Fourier transform infrared (FTIR), UV-Vis spectroscopy and x-ray photoelectron 

spectroscopy (XPS). The best TiO2 was then used as photocatalyst nanocomposites 

in RCM. 

 

 

2) Development of RC/TiO2 nanocomposite membrane. 

 

 

This part involves the extraction of cellulose microfiber from old recycled 

newspaper as a cellulose source using different steps of chemical pretreatment. Then, 

the resultant treated cellulose microfiber is further utilized in the preparation of flat 

sheet cellulose/TiO2 anatase/rutile mixed phase nanocomposite membrane by 

manipulating the loading ratio of TiO2 to cellulose dope solution (0.1 to 0.5 wt %). 

Scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission 

electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray 
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diffraction (XRD) spectroscopy and thermal gravimetric analysis (TGA) were carried 

out to investigate the physicochemical and structural properties of RC/TiO2 

nanocomposite. On top of that, the physical characteristics of for the resulting 

membrane were studied for its pure water flux, water content, water contact angle, 

porosity and pore size. 

 

 

3) Investigating the photocatalytic activity of RC/TiO2 nanocomposite 

membrane. 

 

 

In this part, phenol aqueous solution was used as model water pollutants. The 

model water pollutant was irradiated using ultraviolet (UV) lamp (Vilber Laurmat, λ 

= 312 nm, 30 watt) and visible lamp (light-emitting diode (LED), λ > 420 nm, 30 

watt). In addition, the effect of loading ratio of TiO2 to RCM matrix on 

photocatalytic membrane activity was evaluated. The photodegradation of phenol 

was monitored using UV-visible spectroscopy at the wavelength of 296.35 nm.  

 

 

 

 

1.5 Significance of Study 

 

 

The search for alternatives to preserve the environment becomes crucial. 

Now, sources for production of cellulose microfiber from recycled newspaper 

become a green solution for environmental preservation. Using recycled newspaper 

as a cellulose source is considered economic and the added value to industrial and 

urban residues is increasing significantly. The preparation of cellulose as the 

membrane from recycled resources (recycled newspaper) is considered ‗‗green‘‘. 

Cellulose is well-recognized as a renewable and biodegradable natural polymer with 

good mechanical properties in its natural or derivative form. Thus, it is a perfect 

candidate as a green membrane material. In addition, titanium dioxide is a well-

known photocatalyst due to its stability, chemical structure, biocompatibility and 

physical properties. The incorporation of N-doped TiO2 anatase/rutile mixed phase in 

cellulose membrane matrix will improve the elimination of hazardous pollutants in 

water and wastewater under UV and visible light irradiations. The study of the 
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interaction of TiO2 in cellulose membrane at the nanoscale level will provide 

promising knowledge and contribution towards photocatalytic membrane 

development.
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