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ABSTRACT 
 
 
 

Damages of structures supported by deep foundations due to complete or 
partial collapse have demonstrated paramount importance of the understanding of 
Soil-Pile Interaction (SPI). Kinematic interaction is due to the presence of pile 
foundation in the ground. Several methods are available to determine the 
kinematic interaction. Among these approaches, the method of Beam on 
Nonlinear Winkler Foundation (BNWF) is widely used in research practices. In 
the BNWF method, soil and pile are modeled as nonlinear springs and linear 
finite elements, respectively. Stiffness coefficient of spring is evaluated based on 
load-transfer approach, often known as p-y curve method. On the other hand, the 
pile group and the single pile behavior are usually different owing to the impacts 
of the pile-to-pile interaction known as shadowing effects. Shadowing effects are 
the condition where there is an overlapping of the stress zones. The p-y curve of 
single pile can be used in pile group based on p-multiplier concept. Many 
investigators have developed p-y curves for sandy and clayey soils. However, 
these developed curves do not account some parameters such as relative density 
of sandy soil and side friction. This research has developed a new p-y curve for 
single pile under lateral loading through a comprehensive experimental 
investigation on Johor Bahru Sand. A good estimation of soil properties in the 
laboratory was required to simulate natural soil condition. In this study, sand 
samples prepared using new Mobile Pluviator designed to achieve of the desired 
relative densities ranging from 10% to 98%. A series of 12 different 
configurations of piles groups investigated in loose and dense sandy conditions to 
evaluate the piles interaction effects. The p-y multiplier factor was determined for 
the piles in the group based on distribution of load applied among the pile groups. 
The results of different configurations of pile group showed that the ultimate 
lateral load increased by 53% in increasing of spacing center-to-center piles (s) 
from 3D to 6D (D=pile diameter) owing to the reduction of pile group interaction 
effects that improve the performance of the pile group efficiency. A ratio of s/D 
more than 6 was large enough to eliminate the effects of pile group interaction. 
The new p-y curve exhibits a lower initial stiffness compared to the p-y curves 
from previous researchers. The maximum values of displacement and seismic 
acceleration of the structure occurred almost at the same time for existing and 
new p-y curves, but the new p-y curve can determine the seismic behavior under 
the strong earthquakes more accurate than the existing curves because of the 
higher ultimate lateral resistance.  
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ABSTRAK 
 
 

 
  Kerosakan struktur-struktur yang disokong oleh cerucuk asas dalam yang 

disebabkan oleh keruntuhan sepenuhnya atau keruntuhan separa menunjukkan 
bahawa adalah amat penting untuk memahami Interaksi antara Tanah-Cerucuk 
(Soil-Pile Interaction-SPI). Interaksi Kinematik dalam SPSI adalah disebabkan 
oleh kehadiran cerucuk asas di dalam tanah. Beberapa kaedah boleh digunakan 
untuk mengenalpasti interaksi kinematik berkenaan. Antara kaedah-kaedah ini, 
Kaedah Rasuk pada Asas Bukan Linear Winkler (Beam on Nonlinear Winkler 
Foundation-BNWF) merupakan kaedah yang paling meluas digunakan dalam 
kajian. Dalam Kaedah BNWF, tanah dimodelkan sebagai spring bukan linear 
manakala cerucuk pula dimodelkan sebagai elemen terhingga linear. Pekali 
kekukuhan dinilai berdasarkan pendekatan pemindahan beban, kerapkali dikenali 
sebagai kaedah lengkungan p-y. Sifat cerucuk berkumpulan dan cerucuk tunggal 
selalunya berbeza disebabkan kesan bayang disebabkan interaksi dalam cerucuk 
berkumpulan. Kesan bayang ini merupakan satu keadaan di mana terdapat 
pertindihan zon-zon tekanan. Lengkungan p-y untuk satu cerucuk tunggal boleh 
digunakan untuk cerucuk berkumpulan berdasarkan konsep pendaraban beban, p. 
Ramai penyelidik telah membina lengkungan p-y untuk tanah berpasir dan tanah 
liat. Walaubagaimanapun, lengkungan-lengkungan ini tidak mengambil kira 
ketumpatan relatif dan geseran sisi tanah berpasir. Kajian ini telah menghasilkan 
satu lengkungan p-y baru untuk cerucuk tunggal di bawah bebanan mengufuk 
melalui kajian eksperimen yang komprehensif pada pasir di Johor Bahru. Satu 
anggaran  yang tepat berkenaan sifat-sifat tanah dalam makmal diperlukan untuk 
mengsimulasikan keadaan tanah yang semula jadi. Dalam kajian ini, penyediaan 
sampel pasir dilakukan menggunakan Mobile Pluviator yang direka khas bagi 
mencapai ketumpatan relatif antara 10% ke 98%. Satu siri yang terdiri dari 18 
konfigurasi berbeza cerucuk berkumpulan dalam pasir yang longgar dan padat 
dikaji untuk menilai kesan interaksi dalam cerucuk berkumpulan. Faktor pendarab 
p-y untuk cerucuk-cerucuk di dalam kumpulan dikenalpasti berdasarkan agihan 
beban antara cerucuk berkumpulan berkenaan. Keputusan dari konfigurasi yang 
berbeza menunjukkan bahawa beban mengufuk muktamad meningkat sebanyak 
53% dalam peningkatan jarak pusat-ke-pusat cerucuk dari 3D kepada 6D 
(D=garispusat cerucuk) disebabkan oleh pengurangan kesan interaksi cerucuk 
berkumpulan yang meningkatkan keberkesanan cerucuk berkumpulan berkenaan. 
Nisbah s/D melebihi 6D adalah cukup besar untuk menyingkirkan kesan-kesan 
cerucuk berkumpulan. Lengkungan p-y baru yang dihasilkan mempamerkan nilai 
pekali kekukuhan awal yang lebih rendah berbanding lengkungan-lengkungan p-y 
daripada penyelidik-penyelidik terdahulu. Lengkungan p-y yang lama dan baru 
menghasilkan nilai pesongan dan pecutan seismik yang sama tempohnya bagi 
sesebuah struktur. Lengkungan p-y yang baru walaubagaimana pun mampu 
menghasilkan sifat seismik yang lebih tepat dibawah gegaran yang kuat 
berbanding lengkungan p-y yang lama kerana mampu mengambil kira rintangan 
sisi muktamad yang lebih tinggi. 
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CHAPTER 1 

 

 

 

1 INTRODUCTION 

 

 

 

1.1 Background of the Study 

 

Many great cities are built on flat lands containing a thick layer of sediment 

such as basins, river, deltas or valleys. Superstructures such as tall buildings, 

important structures and bridges sometimes in these cities are founded on fluvial and 

alluvial soil deposits that are weak and/or inherently soft (Chau et al., 2009). For this 

reason, the superstructures are supported by deep foundations to transfer dead and 

dynamic loads through shallow deposits of loose soils to deeper and denser soils 

which have enough strength without excessive ground settlements. Therefore, the 

evaluation of the superstructure’s behavior subjected to lateral loads is known as a 

key concern for the designers. Obviously, the superstructure behavior supported by 

pile and rigid foundations differs because of the soil-pile-superstructure interaction 

(Finn . et al., 2011). 

 

Piles transfer vertical and horizontal forces. On the type of superstructure 

supported by piles, there are different causes of lateral loads. For examples, wind 

gusts are common causes of lateral load for transmission towers and tall buildings. In 

these structures, the lateral loads are known as the primary cause. In cases of bridge 

piers, the horizontal forces are due to wind movement and traffic. Seismic motions 

are the most important lateral loads since pile damages have demonstrated during 

earthquake. 
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The mechanism’s load transfer vertically and horizontally is necessary for 

design. In the transfer of lateral loads, pile behaves as a loaded beam in a transverse 

manner. In such conditions, a part of pile moves horizontally in the load direction. 

The soil in front of the pile resists against the pile’s press so as strain and stress are 

developed in soil and consequently the Soil-Pile Interaction (SPI) occurs. Therefore , 

the Soil-Pile Interaction (SPI) plays a very important role in the superstructure’s 

behavior subjected to lateral excitations because in most studies on superstructure, 

the foundation is assumed as rigid (embedded in solid rock) while it is supported by 

piles foundations. Consequently, the mechanism of SPI for the pile damages need to 

be further examined (Tseng and Penzien, 2003). 

 

As mentioned above, the seismic motions are the most important lateral load 

in the SPI. Earthquake waves propagate through the soil deposit and affect the pile 

foundations and structures resting on the ground surface. The effects of soil-

superstructure interaction and local soil conditions on the pile’s motion have been 

observed during the major earthquakes (Figure 1.1). The strong earthquakes have 

demonstrated the role of soil-structure interaction on the piles. Observations of the 

major earthquake of Loma Prieta Earthquake in 1989 are other learning options. The 

piles’ Cypress Freeway were founded in stiff to the soft soils. The local soil 

conditions were the main reason for the failure mechanisms. The San Francisco 

Oakland Bay Bridge collapsed due to structural failure. The spectral accelerations 

were amplified four times and damaged the structures and foundations (Housner, 

1989).  
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Figure 1.1 Collapse Twenty nine mile River Bridge supported on Timber Piles 

in the 1964 Alaskan Earthquake (after Meymand,1998) 

 

The behavior of the structure under dynamic loads depends on the interaction 

between the structure, pile foundations and local soil. The effects of this interaction 

were highlighted in the early 1960s where the foundations of equipment were 

designed. The influence of soil-structure interaction can be more significant when the 

structure is supported by pile foundations in sand with different densities. So that, the 

modern structure codes consider the dynamic soil and structure interaction in the 

structure supported by pile foundations in cohesionless soils. Therefore, the effects of 

different relative densities and soil-pile interaction are important in complete 

understanding of the seismic behavior in sandy conditions. Briefly, much is yet to be 

learned analytically on the subject before having a complete important insight of the 

parameters in SPI problems.  

 

 

 

1.2 Statement of the Research 

 

The importance of SPI can be demonstrated through the observations of 

damages in the structures owing to partial or complete collapse under lateral loads. 
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Generally, it is common to ignore the SPI effects for simplifying design of 

structures due to a series of reasons. For example, flexibility pile is considered as a 

conservative design assumption because the period of structure is lengthened and the 

structural forces decrease in comparison with a fixed base case (Figure 1.2). 

Although this assumption may be correct in some cases, in 1985 Mexico City 

earthquake, the acceleration values  were higher than the  spectral values related to 

some building codes at the high  periods (NEHRP, 1997b) (Figure 1.3).  

 

 
Figure 1.2 Effect of Soil-Structure Interaction on Seismic Coefficient for Base Shear 

(after Fenves et al.,1992) 

 

It is somewhat more common that the free field response is predicted on the 

ground surface and these predicted motions are applied to the fixed base of the 

structure (Figure 1.4). In fact, the soil’s response to foundation or the foundation’s 

response of soil is not taken into account. Although recently building and bridge 

codes, state that the soil-pile-structure interaction shall be considered in design, it 

requires a substantial amount of expertise in idealizing the actual system.  
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Figure 1.3 Comparison of 1985 Mexico City Earthquake SCT Response Spectra 

with NEHRP (1997) Code Recommendations 

 

 
Figure 1.4 Free Field Site Response Analyses 

 

The pile movement under axial load is simply because it moves downward. 

Base and shaft resistances increase the limit values so that the pile suffers excessive 

vertical deflection. On the other hand, piles under lateral loads may bend or rotate. In 

addition, the rigid and flexible pile behavior is different owing to the applied load. 

Therefore, the flexible pile subjected to lateral load is more complex. Unfortunately, 

there is a lack of well-documented soil-pile interaction case histories during the 

earthquakes in cohesionless soil(Finn, 2005). For fulfillment of this goal, it is 
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essential to carry out the soil-pile interaction in cohesionless soil with different 

relative densities. 

 

 

 

1.3 Objectives of the Study 

 

With this background and statement, the main goals are to understand the 

effects of sand densities on the seismic behavior of the structure supported by pile 

foundations. The main objectives of this study are as follows: 

 

 To develop the physical model of the soil-pile interaction in sand with 

different relative densities using Mobile Pluviator. 

 To investigate the effects of piles’ spacing on the pile-soil-pile interaction. 

 To establish new static p-y curves from the physical model in sandy soil. 

 

 

 

1.4 Scope of the Study 

 

The majority of the piles that have been damaged during the lateral loads 

such as earthquake and wind were due to the soil-pile-structure interaction (SPSI). 

However, the number of the investigations about SPSI is few and they are mostly 

focused on the liquefaction problems. The reported herein attempts to develop new 

load-deflection relationship for single pile. A series of different configurations of 

piles were performed to evaluate the single and grouped pile behavior at two 

different relative densities. The tests were conducted in dried sand with loose and 

dense densities. Flexible pile behavior was considered in this study. The preinstalled 

piles were subjected to statically lateral loads applied at the level of the ground 

model. The new soil-pile reaction against deflection curves (known as p-y curve) 

were developed for single pile in the two relative densities of sand in Johor Bahru. 

Due to the lack of shaking table in a physical model of soil-pile-structure interaction 

subjected to dynamic loads, the interaction was modeled in numerical analysis under 
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the seismic motions. Beam on Nonlinear Winkler Foundation (BNWF) was used to 

model the soil-pile-structure interaction and the seismic behavior of the 

superstructure was estimated based on new and existing p-y curve. The acceleration 

and displacement time histories of the structure were considered in numerical 

analysis for the evaluation of the structure’s behavior. In this thesis: 

 

 To model the soil-pile interaction a new model of BNWF method was simulated 

by ANSYS code. 

 To spread out the experimental data, a series of the static tests were performed in 

the laboratory scale. 

 Model piles were scaled with the Penang Second Crossing’ piles. 

 Sandy soil properties from Johor Bahru. were used for the numerical part and the 

laboratory tests. 

 To develop the new p-y curve, the two relative densities of sandy soil (loose and 

dense) were considered. 

 The sand samples were prepared using pluviation method by new designed 

mobile pluviator. 

 The three seismic motions were selected as input motion from Sumatra Island 

and Kobe-Japan. 

 The new p-y curves were verified by API curves in the numerical model. 

 

 

 

1.5 Significance of the Study 

 

Significant damages of the piles due to partial or complete collapse of piers 

have been observed. A large number of the pile foundations have been found to be 

damaged and failed under lateral loads such as wind and seismic motions.  The 

following benefits from the study may be included:   

   

 A more realistic design with SPI considering, may reduce damages of structure 

thus can reduce cost. 

 This study evaluates the effect of density changes on the SPI. 



8 

 

 This study provides the alternative methods to develop the SPI by other 

researchers. 

 

 

 

1.6 Organization of Thesis 

 

The thesis is organized into 8 chapters. The first chapter presents a brief 

background on the soil-pile interaction and the necessity to understand the 

mechanisms associated with this process. In additional, the Chapter 1 provides a 

description of the problem, scope and layout of this dissertation. 

 

Chapter 2 consists of a comprehensive survey of soil-pile interaction and the 

effects of this interaction on the seismic behavior of the superstructure. It provides a 

review on Beam Nonlinear Winkler Foundation (BNWF) method and the effects of 

pile spacing on the pile group behavior. In addition, the existing methods the sand 

sample’s preparation is presented in Chapter 2. The research methodology, theory 

and application of the proposed data are discussed in detail in Chapter 3.Chapter 4 

describes the used method to prepare the sand sample using the new apparatus in this 

research. The method is suitable to prepare the samples in large area. In Chapter 5, 

the behavior of single pile and grouped are described. The different parameters such 

as the sand density and the different configurations of piles in group are discussed. 

Chapter 6 describes the behavior of single pile under the lateral loading. The new p-y 

curve are developed to evaluate the seismic behavior of the structure. Chapter 7 

presents the numerical analysis of the SPI using a finite element method. The 

structure behavior is evaluated by using the new p-y curve and the existing curves. 

Finally, Chapter 8 summarizes the experimental and numerical findings and make 

recommendations for future research.  
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