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ABSTRACT 

 
 
 
 

Fuzzy Topographic Topological Mapping (FTTM) is a novel mathematical 

model for solving neuromagnetic inverse problem.  It is given as a set of 

mathematical operations, namely topological transformations with four components 

and connected by three different algorithms.  At this moment, Fuzzy Topographic 

Topological Mapping 1 (FTTM 1) and Fuzzy Topographic Topological Mapping 2 

(FTTM 2), which are used to solve the inverse problem for determining single 

current source and multiple current sources respectively, have been developed.  The 

purpose of this research is to establish the topological and the algebraic structures of 

the components of FTTM 1 and FTTM 2.  Firstly, the topological structures of the 

components of FTTM 2 were established and the homeomorphisms between the 

components of FTTM 2 were shown by using the proving techniques of the 

topological structures of the components of FTTM 1 and the homeomorphisms 

between the components of FTTM 1, then followed by the establishment of the 

algebraic structures of the components of FTTM 1 and FTTM 2. In the process, 

several definitions and theorems of group theory were adopted and the proving 

technique by construction was highlighted.   In addition, FTTM was then generalized 

as a set which led to the proving the existence of infinitely many forms of FTTM. 

Finally, these structures were interpreted physically in order to study the information 

content of the inverse problem for determining single and multiple current sources. 
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ABSTRAK 

 
 
 
 

Pemetaan Topologi Topografi Kabur (FTTM) merupakan model matematik 

baru untuk menyelesaikan masalah songsangan neuromagnetik.  Ia terdiri daripada 

satu set operasi matematik, iaitu transformasi topologi dengan empat komponen dan 

dihubungkan oleh tiga algoritma yang berlainan.  Kini, Pemetaan Topologi 

Topografi Kabur 1 (FTTM 1) dan Pemetaan Topologi Topografi Kabur 2 (FTTM 2) 

yang masing-masing digunakan untuk menyelesaikan masalah songsangan untuk 

menentukan sumber arus tunggal dan sumber arus berbilang telah dibangunkan.  

Tujuan penyelidikan ini adalah untuk membina struktur-struktur topologi dan aljabar 

bagi komponen-komponen FTTM 1 dan FTTM 2.  Pada mulanya struktur-struktur 

topologi bagi komponen-komponen FTTM 2 telah dibina dan homeomorfisma-

homeomorfisma antara komponen-komponen FTTM 2 telah dibuktikan dengan 

menggunakan teknik-teknik  pembuktian struktur-struktur topologi bagi komponen-

komponen FTTM 1 dan homeomorfisma-homeomorfisma antara komponen-

komponen FTTM 1.   Struktur-struktur aljabar bagi komponen-komponen FTTM 1 

dan FTTM 2 telah dibina.  Dalam pembinaan struktur-struktur aljabar ini, beberapa 

takrif dan teorem dari teori kumpulan digunakan dan pembuktian secara pembinaan 

diketengahkan.  Selain daripada itu, FTTM telah diungkapkan sabagai satu set 

mengakibatkan pembuktian kewujudan bentuk-bentuk FTTM yang lain yang tak 

terhingga banyaknya. Akhirnya, struktur yang terbina diinterpretasikan secara fizikal 

untuk mengkaji kandungan maklumat bagi masalah sonsangan untuk menentukan 

sumber arus tunggal dan berbilang.  
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 

1.1 Background and Motivation 

 
 

Generally speaking sets have no intrinsic structure, they are just collections of 

things.  Much like a generic collection of boards, they do not have any structure 

(Hrabovsky, 2003).  In mathematics, a structure on a set consists of additional 

mathematical objects that in some manner attach to the set, making it easier to 

visualize or work with, or endowing the collection with meaning or significance.  A 

partial list of possible structures are measures, algebraic structures, topological 

structures, metric structures, orders, and equivalent relations.  Sometimes, a set is 

endowed with more than one structure simultaneously; this enables mathematicians 

to study it more richly. For example, if a set has a topology and is a group, and the 

two structures are related in a certain way, the set becomes a topological group. 

 
 

In this thesis, we start with the introduction of topological and algebraic 

structures.  We start with the traditional joke that a topologist does not know the 

difference between a coffee cup (with a handle) and a doughnut (with a hole), since a 

sufficiently pliable doughnut could be smoothly manipulated into the shape of a 

coffee cup, by creating a dimple and progressively enlarging it, while shrinking the 

hole into a handle, which does not require the discontinuous action of a tear or a 

punching of holes (Levin, 2000).  In other words, the coffee cup and the doughnut 

are two objects endowed with respective topological structures, which are 

topologically equivalent.  However, a topologist can tell the difference between 
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a ball and a doughnut since they are two objects endowed with respective topological 

structures, which are not topologically equivalent.  Intuitively, a topological structure 

on an object (a set) is a collection of subsets with certain properties (Anthony, 2003), 

which concerns itself with how the object is connected, but not how it look.   

 
 
Formally, a topological structure (or, more briefly, a topology) on a set X is a 

structure given by a set τ of subsets of X, having the following properties (called 

axioms of topological structures) (Bourbaki, 1989): 

i. Every union of sets of τ is a set of τ. 

ii. Every finite intersection of sets of τ is a set of τ. 

The sets of τ are called open sets of the topological structure defined by τ on X.  A 

topological space is a set endowed with a topological structure (Bourbaki, 1989).  

Two topological spaces are topologically equivalent if there is a homeomorphism 

between them.  Formally, a homeomorphism is defined as an open continuous 

bijection (Christie, 1976).  However, a more informal criterion gives a better visual 

sense: two spaces are topologically equivalent if one can be deformed into the other 

without cutting it apart or gluing pieces of it together.  In other words, a 

homeomorphism maps points in the first object that are “close together” to points in 

the second object that are close together, and points in the first object that are not 

close together to points in the second object that are not close together.  For example, 

a sphere and an ellipsoid are topologically equivalent.  We can show that a sphere 

and an ellipsoid are topologically equivalent by stretching a sphere into an ellipsoid 

or by pressing an ellipsoid into a sphere.  Besides, we can show that a sphere and an 

ellipsoid are topologically equivalent analytically by defining a homeomorphism 

between a sphere and an ellipsoid (Liau and Tahir, 2003).   

 
 

The great importance and wide application of topological structures: 

mathematicians merely have to show that a given set is endowed with a topological 

structure, and then the topological properties of the set remain unchanged under a 

homeomorphism.  In other words, if two topological spaces are topologically 

equivalent, then they have the same topological properties.  For example, the 

impossibility of arranging a walking route through the town of Königsberg (now 

Kaliningrad) that would cross each of the seven bridges formed over four lands (and 

http://en.wikipedia.org/wiki/Kaliningrad
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areas) exactly once, which was published in Leonhard Euler’s 1736 paper on Seven 

Bridges of Königsberg (Morikawa and Newbold, 2003), can be applied to any 

arrangement of bridges topologically equivalent to those in Königsberg.  The great 

importance of topological structures presents in almost all areas of today’s 

mathematics and also other fields of study.   

 
 

What is algebraic structure? Out of numerous possible approaches to answer 

this question, we should pay attention to Weyl’s conception in the following 

sentence.  Weyl mentioned:  

 
…now we are coming back to old Greek viewpoint, according to 

which every sphere of things requires its own numeric system defined 

on its own basis.  And this happens not only in geometry but in new 

quantum physics: physical quantities, belonging to a certain given 

physical structure, permit themselves (but not those numeric values 

which they may assume due to its different states), in accordance with 

quantum physics, perform addition and non-commutative 

multiplication, forming by this some world of algebraic quantities, 

corresponding to this structure, the world, which cannot be regarded as 

fragment of the system of real numbers.   

(Rososhek, 1999) 
 
 
According to Rososhek (1999), the ideas of Weyl mentioned in the preceding 

paragraph can be summarized in such a way by using the ideas of Shafarevich 

(1986):  

i. Every phenomenon, every process of real world (also in mathematics itself) 

may be “coordinatized” in the frame of some system of coordinatizing 

quantities.   

ii. Subject of Algebra is a study of various systems of coordinatizing quantities  

as concrete (for example numbers, polynomials, permutations, matrices, 

functions and so on) as well as abstract (groups, rings, fields, vector spaces 

and so on).   
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iii. If some phenomenon is not yet coordinatized by any familiar system of 

coordinatizing quantities, the problem of coordinatization arises to develop a 

system of coordinatizing quantities for the phenomenon.   

 
 

From the ideas (i) and (ii) of Shafarevich (1986), every phenomenon may be 

represented with some systems of coordinatizing quantities such as numbers, 

polynomials, permutations, matrices, functions, groups, rings, fields, vector spaces 

and so on.  We recognized that groups, rings, fields, vector spaces are algebraic 

structures.  Therefore algebraic structures are systems of coordinatizing quantities.  

In other words, a phenomenon may be represented with an algebraic structure or a set 

may has an algebraic structure.  For example, most sets dealt with in mathematics are 

sets which have an algebraic structure (Burton, 1965).  An algebraic structure comes 

out when we impose certain suitably restricted rules on how elements of a set can 

combine (Hrabovsky, 2003).  These rules enable the mathematicians to combine the 

elements of the sets in useful ways.  Formally, an algebraic structure is a nonempty 

set together with one or more binary operations which obey certain rules known as 

axioms or postulates (Burton, 1965)   

 
   
From the idea (ii) of Shafarevich (1986), algebraic structures are systems of 

coordinatizing quantities as abstract or regarded in an abstract way.  In other words, 

an algebraic structure captures common abstract notion and properties of different 

sets, which satisfy the basic laws of that algebraic structure.  Any particular example 

we encounter which satisfies the basic laws of a given algebraic structure will also 

satisfy all the theorems, which are true for that algebraic structure (Burton, 1965).  

For example, if a set has a group structure, then the whole range of proved results or 

properties for group in general will be valid for the phenomenon.  

 
 
From the preceding paragraph, we recognized the great importance and wide 

application of algebraic structures: mathematicians merely have to show that a given 

set satisfies the basic laws of an algebraic structure (usually a simple matter) and 

then the whole range of results is ready to apply where necessary.  Although the 

basic laws of algebraic structures are few and simple, mathematicians can built a 

surprisingly large amount of algebraic structures of sets with them and of course any 
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result proved in the general theory are true in such sets.  Therefore algebraic 

structures have embraced a wide variety of other fields of study (Sheth, 2002).  For 

example, in science and engineering, scientists and engineers routinely use physical 

quantities to represent the measured properties of physical objects and some 

mathematicians have studied the algebraic structures of the physical quantities in 

order to  

i. study the physical quantities from a more abstract standpoint, with the aim of    

            better understanding the nature and use of those quantities,   

ii. derive a number of meaningful results from the algebraic structures of the    

            physical quantities (Sheth, 2002). 

Therefore, algebraic structures, which are tools for exploring, for inquiring, and for 

understanding, interact with other fields of study to illuminate and advance them.  

Now, let us switch our attention to the idea (iii) of Shafarevich (1986).  If some 

phenomena are not yet represented with any familiar system of coordinatizing 

quantities, mathematicians can carry out researches to represent these phenomena 

with some systems of coordinatizing quantities.   

 
 

Finally, we summarize that topological and algebraic structures are 

mathematical structures that are important and widely used in many fields of study.  

Furthermore, in this research, we will study the topological and algebraic structures 

that exist in a novel mathematical model known as Fuzzy Topographic Topological 

Mapping, shortly FTTM.  In the next section, we will have a brief discussion on 

FTTM and the role of this research in the development of FTTM. 

 
 
 
 

1.2 Influential Observation 

 
 
Fuzzy Modelling Research Group, shortly FMRG, which is led by Associate 

Professor Dr. Tahir Ahmad, has been developing a software for determining the 

location of epileptic foci in epilepsy disorder patients since 1999.  At the present 

time, FMRG has developed FTTM for solving neuromagnetic inverse problem to 

determine the cerebral current sources, namely epileptic foci (Tahir et al., 2000).  



 6

FTTM is given as a set of mathematical operations, namely topological 

transformations with four components and connected by three different algorithms, 

which are three different sets of mathematical instructions that must be followed in a 

fix order, and that, especially if given to a computer via a computer program, will 

help to calculate an answer to a neuromagnetic inverse problem (Tahir et al., 2003) 

(see Figure 1.1). 

   

 
First Component 

Second Component Third Component 

Forth Component 

Algorithm 1 
Algorithm 2 

Algorithm 3 

 
Figure 1.1 FTTM 

 
 
There are FTTM 1 and FTTM 2 up to now.  FTTM 1 consists of three 

different algorithms that link between the four components of the model: Magnetic 

Contour Plane (MC), Base Magnetic Plane (BM), Fuzzy Magnetic Field (FM) and 

Topographic Magnetic Field (TM).  The three different algorithms that link between 

the four components of FTTM 1 are three different sets of mathematical instructions 

that must be followed in a fix order, and that, especially if given to a computer via a 

computer program, will help to solve the inverse problem for determining single 

current source (Fauziah et al, 2000; 2002; Tahir, 2000; Tahir et al., 2000; 2001; 

2003; 2004a; 2005).  On the other hand, FTTM 2 consists of three different 

algorithms that link between the four components of the model: Magnetic Image 

Plane (MI), Base Magnetic Image Plane (BMI), Fuzzy Magnetic Image Field (FMI) 

and Topographic Magnetic Image Field (TMI).  The three different algorithms that 

link between the four components of FTTM 2 are three different sets of mathematical 

instructions that must be followed in a fix order, and that, especially if given to a 

computer via a computer program, will help to solve the inverse problem for 

determining multiple current sources (Tahir et al., 2003; 2004a; 2004b; Wan Eny 

Zarina et al., 2001; 2002; 2003a; 2003b; 2004).   
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The appearance of mathematical structures, especially topological structures 

in FTTM was preconceived by Tahir (2000) and was shown by Tahir et al. (2005).  

Tahir et al. (2005) established the topological structures of all components of FTTM 

1 and showed that they are topologically equivalent.  Therefore, all components of 

FTTM 1 have the same topological properties.  However, in this work, we will 

establish the topological structures of all components of FTTM 2.  We will show that 

all components of FTTM 2 are topologically equivalent too.  Besides, we will show 

that every component of FTTM 1 and its corresponding component of FTTM 2 are 

topologically equivalent.   According to Tahir et al. (2003), there exists the duality 

for the topological structures of the components of FTTM 1 and FTTM 2.  Therefore, 

this research will probe into one of the preconceived dualities mentioned in Tahir et 

al. (2003), which are the existence of algebraic structures of the components of 

FTTM 1 and FTTM 2 in detail.     

 
 
After studying the topological and the algebraic structures of the components 

of FTTM 1 and FTTM 2, we will interpret the physical meanings of some of the 

results in order to study the information content of the inverse problem of single and 

multiple current sources.  In other words, we are going to find out which internal 

parameters of magnetic field data inaccessible to measurement can be determined in 

a stable and unique manner. 

     
 
 
 

1.3 Problem Statement 

 
 

The components of FTTM 2 are topologically equivalent (see Figure 1.2).   

 
 

 

 

BMI ≅ 

≅ ≅ 

MI 

FMI

≅ TMI

Figure 1.2 The components Of FTTM 2 are topologically equivalent 
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Besides, corresponding compon

topolog

 
igure 1.3 Corresponding components of FTTM 1 and FTTM 2 are 

 
 

urthermore, the study of the topological and the algebraic structures of the 

compon

BM 

ents of FTTM 1 and FTTM 2 are 

ically equivalent (see Figure 1.3).   

 

 

≅ 

≅ ≅ 
MC 

FM 

≅ TM 

BMI ≅ 

≅ ≅ 

MI 

FMI

≅ TMI

≅ 

≅ 
≅ 

≅ 

FTTM 2 

FTTM 1 

F
topologically equivalent 

F

ents of FTTM 1 and FTTM 2 contributes the information of which internal 

parameters of magnetic field data inaccessible to measurement can be determined in 

a stable and unique manner. 
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1.4 bjectives of Research 

The objectives of this research are given as follows: 

i. nts of FTTM 2. 

 and its 

iii. components of FTTM 1 and FTTM 2. 

 

.5 Scope of Research 

In this research, we will study the topological and the algebraic structures of 

On the other hand, in studying the algebraic structures of the components of 

ld data inaccessible to measurement 

ii. 

ss the importance of this research. 

O

 
 

To show the homeomorphisms between the compone

ii. To show a homeomorphism between every component of FTTM 1

corresponding component of FTTM 2. 

To show the algebraic structures of the 

iv. To interpret the physical meanings of the topological and algebraic structures 

of the components of FTTM 1 and FTTM 2. 

 
 
 
1

 
 
 

the components of FTTM 1 and FTTM 2.  In studying the topological structures of 

the components of FTTM 1 and FTTM 2, we will focus on showing the topological 

structures of the components of FTTM 2.  Besides, we will show that all components 

of FTTM 2 are topologically equivalent.  In addition, we will show that every 

components of FTTM 1 and its corresponding components of FTTM 2 are 

topologically equivalent.  Finally, we will derive other additional results from the 

topological structures of the components of FTTM 1 and FTTM 2. 

 
 
 

FTTM 1 and FTTM 2, we will focus on showing the algebraic structures of the 

components of both FTTM 1 and FTTM 2.  In other words, we will establish the 

algebraic structures of the components of FTTM 1 and FTTM 2.  Furthermore, we 

will focus on interpreting some results to show  

i. which internal parameters of magnetic fie

can be determined in a stable and unique manner,  

the behaviour of neuromagnetic fields, and 

iii. some features of FTTM. 

In the next section, we will discu
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1.6 Importance of Research 

 
 

Most mathematical problems in science, technology and medicine are inverse 

problem

According to Anger and Moritz (2003), one of the important points to solve 

an inve

n the other hand, another important point is studying the information 

content

s.  For example, determination of the current sources underlying a measured 

distribution of the magnetic field is an inverse problem.  

 
 
  

rse problem is development of algorithms for the numerical solution of an 

inverse problem.  Therefore, the development of algorithms for determining single 

and multiple current sources from the detected magnetic field distributions is of great 

importance and contained in the development of FTTM.  The homeomorphisms 

between the components of FTTM 1 make up algorithms for determining single 

current source (Tahir et al., 2005).  However, in this research, we will show the 

homeomorphisms between the components of FTTM 2, which will make up 

algorithms for determining multiple current sources.   

 
 
O

 of the inverse problem, i.e., to find out which inner parameters of a system 

inaccessible to measurement can be determined in a stable and unique manner 

(Anger and Moritz, 2003).  Therefore, in this research, the study of the topological 

and the algebraic structures of the components of FTTM 1 and FTTM 2 will be 

carried out in order to study the information content of the inverse problem in 

determining single and multiple current sources.  We will show which internal 

parameters of magnetic field data inaccessible to measurement can be determined in 

a stable and unique manner.   
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1.7 Framework of Thesis 

In general, this thesis contains six chapters.  Chapter 1 deals with the 

introdu

 
 

ction to the research.  It discusses the background and motivation, influential 

motivation, problem statement, objectives, scope and importance of the research.  It 

is then followed by Chapter 2, which deals with literature review of the research.  It 

discusses the human brain, FTTM, mathematical background and formulation, and 

the concept of inverse problem.  Chapter 3 presents the proof of the existence of the 

homeomorphisms between the components of FTTM 2.  Besides, it presents the 

proof of the existence of a homeomorphism between every component of FTTM 1 

and its corresponding components of FTTM 2.  It also presents the generalization of 

FTTM and other additional results.  Next, Chapter 4 presents the establishment of the 

algebraic structures of the components of FTTM 1 and FTTM 2.  The physical 

interpretations of the topological and the algebraic structures of the components of 

FTTM 1 and FTTM 2 are presented in Chapter 5.  Finally, this thesis will be ended 

with a conclusion and some future works presented in Chapter 6.   
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