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ABSTRACT 

 
 
 
 

The behaviour of confined high-strength concrete under uniaxial cyclic 

compression is of vital important for the study either for seismic retrofitting 

technique of concrete columns or for the structure designs in seismic regions. Hence, 

the effectiveness of external wrapping with steel straps in reducing the brittleness 

and enhancing the strength and ductility of HSC column under uniaxial cyclic 

compression are to be properly understood. Twenty four high-strength concrete 

columns with diameter of 150 mm and 300 mm in height were cast, wrapped with 

pre-tensioned steel strap at spacing of 15 mm and tested to failure under both 

uniaxial monotonic and uniaxial cyclic compression load test. Test results obtained 

from steel strap-confined high-strength concrete cylinders are presented and 

examined, which allows a number of significant conclusions to be drawn, including 

the existence of an envelope curve, dependency of plastic strain to the number of 

layers of confinement, the cumulative effect of loading cycles, mode of failure under 

external confinement, etc. The present results are also compared with several results 

from previous study for various types of confined-concrete. The present study 

indicates that the column pre-tensioned with steel straps, performed better than the 

unconfined high-strength concrete columns. It is proved that externally confinement 

using steel straps do help to control the brittleness and at the same time, enhancing 

the ductility up to 56.2% and compressive strength up to 108.5% . The envelope 

curve of uniaxial cyclic loading almost coincides with the corresponding monotonic 

loading test, with a dependent plastic strain to the amount of layers of confinement.   
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ABSTRAK 
 
 
 
 

Kelakuan konkrit berkekuatan tinggi terkurung di bawah beban mampatan 

paksi cyclic adalah sangat penting untuk kajian sama ada untuk baik pulih tiang 

konkrit atau reka bentuk struktur di kawasan yang mengalami gempa bumi. Oleh itu, 

keberkesanan kurungan dengan lilitan keluli dalam mengurangkan kerapuhan dan 

meningkatkan kekuatan dan kemuluran tiang konkrit berkekuatan tinggi di bawah 

beban mampatan paksi cyclic hendaklah dibuat kajian. Dua puluh empat tiang 

konkrit berkekuatan tinggi berdiameter 150 mm dan berketinggian 300 mm 

disediakan, dipra-tegangkan dengan lilitan keluli pada jarak 15 mm dan diujikaji 

dengan beban mampatan paksi monotonic dan beban mampatan paksi cyclic 

sehingga tiang mengalami kegagalan. Kajian tingkah laku tiang konkrit berkekuatan 

tinggi ini dinilai dengan menggunakan lengkung liputan, perhubungan terikan plastik 

dengan bilangan lapisan lilitan keluli kurungan, kesan kumulatif beban mampatan 

cyclic, mod kegagalan dan lain-lain lagi. Keputusan kajian ini juga dibandingkan 

dengan beberapa keputusan kajian lepas. Kajian ini menunjukkan tiang ditegangkan 

dengan lilitan keluli mempunyai prestasi yang lebih baik berbanding dengan tiang 

konkrit berkekuatan tinggi yang tidak ditegang dengan jalur keluli. Kajian ini 

membuktikan bahawa tiang ditegangkan dengan lilitan keluli mampu mengawal 

kerapuhan konkrit dan pada masa yang sama, meningkatkan kemuluran sehingga 

56.2% dan kekuatan mampatan sehingga 108,5%. Di samping itu, lengkung liputan 

bagi beban mampatan paksi cyclic berlaku pada lengkung yang dengan graf tegasan-

terikan bagi beban mampatan paksi monotonic. Kajian ini juga membuktikan bahawa 

nilai terikan plastik bergantung kepada bilangan lapisan lilitan kurungan keluli. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 
1.1 Introduction 
 
 

Recently, wide application in high-strength concrete have been found in 

construction industry due to the lower unit weight for a given strength with potential 

seismic advantages, reduced member dimension and reinforcing requirement, and 

more economical construction (Weston T. Hester, 1980). However, there is a major 

problem with high-strength concrete. Although high-strength concrete exhibit high 

compressive strength, high-strength concrete generally more brittle and less ductile 

than normal strength concrete. It is important to make sure that the minimum level of 

ductility is provided during designing the high-strength concrete (Neville A. M., 

2002). 

 
 
In Malaysia, most of the concrete structures are not designed using 

earthquake specification. Although Malaysia is free from earthquake intrusion, there 

still have some collateral impact when earthquake happened on neighbouring 

country. The earthquake impact will cause severe damages to the structures due to 

inadequate confinement of concrete, leading to shear anchorage and splice failures of 

concrete members. It is expensive and almost impossible to demolish and rebuilt the 

existing vulnerable structures, therefore innovative rehabilitation and strengthening 

techniques are needed to ensure the life expectancy of many existing building can be 

extended (Hasan M. et. al., 2008). 
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 This report presents the results of an experimental study on the behaviour of 

externally confined high-strength concrete using steel strap under uniaxial cyclic 

compression. Twenty four high-strength concrete column specimens with different 

layers of steel strap wrapping are tested in order to investigate the external lateral 

confinement effect on the strength and ductility properties of high-strength concrete 

under uniaxial cyclic compression load. The effect of external confinement was 

performed by pre-tensioning steel straps in discontinuous rings with proposed width 

and thickness around the column specimens. Test results obtained are assessed and 

presented in this report. 

 
 
 
 
1.2 Problem statement 
 
 

Although there are many successful applications and researches conducted on 

high-strength concrete over the years, there is still a lack of confidence in the use of 

high-strength concrete among the code drafting committees, civil engineering, 

consultants, designers and clients in most countries. The main key points for the 

limited usage of high-strength concrete are its high brittleness and low ductility 

which are the primary emphasis in the assessment of safety (Mazen, S. Z., 2005). 

Many of the researches conducted only emphasized on short-term based and 

laboratory mix only. However, when deal with the long term based and commercial 

mix, issues concerned with the properties, such as strength and ductility will arise. 

 
 

In the past decade, many studies have examined the monotonic stress-strain 

behaviour of unconfined and confined concrete (Hasan M. et. al., 2008, 

Saadtamanesh H. et. al., 1994, Weena P. L., et. al., 2005, and Yong Y. K., et al., 

1988). Besides, extensive researches have been conducted on the stress-strain 

behaviour of unconfined and confined concrete under cyclic compression (Cheong H. 

K. and Perry S. H., 1993 and Lam L. et al., 2006), there were limited studies 

concerned of confined high-strength concrete under cyclic compression (Weena, P. 

L., et al., 2004). There exist many uncertainties in several issues concerning the 

high-strength concrete, including the validity of envelope curve for the concrete, the 

effect of loading history on the stress-strain response, and ultimate condition of 
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confined concrete using steel strap under uniaxial cyclic compression in comparison 

with those of uniaxial monotonic compression.   

 
 
Therefore, the study of high-strength concrete column confined with the 

steel-straps subjected to uniaxial cyclic compression load is very important and will 

enhance the knowledge on the composite material. It can be applied to retrofit the 

existing building in potential seismic region and at the same time, to increase the 

confidence in the use of the high-strength concrete. 

 
 
 
 
1.3 Research significance 
 
 

This report presents the test results of a study on the externally-confined 

high-strength concrete columns with steel strap subjected to uniaxial cyclic 

compression load. The study also investigated on the effect of confinement using 

steel straps on the compressive strength and ductility of the externally-confined high-

strength concrete column in fundamental simulation of earthquake loading (i.e. 

uniaxial cyclic compression load). At the same time, the effect of confinement ratio 

to the externally-confined high-strength concrete column will also be investigated.  

 
 
 
 
1.4 Scope of study 
 
 

This study focused on the stress-strain relationship, compressive strength and 

ductility of the externally-confined high-strength concrete column under uniaxial 

cyclic compression load. The interested parameters to be investigated are 

confinement ratio (volumetric ratio of steel strap), method of testing for hardened 

concrete (uniaxial monotonic compression load and uniaxial cyclic compression 

load), compressive strength and ductility of the high-strength concrete specimens. 

Due to time constraint, only the column specimens with designed compressive 

strength of 60 MPa will be cast and investigated in this study. 
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1.5 Objectives 
 
 
The objectives of this study are as follows: 

 
i) To study the stress-strain relationship of externally-confined high-

strength concrete column specimen under uniaxial cyclic compression 

load. 

 
ii) To study the dependency of deformation of externally-confined high-

strength concrete column specimen to the volumetric ratio. 

 
iii) To compare the test results between present and previous studies. 
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