BEHAVIOUR OF EXTERNALLY-CONFINED HIGH-STRENGTH CONCRETE COLUMN UNDER UNIAXIAL CYCLIC COMPRESSION

LEE HOONG PIN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > **JULY 2011**

To my beloved mother and father

ACKNOWLEDGEMENTS

"No man is an island", it's a hard task for me to complete this report without the assistance from the people around me. Without them, I am sure it's a doubt for me to complete this report on time.

First and foremost, I would like to express my heartfelt gratitude to my supervisor, Prof. Ir. Dr. Wahid bin Omar and Abdullah Zawawi bin Awang for their support, encouragement, guidance, critics and friendship. They had taken a lot of efforts and time to go through all my report, answering all my conundrum and doubt during conducting this project and sharing their priceless experience with me. They also had taken a lot of effort to dot the I's and cross the t's by going through my report and came out with helpful suggestion. Without their help, surely it's a deep problem in completing this report.

Never forgot too, I would like to give my heartily and thousand thank to Mr Khor Chu Kiat and laboratory technical staff, Mr. Razale Mohammad and Mr Zulkifly Abdul Wahid for their help and support along the period. With their present and help, my master project becomes more meaningful.

Finally, I would like to thank my parents and family for their support and encouragement. Their support is invaluable and means to me. Last but not least, thanks for all my friends who willing to help me, thank you very much.

ABSTRACT

The behaviour of confined high-strength concrete under uniaxial cyclic compression is of vital important for the study either for seismic retrofitting technique of concrete columns or for the structure designs in seismic regions. Hence, the effectiveness of external wrapping with steel straps in reducing the brittleness and enhancing the strength and ductility of HSC column under uniaxial cyclic compression are to be properly understood. Twenty four high-strength concrete columns with diameter of 150 mm and 300 mm in height were cast, wrapped with pre-tensioned steel strap at spacing of 15 mm and tested to failure under both uniaxial monotonic and uniaxial cyclic compression load test. Test results obtained from steel strap-confined high-strength concrete cylinders are presented and examined, which allows a number of significant conclusions to be drawn, including the existence of an envelope curve, dependency of plastic strain to the number of layers of confinement, the cumulative effect of loading cycles, mode of failure under external confinement, etc. The present results are also compared with several results from previous study for various types of confined-concrete. The present study indicates that the column pre-tensioned with steel straps, performed better than the unconfined high-strength concrete columns. It is proved that externally confinement using steel straps do help to control the brittleness and at the same time, enhancing the ductility up to 56.2% and compressive strength up to 108.5%. The envelope curve of uniaxial cyclic loading almost coincides with the corresponding monotonic loading test, with a dependent plastic strain to the amount of layers of confinement.

ABSTRAK

Kelakuan konkrit berkekuatan tinggi terkurung di bawah beban mampatan paksi cyclic adalah sangat penting untuk kajian sama ada untuk baik pulih tiang konkrit atau reka bentuk struktur di kawasan yang mengalami gempa bumi. Oleh itu, keberkesanan kurungan dengan lilitan keluli dalam mengurangkan kerapuhan dan meningkatkan kekuatan dan kemuluran tiang konkrit berkekuatan tinggi di bawah beban mampatan paksi cyclic hendaklah dibuat kajian. Dua puluh empat tiang konkrit berkekuatan tinggi berdiameter 150 mm dan berketinggian 300 mm disediakan, dipra-tegangkan dengan lilitan keluli pada jarak 15 mm dan diujikaji dengan beban mampatan paksi monotonic dan beban mampatan paksi cyclic sehingga tiang mengalami kegagalan. Kajian tingkah laku tiang konkrit berkekuatan tinggi ini dinilai dengan menggunakan lengkung liputan, perhubungan terikan plastik dengan bilangan lapisan lilitan keluli kurungan, kesan kumulatif beban mampatan cyclic, mod kegagalan dan lain-lain lagi. Keputusan kajian ini juga dibandingkan dengan beberapa keputusan kajian lepas. Kajian ini menunjukkan tiang ditegangkan dengan lilitan keluli mempunyai prestasi yang lebih baik berbanding dengan tiang konkrit berkekuatan tinggi yang tidak ditegang dengan jalur keluli. Kajian ini membuktikan bahawa tiang ditegangkan dengan lilitan keluli mampu mengawal kerapuhan konkrit dan pada masa yang sama, meningkatkan kemuluran sehingga 56.2% dan kekuatan mampatan sehingga 108,5%. Di samping itu, lengkung liputan bagi beban mampatan paksi cyclic berlaku pada lengkung yang dengan graf tegasanterikan bagi beban mampatan paksi *monotonic*. Kajian ini juga membuktikan bahawa nilai terikan plastik bergantung kepada bilangan lapisan lilitan kurungan keluli.

TABLE OF CONTENT

CHAPTER	TITLE	PAGES
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF FIGURES	xii
	LIST OF TABLES	xvii
	LIST OF SYMBOLS	xix
1.	INTRODUCTION	1
	1.1. Introduction	1
	1.2. Problem statement	2
	1.3. Research significance	3
	1.4. Scope of study	3
	1.5. Objective	4
2.	LITERATURE REVIEW	5
	2.1. Introduction to high-strength concrete	5
	2.1.1. High-strength concrete	5
	2.1.2. Factors that govern the strength	7
	of high-strength concrete	

		2.1.2.1. Paste properties	7
		2.1.2.2. Transition zone properties	7
		2.1.2.3. Aggregate properties	7
	2.1.3.	Advantages and disadvantages	8
		of high-strength concrete	
2.2.	Confi	nement	9
	2.2.1.	Lateral confinement	9
	2.2.2.	External confinement	10
	2.2.3.	Confine concrete as seismic	12
		retrofiting method	
2.3.	Advar	ntages in using metal / steel strap	12
	2.3.1.	Effect of strap spacing	13
2.4.	Comp	ression test	13
	2.4.1.	Monotonic compression load test	13
	2.4.2.	Uniaxial cyclic compression load test	14
		2.4.2.1. Envelope curve	15
		2.4.2.2. Plastic strain	17
		2.4.2.3. Effect of loading history	19
2.5.	Existi	ng model equation	24
	2.5.1.	Theoritical stress-strain model	24
		for confined concrete by Mander,	
		Priestley and Park (1988)	
		2.5.1.1. The basic model equation	24
		for monotonic compression	
		loading for confined concrete	
		2.5.1.2. Stress-strain relation for cyclic	27
		loading at slow strain rates	
	2.5.2.	Behaviour of laterally confined high-	30
		strength concrete under axial loads by	
		Yong, Malakah and Edward (1988)	
		2.5.2.1. Parameter of stress-strain	30
		relationship	
		2.5.2.2. Empirical model for rectilinearly	32
		confined high-strength concrete	

2.6.	Previo	us study	33
	2.6.1.	Effects of external confinement on	33
		concrete columns by Tan and Kong	
		(1992)	
	2.6.2.	Cyclic loading of laterally confined	36
		concrete columns by Cheong and Perry	
		(1993)	

3. METHODOLOGY

4.

39

3.1.	Introduction	39
3.2.	Preparation procedures	39
	3.2.1. The mixing materials	39
	3.2.2. Cement	40
	3.2.3. Coarse aggregates	40
	3.2.4. Fine aggregates	41
	3.2.5. Chemical admixtures – superplasticizer	42
	3.2.6. Water	42
	3.2.7. Concrete cube	42
	3.2.8. The concrete steel mould formwork	43
	3.2.9. Steel strap	44
3.3.	Trial mix design	45
3.4.	Specimen preparation and testing method	46
RES	ULTS AND ANALYSIS	51
4.1.	Introduction	51
4.2.	Control columns' observation and discussion	53
	4.2.1. Mode of failure	53
	4.2.2. Cracking pattern	55
	4.2.3. Stress-strain relationship	57

4.2.3.1. Stress-strain relationship in
longitudinal direction57

4.2.3.2. Stress-strain relationship in 60

4.3.	Column	is streng	thened with two layers	63
	of steel	straps' o	observation and discussion	
	4.3.1.	Mode of	failure	63
	4.3.2.	Cracking	g pattern	66
	4.3.3.	Stress-st	rain relationship	68
	2	4.3.3.1.	Stress-strain relationship in	68
			longitudinal direction	
	2	4.3.3.2.	Stress-strain relationship in	74
			transverse direction	
	2	4.3.3.3.	Stress-strain relationship	78
			of steel strap	
4.4.	Column	strengt	hened with four layers	83
	of steel	straps' o	observation and discussion	
	4.4.1.	Mode of	failure	83
	4.4.2.	Cracking	g pattern	86
	4.4.3.	Stress-st	rain relationship	87
	2	4.4.3.1.	Stress-strain relationship in	87
			longitudinal direction	
	2	4.4.3.2.	Stress-strain relationship in	94
			transverse direction	
	2	4.4.3.3.	Stress-strain relationship	98
			of steel strap	
4.5.	Compar	rison		103
	4.5.1.	Analysis	s of test result	103
	4.5.2.	Stress-st	rain relationship of uniaxial	105
	1	monotor	nic and cyclic compression	
	4.5.3.	Envelop	e curve	108
	4.5.4.	Effect of	f loading history	108
	4.5.5.	Plastic s	train	109
	4.5.6.	Stress-st	rain relationship for steel strap	110
	4.5.7.	Compar	ison with previous study	111

transverse direction

5.	CONCLUSION AND RECOMMENDATION	113
	5.1. Summary of study	113
	5.2. Recommendations for future study	115
6.	REFERENCES	116

LIST OF FIGURES

FIGURE NO. TITLE

PAGES

2.1	Typical concrete and steel strain-strain curve	6
2.2	Stress-strain curves for confined and unconfined concrete	11
2.3	Effectively confined core for rectangular hoop	11
	reinforcement	
2.4	Typical stress-strain curve for concrete under axial cyclic	14
	compression	
2.5	Envelope curve proposed by Sinha et al. (1964)	16
2.6 (a)	Experimental envelope curve of Cheong H. K. and	16
	Perry S. H. (1993)	
2.6 (b)	Experimental envelope curve of L. Lam et al. (2006)	16
2.7	Plastic strain versus envelope unloading strain	18
2.8	Relationship between residual strain ratio and strain	19
	ratio attained in the preceding cycle, Curve C: ungrouted	
	columns; curve d: grouted columns.	
2.9	Experimental result of effect of tie reinforcement ratio	19
2.10	The uniqueness concept suggested by Sinha et al. (1964)	20
2.11	The proposed stability point	21
2.12	Cyclic stress-strain curve of concrete confined	22
	with one ply of CFRP	
2.13	Cyclic stress-strain curve of concrete confined with	22
	two plies of CFRP	
2.14 (a)	Stress-strain relation under unloading and reloading	23
	for 3 times each	
2.14 (b)	Stress-strain relation under unloading and reloading	23
	for 10 times each	

2.15	Stress-strain model proposed for monotonic loading	25
	of confined and unconfined concrete	
2.16	Stress-strain curve for unloading/reloading branches	30
	in the model of Mander J. B. et. al. (1988)	
2.17	Stress-strain curve and parameter in Yong Y. K.	31
	et. al. (1988) empirical model	
2.18	Reinforcement detail for columns	34
2.19	Detail of a strap and arrangement of straps on columns	35
2.20	Geometry and bolt reinforcement of a typical	37
	column (left), column after cyclic test (right)	
2.21	Graph of test result from Cheong H. K. and Perry S. H.	38
	(1993)	
3.1	Coarse aggregate of 12 mm maximum size	41
3.2	Fine aggregate	41
3.3	100mm x 100mm x 100mm cube mould	43
3.4	150 mm in diameter and 300 mm in height of	44
	concrete steel mould	
3.5	Stress-strain relationship for steel strap	45
3.6	Cement mix in specimens	47
3.7	Curing process of concrete specimens	47
3.8	Diagram for measuring equipments (LVDTs)	48
3.9	Diagram for loading device	48
3.10	Detail of specimen size and the strain gauge position	49
	(unit: mm)	
3.11	Specimens series arrangement for testing method	50
4.1	Mode of failure of control specimens	54
4.2	Cracking pattern for C60-C-02	55
4.3	Cracking pattern for C60-C-1C-05	56
4.4	Graph of stress-strain relationship for longitudinal	57
	direction under uniaxial monotonic compression load test	
4.5	Graph of stress-strain relationship for longitudinal	59
	direction (Comparison between uniaxial monotonic	
	compression load test and uniaxial cyclic compression	
	load test)	

4.6	Graph of stress-strain relationship for transverse direction	60
4.7	Graph of stress-strain relationship for transverse direction	61
	(Comparison between uniaxial monotonic compression	
	load test and uniaxial cyclic compression load test)	
4.8	Failure mode of specimens which undergone uniaxial	64
	monotonic compression load test	
4.9	Failure mode of specimens which undergone uniaxial	66
	cyclic compression load test, for single cycle (1C) and	
	three cycles (3C) at prescribed load level	
4.10	Cracking pattern for C60S15-2FT-07, C60S15-2FT-14	67
	and C60S15-2FT-3C-19	
4.11	Graph of stress-strain relationship for longitudinal	68
	direction under uniaxial monotonic compression load test	
4.12	Graph of stress-strain relationship for longitudinal	70
	direction (Comparison between uniaxil monotonic	
	compression load test and uniaxial cyclic compression	
	load test – single cycle)	
4.13	Graph of stress-strain relationship for longitudinal	72
	direction (Comparison between uniaxial monotonic	
	compression load test and uniaxial cyclic compression	
	load test - three cycles.)	
4.14	Graph of stress-strain relationship for transverse	74
	direction (concrete)	
4.15	Graph of stress-strain relationship for transverse	76
	direction (concrete) (Comparison between uniaxial	
	monotonic compression load test and uniaxial	
	cyclic compression load test – single cycle.)	
4.16	Graph of stress-strain relationship for transverse	77
	direction (concrete) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – three cycles.)	
4.17	Graph of stress-strain relationship for transverse	79
	direction (steel strap)	
4.18	Graph of stress-strain relationship for transverse	80

	direction (steel strap) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – single cycle.)	
4.19	Graph of stress-strain relationship for transverse	82
	direction (steel strap) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – three cycles.)	
4.20	Failure mode of confined specimens which undergone	85
	uniaxial monotonic (1 st row) and cyclic compression	
	load test, for single cycle (2 nd row) and three cycles	
	(3 rd row) at prescribed load level respectively.	
4.21	Cracking pattern for C60S15-4FT-11, C60S15-4FT-	87
	1C-17 and C60S15-4FT-3C-24	
4.22	Graph of stress-strain relationship for longitudinal	88
	direction under uniaxial monotonic compression	
	load test.	
4.23	Graph of stress-strain relationship for longitudinal	90
	direction (Comparison between uniaxial monotonic	
	compression load test and uniaxial cyclic compression	
	load test – single cycle.)	
4.24	Graph of stress-strain relationship for longitudinal	92
	direction (Comparison between uniaxial monotonic	
	compression load test and uniaxial cyclic compression	
	load test - three cycles.)	
4.25	Graph of stress-strain relationship for transverse	94
	direction (concrete)	
4.26	Graph of stress-strain relationship for transverse	95
	direction (concrete) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – single cycle.)	
4.27	Graph of stress-strain relationship for transverse	97
	direction (concrete) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – three cycles.)	

4.28	Graph of stress-strain relationship for transverse	98
	direction (steel strap)	
4.29	Graph of stress-strain relationship for transverse	100
	direction (steel strap) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – single cycle.)	
4.30	Graph of stress-strain relationship for transverse	101
	direction (steel strap) (Comparison between uniaxial	
	monotonic compression load test and uniaxial cyclic	
	compression load test – three cycles.)	
4.31	Uniaxial cyclic stress-strain curves of concrete	106
	confined with two layers of steel straps in comparison	
	with monotonic stress-strain curves of confined and	
	unconfined concrete. (a) One cycle of unloading/reloading	
	load at prescribed load value, and (b) Three cycles of	
	unloading/reloading load at prescribed load value.	
4.32	Uniaxial cyclic stress-strain curves of concrete	107
	confined with four layers of steel straps in comparison	
	with monotonic stress-strain curves of confined and	
	unconfined concrete. (a) One cycle of unloading/reloading	
	load at prescribed load value, and (b) Three cycles of	
	unloading/reloading load at prescribed load value.	
4.33	Plastic strain (ϵ_{pl}) versus envelope unloading	109
	strain ($\varepsilon_{un,env}$)	
4.34	The stress strain curve for steel strap	110

LIST OF TABLES

TABLE NO.

TITLE

PAGES

2.1	Details of columns and cycling regimes	37
3.1	Mix proportion design for concrete grad 60 MPa	46
4.1	Cube test result	52
4.2	Ultimate load for control specimens	54
4.3	Test results of control specimens	57
4.4	Uniaxial cyclic compression load test results of	59
	control specimens	
4.5	Uniaxial monotonic load test result of two layers of	69
	steel straps confined specimens	
4.6	Uniaxial cyclic compression load test (single cycle)	70
	results of two layers of steel straps confined	
	specimens	
4.7	Uniaxial cyclic compression load test (three cycles)	72
	results of two layers of steel straps confined	
	specimens	
4.8	Uniaxial monotonic load test result of four layers	88
	of steel straps confined specimens	
4.9	Uniaxial cyclic compression load test (single cycle)	90
	results of four layers of steel straps confined	
	specimens	

 •
İ

4.10 Uniaxial cyclic compression load test		Uniaxial cyclic compression load test (three cycles)	92
		results of four layers of steel straps confined	
		specimens	
	4.11	Average test results of unconfined concrete columns	103
	4.12	Average test results of confined concrete columns	103
	4.13	Comparison between previous studies with present study	111

LIST OF SYMBOLS

A'_c	-	Area of concrete section
A_c	-	Area of core of section enclosed by the perimeter spiral or hoop
A_{cc}	-	Effective area of confined concrete enclosed by perimeter spiral or
		hoop
A_s	-	Area of steel section
A_e	-	Area of effectively confined concrete core
b_c	-	Core dimensions to centerlines of perimeter hoop in x direction
d_s	-	Diameter of spiral between bar centers
d_c	-	Core dimensions to centerlines of perimeter hoop in y direction
d"	-	Nominal diameter of lateral ties in inches
d	-	Nominal diameter of longitudinal steel bars in inches
E_c	-	Tangent modulus of elasticity of concrete
Esec	-	Secant modulus of confined concrete at peak stress
E_u	-	Tangent modulus at the beginning of the unloading branch
E_{re}	-	Tangent modulus at the returning point
ϵ_{un}	-	Axial unloading strain
ε _c	-	Longitudinal compressive strain of concrete
E _{cc}	-	Strain at maximum concrete stress f'_{cc} of confined concrete
ε _{co}	-	Strain at maximum concrete stress f'_{co} of unconfined concrete
ε_{sp}	-	Spalling strain
ε_{pl}	-	Irrecoverable or inelastic strain
E _{ro}	-	Coordinate of the strain of reloading located in an unloading branch
		or in a cracked state
$\boldsymbol{\varepsilon}_{85}$	-	The strains at 85% of the peak compression strength after the full
		peak compression strength
$\boldsymbol{\varepsilon}_{50}$	-	The strains at 50% of the peak compression strength after the full

peak compression strength

f_c'	-	Cylinder compress	sive strength of concrete
,.		2 1	U

- f_v Yield strength of steel
- f''_y Yielding stress of the lateral steel
- f'_{cc} Compressive strength of confined concrete
- f'_{co} Unconfined concrete strength
- f'_{1} Effective lateral confining pressure from transverse reinforcement
- f_{un} Reversal (unloading) compressive concrete stress
- f_{ro} Coordinate of the load of reloading located in an unloading branch or in a cracked state
- f_{c0} The peak compression strength in the unconfined specimens
- f_{cc} The peak compression strength in the confined specimens
- *h*" Length of one side of the rectangular ties in inches
- k_e Confinement effectiveness coefficient
- *n* Number of longitudinal steel bars
- P_{cr} Load at first visible cracking
- P'_{max} Maximum axial load
- ρ_{cc} Ration of area of longitudinal reinforcement to area of core of section
- ρ " Volumetric ratio of lateral reinforcement
- ρ Volumetric ratio of longitudinal reinforcement
- s' Clear vertical spacing between spiral or hoop bars
- *s* The center-to-center spacing of the lateral ties in inches
- w_i^{\prime} The *i*th clear distance between adjacent longitudinal bars

CHAPTER 1

INTRODUCTION

1.1 Introduction

Recently, wide application in high-strength concrete have been found in construction industry due to the lower unit weight for a given strength with potential seismic advantages, reduced member dimension and reinforcing requirement, and more economical construction (Weston T. Hester, 1980). However, there is a major problem with high-strength concrete. Although high-strength concrete exhibit high compressive strength, high-strength concrete generally more brittle and less ductile than normal strength concrete. It is important to make sure that the minimum level of ductility is provided during designing the high-strength concrete (Neville A. M., 2002).

In Malaysia, most of the concrete structures are not designed using earthquake specification. Although Malaysia is free from earthquake intrusion, there still have some collateral impact when earthquake happened on neighbouring country. The earthquake impact will cause severe damages to the structures due to inadequate confinement of concrete, leading to shear anchorage and splice failures of concrete members. It is expensive and almost impossible to demolish and rebuilt the existing vulnerable structures, therefore innovative rehabilitation and strengthening techniques are needed to ensure the life expectancy of many existing building can be extended (Hasan M. et. al., 2008). This report presents the results of an experimental study on the behaviour of externally confined high-strength concrete using steel strap under uniaxial cyclic compression. Twenty four high-strength concrete column specimens with different layers of steel strap wrapping are tested in order to investigate the external lateral confinement effect on the strength and ductility properties of high-strength concrete under uniaxial cyclic compression load. The effect of external confinement was performed by pre-tensioning steel straps in discontinuous rings with proposed width and thickness around the column specimens. Test results obtained are assessed and presented in this report.

1.2 Problem statement

Although there are many successful applications and researches conducted on high-strength concrete over the years, there is still a lack of confidence in the use of high-strength concrete among the code drafting committees, civil engineering, consultants, designers and clients in most countries. The main key points for the limited usage of high-strength concrete are its high brittleness and low ductility which are the primary emphasis in the assessment of safety (Mazen, S. Z., 2005). Many of the researches conducted only emphasized on short-term based and laboratory mix only. However, when deal with the long term based and commercial mix, issues concerned with the properties, such as strength and ductility will arise.

In the past decade, many studies have examined the monotonic stress-strain behaviour of unconfined and confined concrete (Hasan M. et. al., 2008, Saadtamanesh H. et. al., 1994, Weena P. L., et. al., 2005, and Yong Y. K., et al., 1988). Besides, extensive researches have been conducted on the stress-strain behaviour of unconfined and confined concrete under cyclic compression (Cheong H. K. and Perry S. H., 1993 and Lam L. et al., 2006), there were limited studies concerned of confined high-strength concrete under cyclic compression (Weena, P. L., et al., 2004). There exist many uncertainties in several issues concerning the high-strength concrete, including the validity of envelope curve for the concrete, the effect of loading history on the stress-strain response, and ultimate condition of confined concrete using steel strap under uniaxial cyclic compression in comparison with those of uniaxial monotonic compression.

Therefore, the study of high-strength concrete column confined with the steel-straps subjected to uniaxial cyclic compression load is very important and will enhance the knowledge on the composite material. It can be applied to retrofit the existing building in potential seismic region and at the same time, to increase the confidence in the use of the high-strength concrete.

1.3 Research significance

This report presents the test results of a study on the externally-confined high-strength concrete columns with steel strap subjected to uniaxial cyclic compression load. The study also investigated on the effect of confinement using steel straps on the compressive strength and ductility of the externally-confined highstrength concrete column in fundamental simulation of earthquake loading (i.e. uniaxial cyclic compression load). At the same time, the effect of confinement ratio to the externally-confined high-strength concrete column will also be investigated.

1.4 Scope of study

This study focused on the stress-strain relationship, compressive strength and ductility of the externally-confined high-strength concrete column under uniaxial cyclic compression load. The interested parameters to be investigated are confinement ratio (volumetric ratio of steel strap), method of testing for hardened concrete (uniaxial monotonic compression load and uniaxial cyclic compression load), compressive strength and ductility of the high-strength concrete specimens. Due to time constraint, only the column specimens with designed compressive strength of 60 MPa will be cast and investigated in this study.

1.5 Objectives

The objectives of this study are as follows:

- To study the stress-strain relationship of externally-confined highstrength concrete column specimen under uniaxial cyclic compression load.
- ii) To study the dependency of deformation of externally-confined highstrength concrete column specimen to the volumetric ratio.
- iii) To compare the test results between present and previous studies.

CHAPTER 6

REFERENCES

ACI Committee 363 (1984), "State of the art report on high-strength concrete," American Concrete Institute, Farmington Hills, Mich, 364-410.

Arthur H. Nilson (1994), "*Chapter 7 – Structural Members*," High Performance Concrete: Properties and Application, McGraw-Hill, Inc., 213-236.

Attard M. M. and Setunge, S. (1996), "Stress-strain relationship of confined and unconfined concrete," ACI Materials Journal, V93-M49, 432-442.

Bill Price (2003), "*High Strength Concrete*," Advance Concrete Techonology, ELSEVIER Butterworth-Heinemann, 3/1-3/16.

Barros J.A.O, Ferreira D.R.S.M, Varma R.K., "CFRP-confined reinforced concrete elements subjected to cyclic compression loading".

Cheong H. K. and Perry S. H. (1993), "*Cyclic Loading of Laterally Confined Concrete Columns*," Materials and Structures, **26**, (1993), 557 – 562.

Harries K. A. and Kharel G. (2002), "*Experimental investigation of the behaviour of variably confined concrete*," Cement and Concrete Research 2267.

Hasan Moghaddam, Kypros Pilakoutas, Maysam Samadi, Saiid Mohebbi (2008), "Strength and Ductility of Concrete Member Confined by External Post-Tensioned Strips," The 4th National Conference on Civil Engineering, University of Tehran

Hisham, A. F. and Shuaib, H. A. (1989), "*Behavior of hoop-confined high-strength concrete under axial and shear loads*," ACI Structural Journal, V86-S63, 652-659.

Hong K. N., Han S. H., Yi S. T. (2006), "High-strength concrete columns confined by low-volumetric ratio lateral ties," Eng Struct, ELSEVIER, (28) 1346-1353.

Karbhari V.M and Gao Y. (1997), "Composite jacketed concrete under uniaxial compression – Verification of simple design equations." J.Master. Civ. Eng., 9(4), 185-193.

Lam L., Teng J. G, Cheung C. H., Xiao Y. (2006), "FRP-confined concrete uncer axial cyclic compression," ELSEVIER, Cement & Concrete Composite, 28, 949 – 958.

Martinez-Rueda J. E. and Elnashai A. S. (1997), "Confined concrete model under cyclic load," Materials and Structures, Vol. 30, pp 139-147.

Mander J. B., Priestley M. J. N., and Park R, (1988) "Theorectical stress-strain model for confined concrete," J. Struct Eng., ASCE, 114(8), (1988), 1804-1826.

Mazen S. Z. (2005), "Strength and ductility of fibre reinforced high-strength concrete columns," School of Civil and Environmental Engineering, the University of New Sourth Wales, Sydney, Australia.

Minder, S. et. al. (1994), "*Chapter 1 – Material Selection, proportioning and quality control,*" High Performance Concrete: Properties and Application, McGraw-Hill, Inc., 1-25.

Neville A. M. (2002), "*Properties of concrete, Fourth and Final Edition*," Pearson, Prentice Hall, ISBN 0-582-23070-5, OCLC 33837400.

Sakai J. and Kawashima K. (2006), "*An unloading and reloading stress-strain model for concrete confined by tie reinforcements,*" J. Struct Eng, ASCE; 132(1): 112-22.

Safan M. and Kohoutková A. (2001), "Influence of Different Drying Conditions on High Strength Concrete Compressive Strength," Acta Polytechnica, Vol 41, No. 3.

Shah, S. P., Fafitis, A. and Arnold, R. (1983), "*Cyclic loading of spirally reinforced concrete*," Proc. Amer. Soc. Civ. Engrs, J. Struct. Div. 109 (7) 1695-1710.

Saadtamanesh H., Ehsani, M. R., and Li, M. W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps," ACI Structural Journal, V91-S43, 434-447.

Shunsuke S., Hideki K., and Kazuyoshi S. (2007) "Study of new RC structures using ultra-high-strength fiber reinforced concrete (UFC) – The challenge of applying 200 MPa of UFC to earthquake resistant building structures," Journal of Advance Concrete Technology, Vol.5-No2, 133-147.

Sinha B. P., Gerstle K. H., and Tulin L. G. (1964), "Stress-strain relation for concrete under cyclic loading," J. Amer. Concr. Inst. 61 (2), 195-211.

Tan, T. H. and Kong, F. K. (1992), "Effects of external confinement on concrete columns".

Weena P. Lokuge., Sanjayan, J. G., and Sujeeva, S. (2005), "*Stress-strain model for laterally confined concrete*," Journal of Materials in Civil Engineering, ASCE, 607-616.

Weena P. Lokuge, Sanjayan, J. G., and Sujeeva, S. (2004), "Constitutive Model for Confined High-strength Concrete Subjected to Cyclic Loading," Journal of Materials in Civil Engineering, ASCE, 0899 – 1561, 16:4 (297)

Weston, T. Hester (1980), "Field testing high-strength concretes: A critical review of the state of art," ACI Concrete International, pp 27-37.

Yong Y. K., Malakah G. N., and Edward G. N. (1988), "*Behavior of laterally confined high-strength concrete under axial loads*," Journal of Structural Engineering, ASCE, Vol.114-No2, 322-351.

Zisman J. G. (1982), "*Behaviour of concrete under biaxial cyclic compression*," Master of Science Thesis, Massachusetts Institute of Technology.