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ABSTRACT 
 

 
 

 
Condition diagnosis of critical system such as multiple-bearing system is one 

of the most important maintenance activities in industry because it is essential that 
faults are detected early before the performance of the whole system is affected. 
Currently, the most significant issues in condition diagnosis are how to improve 
accuracy and stability of accuracy, as well as lessen the complexity of the diagnosis 
which would reduce processing time. Researchers have developed diagnosis 
techniques based on metaheuristic, specifically, Back Propagation Neural Network 
(BPNN) for single bearing system and small numbers of condition classes. However, 
they are not directly applicable or effective for multiple-bearing system because the 
diagnosis accuracy achieved is unsatisfactory. Therefore, this research proposed 
hybrid techniques to improve the performance of BPNN in terms of accuracy and 
stability of accuracy by using Adaptive Genetic Algorithm and Back Propagation 
Neural Network (AGA-BPNN), and multiple BPNN with AGA-BPNN (mBPNN-
AGA-BPNN). These techniques are tested and validated on vibration signal data of 
multiple-bearing system. Experimental results showed the proposed techniques 
outperformed the BPPN in condition diagnosis. However, the large number of 
features from multiple-bearing system has affected the complexity of AGA-BPNN 
and mBPNN-AGA-BPNN, and significantly increased the amount of required 
processing time. Thus to investigate further, whether the number of features required 
can be reduced without compromising the diagnosis accuracy and stability, Grey 
Relational Analysis (GRA) was applied to determine the most dominant features in 
reducing the complexity of the diagnosis techniques. The experimental results 
showed that the hybrid of GRA and mBPNN-AGA-BPNN achieved accuracies of 
99% for training, 100% for validation and 100% for testing. Besides that, the 
performance of the proposed hybrid accuracy increased by 11.9%, 13.5% and 11.9%  
in training, validation and testing respectively when compared to the standard BPNN. 
This hybrid has lessened the complexity which reduced nearly 55.96% of processing 
time. Furthermore, the hybrid  has improved the stability of the accuracy whereby the 
differences in accuracy between  the maximum and minimum  values  were 0.2%, 
0% and 0% for training, validation and testing respectively. Hence, it can be 
concluded that the proposed diagnosis techniques have improved the accuracy and 
stability of accuracy within the minimum complexity and significantly reduced 
processing time.  
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ABSTRAK 

 

Diagnosis keadaan sistem kritikal seperti sistem galas berbilang adalah salah 
satu aktiviti penyelenggaraan yang sangat penting dalam industri kerana adalah 
penting bahawa kerosakan dikesan lebih awal sebelum pencapaian keseluruhan 
sistem terjejas. Pada masa ini, isu yang paling signifikan dalam diagnosis keadaan 
ialah bagaimana untuk memperbaiki ketepatan dan kestabilan ketepatan, serta 
mengurangkan kerumitan diagnosis untuk mengurangkan masa pemprosesan. 
Penyelidik-penyelidik telah membangunkan teknik diagnosis berdasarkan 
metaheuristik, terutamanya, Rangkaian Neural Rambatan Balik (BPNN) untuk 
sistem galas tunggal dan sebilangan kecil kelas-kelas keadaan.Walau bagaimanapun, 
teknik-teknik ini tidak boleh digunakan secara terus atau berkesan untuk sistem galas 
berbilang kerana ketepatan diagnosis yang dicapai tidak memuaskan. Oleh itu, 
penyelidikan ini mencadangkan teknik hibrid untuk memperbaiki pencapaian BPNN 
dari segi ketepatan dan kestabilan ketepatan iaitu Algoritma Genetik Adaptif dan 
Rangkaian Neural Rambatan Balik (AGA-BPNN), dan pelbagai BPNN dengan 
AGA-BPNN (mBPNN-AGA-BPNN). Teknik-teknik ini diuji dan disahkan keatas 
data isyarat getaran sistem galas berbilang. Keputusan eksperimen menunjukkan 
teknik yang dicadangkan mengatasi BPNN dalam diagnosis keadaan. Walau 
bagaimanapun, bilangan ciri-ciri yang banyak daripada sistem galas berbilang telah 
menjejaskan kerumitan AGA-BPNN dan mBPNN-AGA-BPNN, dan meningkatkan 
jumlah masa pemprosesan yang diperlukan secara signifikan. Oleh itu untuk 
menyiasat lebih lanjut, sama ada bilangan ciri-ciri yang diperlukan boleh 
dikurangkan tanpa menjejaskan ketepatan dan kestabilan diagnosis, Analisis 
Hubungan Kelabu (GRA) telah digunakan untuk menentukan ciri-ciri paling 
dominan dalam mengurangkan kerumitan teknik diagnosis. Keputusan eksperimen 
menunjukkan bahawa hibrid antara GRA dan mBPNN–AGA-BPNN mencapai 
ketepatan 99% untuk latihan, 100% untuk pengesahan dan 100% untuk pengujian. 
Selain daripada itu, pencapaian ketepatan hibrid yang dicadangkan meningkat 
sebanyak 11.9%, 13.5% dan 11.9% masing-masing dalam latihan, pengesahan dan 
pengujian apabila dibandingkan dengan teknik piawaian BPNN. Hibrid ini telah 
mengurangkan kerumitan dimana masa pemprosesan dikurangkan sehingga 55.96%. 
Selain itu, hybrid telah memperbaiki kestabilan ketepatan sehingga perbezaan 
ketepatan antara nilai maksimum dan minimum adalah 0.2%, 0% dan 0% masing-
masing untuk latihan, pengesahan dan pengujian. Maka, boleh disimpulkan bahawa 
teknik diagnosis yang dicadangkan telah memperbaiki ketepatan dan kestabilan 
ketepatan dalam kerumitan minimum dan pengurangan masa pemprosesan yang 
signifikan.  
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CHAPTER 1 
 

 

 

INTRODUCTION 
  

 

1.1 Introduction 

Condition diagnosis is a process of identifying unexpected changes or 

malfunctions of a component in a system. In general, condition diagnosis involves 

the following tasks: (1) fault detection, which is to indicate a fault has occurred or 

not in the system, (2) fault isolation, which is to determine the location of the fault, 

and (3) fault identification, which is to estimate the size and nature of the fault. Fault 

detection and fault isolation are considered the most important stages of the 

condition diagnosis system. Thus, condition diagnosis is often referred to as fault 

detection and isolation (FDI) (Bocaniala and Palade, 2006). Condition diagnosis 

must be conducted early before it affects the performance of the whole system. 

Earliness and effectiveness is the key in condition-diagnosing a system.  

Many researchers have proposed various techniques for condition or fault 

diagnosis, for instance, expert system approaches which was applied to diagnose 

complex chemical processes (Qian et al., 2003); exact wavelet analysis for 

machine diagnosis (Tse et al., 2004); multi-class Support Vector Machine for 

rotating machinery (Yang et al., 2005); model-based approach (Isermann, 2005), 

wavelet transform and Neural Networks (Srinivas et al., 2010); and Principal
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Component Analysis (Min et al., 2011).  

Condition diagnosis system is applied in various industries as it is one of 

the most important requirements to avoid total breakdown of the system. 

Especially in critical system such as bearing system which are used in many 

applications. A bearing is a device that allows restrained relative motion between 

two moving parts. Bearings are used to reduce friction on rotating shaft by providing 

smooth metal  balls or rollers and a smooth inner and outer metal surfaces for the 

balls to roll against. They are widely used in many applications and different 

applications have different kind of bearing used. For example the tapered roller 

bearings are used for automobile wheels (as shown in Figure 1.1), the cylindrical 

roller bearing for aircraft GA turbine engine, and needle roller bearing for car 

follower assembly (Harris and Kotzalas, 2007).  

 

 

 

 

 

Figure 1.1 Example of tapered roller bearing in automobile wheels 
 

Appropriate bearing designs can minimize the friction and its failure may 

cause expensive loss of production (Harnoy, 2003). However, the bearing is one of 

machine parts which has a high percentage of defect as compared to the other 

components (Rodriguez and Arkkio, 2008). Therefore, an early and effective 

condition diagnosis of a bearing is an essential task. 

Wheel bearing of Porsche GT3 
(http://www.dartauto.com/projects/porsche-
gt3-wheel-bearing-installation/, 2013) 
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Many researchers have proposed techniques in bearing condition diagnosis. 

Su and Lin (Su and Lin, 1992), for instance, proposed a technique that used the 

frequency characteristic of bearing vibration signals. Another researcher applied 

discrete wavelet transform (DWT) to vibration signals to predict the occurrence of 

spilling in ball bearings (Mori et al., 1996). Statistical analysis of sound vibration 

signals was also used by Heng and Nor (Heng and Nor, 1998) for monitoring the 

rolling element bearing condition. Other fault diagnosis techniques were 

developed  based on empirical mode decomposition (EMD) and Hilbert Spectrum 

(Yu et al., 2005), and Laplace wavelet enveloped power spectrum (Al-Raheem et 

al., 2007). Individual metaheuristic techniques such as the genetic algorithms (GA), 

Fuzzy logic and Artificial Neural Networks (ANNs) have also been used for 

condition diagnosis (Jayaswal et al., 2010; Rafiee et al., 2007; Wen and Han, 1995).  

However, individual metaheuristic techniques for condition diagnosis suffer from 

their own drawbacks such as Back Propagation Neural Networks (BPNN) which are 

difficult to diagnose a new fault (Hu et al., 2001). Moreover,  if condition diagnosis 

involves many characteristic parameters, BPNN will need much longer network 

training time, or even be unable to train, thus decreasing the diagnosis accuracy 

(Enping et al., 2008). Meanwhile, GA encounter difficulties in finding fitness 

function that effectively work in fault diagnosis (Yangping et al., 2000) and fuzzy 

logic has drawback of the lack in learning ability (Tiwari et al., 2013). These 

individual metaheuristic drawbacks can be overcome by forming a hybrid approach 

that combines the advantages of each technique (Jayaswal et al., 2010). Among the 

drawbacks, this research addressed the issues related to the accuracy of condition 

diagnosis especially when it involves multiple bearings, the stability of accuracy and 

the complexity of the condition diagnosis techniques. 

1.2 Problem Background 

In industry, unexpected faults of a critical system such as bearing system 

must be minimized. This unexpected condition can lead to total failure of the whole 

system. An effective diagnosis can detect faults much earlier and unacceptable 

consequences from total system failure can be avoided. The earliness and 
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effectiveness of condition diagnosis is supported by condition monitoring which 

provide information regarding the condition of the system. For bearing systems, the 

vibration signals captured using an accelerometer can be used to represent the 

conditions of the bearing. The accelerometer records condition of the bearing system 

continuously. Vibration signals data are commonly used for bearing condition 

diagnosis since the information regarding the bearing condition is contained in the 

vibration signals (Min et al., 2011). Vibration signals display different amplitude if 

a problem in the system exists. As shown in Figure 1.2, the vibration signals of a 

normal bearing are distinct from faulty bearing. The faulty bearing vibration signals 

data have much higher amplitude than the normal bearing vibration signals.  

However, in a multiple-bearing system, for instances when one of the 

bearings has problems and the others are normal, the vibration signals that transpired 

from this condition may not give a representation that visually distinct from the 

condition when all the bearings are normal (see Figure 1.3). Therefore, it is important 

to have a technique that is able to accurately diagnose the system condition based on 

the continuously monitored vibration signals. 

Back Propagation Neural Networks (BPNN) is one of the techniques that is  

used for condition diagnosis (Bakhary et al., 2007; Hoskins et al., 1991; 

Khanmohammadi et al., 2000; Mitoma et al., 2008; Ogaji and Singh, 2006; 

Payganeh et al., 2012; Sreejith et al., 2008). BPNN is used to model the behaviours 

of the system which are then classified. BPNN is an suitable tool for modelling the 

behaviours of a system since they have the following three important characteristics: 

generalization ability, noise tolerance and fast response once trained (Puscasu et al., 

2000). Even if the training data are affected by noise, BPNN will still be able to 

generalize the system behaviour with the level of accuracy being proportional to the 

level of noise (Bocaniala and Palade, 2006).  
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Figure 1.2 Vibration Signals of Normal Bearing (a) and Faulty Bearing (b) 
 

 

 

 

Figure 1.3 Vibration Signals from Both Bearings Are Normal and One of Bearing is 
Normal whilst the other is Faulty in a Multiple Bearing System 

 
 

However, for multiple-bearing cases, individual BPNN cannot give 

satisfactory results because those cases involve large numbers of features of vibration 

signals data and condition classes which will affect the topology complexity and 

connectivity weights of BPNN. The number of features of vibration signals data has 

influences on BPNN input neurons while condition classes have influences to BPNN 

output neurons, which consequently influences the number of connectivity weights in 

BPNN training performance (Hashem, 1997). The connectivity weights has 

important role in providing a good performance of BPNN, in this case the diagnosis 

(a)

(b)
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accuracy of a condition. Accuracy is the degree to which the result of a measurement 

or calculation conforms to the correct value or a standard.   

The random initial connectivity weights can induce unsatisfactory of 

condition diagnosis accuracy from standard BPNN (Chang et al., 2012). The 

randomness of initial connectivity weights can be minimized by setting up pre-

processing techniques to produce better weights for BPNN learning process. Since 

1990 researchers have been developing techniques such as two-layers neural 

networks approaches (Nguyen and Widrow, 1990b), least squares method (Erdogmus 

et al., 2003; Yam and Chow, 1995), Cauchy’s inequality and linear algebraic (Yam 

and Chow, 2000), geometrical approach (Redondo and Espinosa, 2001; Sookil and 

Sunwon, 2006), statistical approach (Olden and Jackson, 2002), Particle Swarm 

Optimization (PSO) (Al-Shareef and Abbod, 2010; Nikelshpur and Tappert, 2013) 

and Genetic Algorithms (GA) (Chang et al., 2012; Shanti et al., 2009).  All of these 

approaches were used to determine the initial weights of the BPNN in simpler 

topology and classes compared to the topology and classes of multiple-bearing 

system. Among these approaches, the GA are superior when they are applied to 

“gradient descent” based techniques such as BPNN (Srinivas and Patnaik, 1994) and 

the single bearing system, due to GA are proven capable to deal with vibration 

signals data (Lee et al., 2007; Zhang and Randall, 2009). However, it cannot be 

denied that GA are trapped into prematurely convergence issue which affects local 

optima (Srinivas and Patnaik, 1994; Vellev, 2008).  

Two important aspects in learning models are how well the model generalizes 

the unseen data and how the model deals with the problem complexity.  Networks 

with larger complexity might be expected to have lower result of training and higher 

of generalization error (Lawrence et al., 1997). This ability of generalization  

becomes the current issues of BPNN perfomance (Panchal et al., 2011; Piotrowski 

and Napiorkowski, 2013; Yinyin et al., 2008). It means that BPNN cannot generalize 

the connectivity weights of training process to similar patterns of unobserved data 

and this is known as ovefitting (Mahdaviani et al., 2008). The effect of this 

generalization error is that the diagnosis accuracy of the training, validation and 

testing process of BPNN will be unstable, known as instability of accuracy.  
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Instability of accuracy can be identified by running a certain BPNN ten times 

with the same features, says BPNN 30-30-30-30-16, we can obtain different accuracy 

significantly since we use initial weights randomly. This is indicated by the range of 

minimum and maximum points of accuracy which is significantly different as shown 

in Figure 1.4.  

 

 

 

 

 
Figure 1.4 Diagnosis accuracy of BPNN learning process experiments 

 

From Figure 1.4, we can see that the minimum accuracy of training is around 82% 

and the maximum is around 96% and so the distinction around 14%.  The validation 

and test accuracy as well have high distinction between  minimum and maximum 

values, which is around 25% and 16% repectively. This implies that the BPNN 30-

30-30-30-16 performance is unstable as the final weights of ten running BPNN 30-

30-30-30-16  are different and do not converge to an optimum weights.The final 

weights of ten BPNN 30-30-30-30-16 are different because the initial weights were 

selected randomly. This condition proves that BPNN has conflict between overfitting 

and generalization which leads to a low learning training speed and the tendency of 

converging to a local optimum point of the network (Rafiee et al., 2007; Tetteh et al., 

1996). 

In condition diagnosis purpose, features extraction plays an important role. 

Features are any parameters extracted from the measurements in order to enhance 

the condition detection (Li et al., 2003). For multiple-bearing case, large numbers 
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of features of vibration signals data which are recorded from multiple 

accelerometers are used to diagnose the condition of the bearings.  In other words, 

it involves large features extraction in order to obtain precise condition diagnosis 

and as such, the BPNN complexity increases.  Evidently, the complexity of BPNN 

influences the processing time (Lawrence et al., 1997). In order to reduce the 

BPNN complexity, the dominant features for condition diagnosis must be 

determined and chosen correctly since choosing the features randomly to be used as 

inputs will consequently influence the diagnosis accuracy and become time 

consuming (Fischer et al., 1979). The dominant features are the features that contain 

the most useful information regarding to the multiple-bearing condition. By finding 

these features an accurate diagnosis of multiple-bearing condition can be obtained in 

less complexity and processing time. 

According to the previous explanation, this research addresses the issues of 

accuracy, stability of accuracy and complexity in BPPNs for condition diagnosis of 

multiple-bearing system in which the number of features of vibration signals, or the 

input neurons, and the number of condition classes are large. 

1.3  Problem Statement 

In the diagnosis field, back propagation neural networks (BPNN) are used 

as one of techniques to identify the condition of a system. However in multiple 

bearings case, BPNN encounter some drawbacks due to the complexity of the 

multiple-bearing condition diagnosis. Therefore, efforts must be taken so that 

precise condition diagnosis can be achieved. Hybrid approach is one of the 

attempts which can be conducted to overcome some drawbacks of BPNN and to 

achieve good accuracy in multiple-bearing condition diagnosis. Thus, the main 

question of the research is: “How to develop hybrid mechanism to improve the 

BPNN performance in terms of accuracy and stability of accuracy, for condition 

diagnosis for multiple-bearing systems?”  
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The sub questions of the main research question are as follows: 

1. How to develop optimization based techniques for determining the best 

initial weights of BPNN to improve the accuracy of condition diagnosis 

for multiple bearings systems?  

2. How to develop multiple classifier strategies for BPNN to improve the 

stability in accuracy of condition diagnosis for multiple bearings 

system?  

3. How to identify and select the dominant features from vibration signals 

of bearing conditions data to minimize the BPNN complexity while 

maintaining the required accuracy and stability of condition diagnosis? 

1.4 Research Objectives 

The objectives of this research are: 

1.  To propose GA based algorithms with adaptive operator probabilities to 

obtain the optimal initial weights of BPNN to improve the accuracy of 

condition diagnosis in multiple-bearing systems. 

2.  To propose hybrid algorithm for stabilizing the accuracy of GA based-

BPNN condition diagnosis algorithm using multiple BPNN. 

3. To identify and select dominant features of vibration signals in multiple-

bearing system using Grey Relational Analysis (GRA) to minimize the 

BPNN complexity while maintaining the required accuracy and stability. 

4. To validate, test and evaluate the performance the proposed hybrid 

algorithms using Confusion Matrix and Cohen’s Kappa. 
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1.5 Research Scope 

In order to achieve the objectives stated above, the scope of this research is 

focuses on three parts. First scope encompasses the vibration signals data 

processing which consists of features extraction and standardization. In this 

research, the vibration signals data are obtained and validated by the Case Western 

Reserve University Bearing Data Center (Loparo).  This data is captured from three 

accelerometers that are attached on two bearings, namely Fan End Bearing (FE) 

and Drive End Bearing (DE), and attached on the Baseline (BA) of the system. 

The vibration signals data are recorded in seven condition classes which are 

further improved into sixteen classes of condition diagnosis. 

Second, this research elaborates on the development of hybrid approach in 

BPNN to improve the accuracy and stability of accuracy in condition diagnosis of 

multiple-bearing system. The hybrid approach use optimization based algorithm 

namely Genetic Algorithm with adaptive operator probabilities to obtain the 

optimal initial weights, the BPNN with “gradient descent momentum” as the 

training function for the diagnosis technique and Grey Relational Analysis as the 

dominant features selection techniques. 

And thirdly, this research presents the algorithm evaluation to see the 

performance of the algorithms in condition diagnosis of the multiple-bearing 

system. This evaluation is conducted in diagnosis accuracy and stability accuracy 

which is measured using confusion matrix and Cohen’s Kappa approach.  From 

the evaluation, the improvement of the BPNN enhancement algorithm can be 

clearly compared with the standard BPNN performance without the enhancement 

algorithm development. 

1.6 Research Significance 

A precise condition diagnosis is an urgent requirement especially in the  

industrial application. Imprecise diagnosis causes any faults in the system cannot be 
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identified correctly and can affect to the total breakdown of the system. The total 

breakdown lead to increased of production cost. Therefore, an effort to improve the 

condition diagnosis accuracy is needed. 

One of the issues of existing condition diagnosis techniques is that it cannot 

generalize the accuracy for the unobserved data. When the accuracy of observed data 

is not stable for a new data set, this is known as overfitting. If the condition diagnosis 

technique is overfitting, it is not valid to diagnose the condition of the system 

because it can give wrong diagnosis for the condition and it is dangerous if used in 

the industry field. Therefore, a technique to provide a stable accuracy for unobserved 

data is required.  

Precise condition diagnosis of multiple bearing system is achieved by 

analysing as much as possible information extracted from the vibration signals data. 

In this research, ten features are extracted from three acceleremoters which record 

the vibration signals of the multiple-bearing systems. It means this algorithm 

involves thirty input neurons for the BPNN process. That is quite a large number of 

neuron which will influence the complexity. The increase in complexity can cause an 

increase in the processing time, so the diagnose cannot be provided instantly as the 

industry need. Therefore, dominant features identification and selection are needed  

to minimize the complexity of condition diagnosis technique while maintaining the 

required accuracy and stability. 

1.7 Thesis Organization 

This thesis is divided into seven chapters that discuss on issues related to 

condition diagnosis in multiple bearings system. Each chapter will describe 

specifically the development of enhancement approaches for BPNN to improve the 

accuracy and stability of accuracy in condition diagnosis of multiple bearings 

system. This thesis has outline as follows: 
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Chapter 1: presents the introduction of condition diagnosis and multiple 

bearings system. This chapter describes current issue in condition diagnosis of 

multiple bearing system, problem statements, objectives, scope and significances of 

the research. 

Chapter 2: explains the literature review of condition diagnosis algorithm. 

First it explains the establish concept of and techniques for condition diagnosis, 

followed by description of existing metaheuristic techniques of condition diagnosis 

especially in bearing system, and also the Back Propagation Neural Networks 

(ANNs) and Genetic Algorithm in condition diagnosis and multiple ANNs as one of 

methods to improve ANNs performance.  Dominant feature selection techniques and 

algorithm performance evaluation is presented in the next section. Finally this 

chapter is ended with the summary of literature review in establish condition 

diagnosis algorithms. 

Chapter 3: discusses the methodology of the research that covers research 

operational framework, problem analysis, algorithm development, data collection 

and analysis and algorithm performance analysis. 

Chapter 4: describes the development of genetic algorithms (GA) based 

approaches for back propagation neural networks (BPNN). It is started by the 

hybridization of GA-BPNN and Adaptive GA (AGA)-BPNN in order to obtain good 

condition diagnosis, followed by performance evaluation of GA-BPNN and AGA-

BPNN. This chapter is concluded by the summary of the algorithm development and 

performance evaluation. 

Chapter 5: presents multiple back propagation neural networks (mBPNN) 

and adaptive genetic algorithms (AGA) developments. This chapter consists of 

development of mBPNN-AGA-BPNN developments, performance evaluation and 

algorithm implementation in bearing system diagnosis.  

Chapter 6: describes the dominant features identification using grey 

relational analysis (GRA). It presents the GRA methodology and the performance 
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evaluation of selected dominant features in AGA-BPNN and mBPNN-AGA-BPNN 

algorithms. 

Chapter 7: provides the summary of the research, the research contribution 

for body of knowledge and practical in condition diagnosis of multiple-bearing 

system, the limitation and future work of this research.  
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