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ABSTRACT 

 

 

 

 

Chemical process design involves the development of chemical route that 

converts the feedstock to the desired product.  During chemical process design, the 

sustainability features, i.e. safety, health and environmental (SHE), and economic 

performance (EP) should be established through assessment.  However, at present, no 

relevant assessment framework with simultaneous consideration of SHE and EP is 

reported in literature.  As improvement to the mentioned shortfall, this thesis presents 

four systematic frameworks for chemical process design based on multiple objectives 

of inherent SHE and EP.  These frameworks are specifically dedicated for three design 

stages of (1) research and development, (2) preliminary engineering stage, and (3) 

basic engineering stage, and lastly (4) uncertainty analysis with the presence of 

multiple operational periods.  Following the proposed frameworks, the mathematical 

optimisation models were developed for the assessment.  Besides, multi-objective 

optimisation algorithm (fuzzy optimisation) and multi-period optimisation approach 

were also integrated into the frameworks to address the multiple objectives, 

uncertainties and multiple operational periods.  To illustrate the frameworks proposed 

in this thesis, the assessments on biodiesel production pathway in different design 

stages were solved.  Prior to the assessment, eight alternative biodiesel production 

pathways were identified based on literature.  Through the evaluations and assessments 

in each design stage using the proposed frameworks, a final optimum biodiesel 

production pathway, i.e. enzymatic transesterification using waste vegetable oil, was 

designed through assessment.  This pathway was further assessed and improved via 

assessment in basic engineering stage and uncertainty analysis.  Following the 

assessments, several inherent SHE improvement strategies for all the three highlighted 

design stages were also suggested.  Lastly, it can be concluded that the developed 

frameworks provide simplified yet effective ways for chemical process design based 

on the multi-objective of inherent SHE and EP.   
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ABSTRAK 

 

 

 

 

Reka bentuk proses kimia melibatkan pembangunan laluan kimia yang 

menukarkan bahan mentah ke produk yang diperlukan.  Dalam reka bentuk proses 

kimia, ciri-ciri kemampanan dari segi keselamatan, kesihatan dan alam sekitar (SHE) 

yang wujud, serta prestasi ekonomi (EP) perlu diwujudkan melalui penilaian.  Walau 

bagaimanapun, setakat ini, tiada rangka kerja penilaian yang berkaitan didapati dalam 

bahan literatur sedia ada.  Untuk penambahbaikan, tesis ini mengemukakan empat 

rangka kerja sistematik untuk reka bentuk laluan pengeluaran kimia semasa peringkat 

awal berdasarkan prinsip SHE yang wujud dan EP sebagai objektif.  Rangka kerja 

tersebut adalah direka untuk tiga reka bentuk peringkat awal, iaitu (1) penyelidikan 

dan pembangunan, (2) kejuruteraan awal, (3) kejuruteraan asas, serta (4) analisis 

ketidakpastian dengan mengambil kira tempoh operasi berganda.  Dalam rangka kerja 

tersebut, model pengoptimuman matematik telah direka untuk kerja penilaian.  Selain 

itu, kaedah pengoptimuman pelbagai objektif (cara pengoptimuman kabur), dan 

pengoptimuman pelbagai tempoh telah digunakan dalam rangka kerja untuk analisis 

atas pelbagai objektif, sensitiviti dengan kehadiran ketidakpastian serta tempoh 

operasi berganda.  Untuk menggambarkan rangka kerja yang dikemukakan dalam tesis 

ini, penilaian ke atas laluan pengeluaran biodiesel dalam beberapa peringkat reka 

bentuk telah diselesaikan.  Sebelum kerja penilaian, sebanyak lapan laluan 

pengeluaran biodiesel telah dikenalpasti melalui kajian literatur.  Melalui penilaian 

dengan menggunakan rangka kerja yang direka, laluan pengeluaran biodiesel yang 

paling optimum telah direka, iaitu transesterifikasi berenzim dengan minyak sayuran 

sisa.  Laluan pengeluaran ini telah dinilai dan dipertingkatkan melalui penilaian di 

peringkat kejuruteraan asas serta analisis ketidakpastian.  Melalui penilaian, beberapa 

strategi peningkatan SHE yang wujud untuk tiga peringkat awal reka bentuk process 

telah dicadangkan.  Sebagai kesimpulan, rangka kerja yang dicadangkan telah 

menunjukkan cara yang mudah dan efektif untuk mereka bentuk proses kimia 

berdasarkan objektif berganda iaitu prinsip SHE yang wujud dan EP.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

In early chemical process development, it involves several early design stages, 

which are known as research and development (R&D), preliminary engineering and 

basic engineering stage.  During those design stages, chemical production pathway is 

designed to enable effective conversion of raw materials into the desired end products 

that meets the required specifications and other process performances (Seider et al., 

2004).  In specific, the screening and optimisation of production pathway are 

performed to generate the most optimum pathway amongst all alternatives.  In this 

context, it is very important to ensure the developed chemical production pathway is 

sustainable (Zheng et al., 2012).  According to World Commission on Environment 

and Development (1987), sustainability is defined as the development that meets the 

needs of the present without compromising the ability of future generations to meet 

their own needs.  For chemical production, the typical objective is to maximise the 

economic performance (EP) subject to the technologically feasibility.  Besides, in 

order to ensure the business sustainability, other elements, such as environment, social 

development, safety, etc., are also essential (Othman et al., 2010).   

 

 

In fact, all business units should fulfil the corporate responsibility in promoting 

the social development, which is primarily being emphasised as the contribution on 

safety, health and environmental (SHE) aspect.  In chemical process industries, there 

is a strong demand from the public, legislation (e.g. The European Agency for Safety 

and Health at Work (EU-OSHA, 2010) and voluntary initiatives (e.g. Responsible Care) 
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for the chemical manufacturers to seriously consider the improvement of SHE 

performance in their companies (Hook, 1996).  This demand is primarily resulted from 

the increased public awareness along with the past history of chemical accidents (e.g. 

Fertiliser plant explosion, Texas, 2013, etc.) that have caused great loss of human life, 

properties and environment.  This demand grows stronger with the rapid growth of 

chemical production activities over the years.  The risk of chemical plants accident 

should be minimised through various means including addressing the fundamental 

problems by eliminating or reducing the inherent hazards in the process down to the 

minimum level.   

 

 

As an effort to improve the SHE performance, it is important to assess the 

hazards of chemical production pathway (Kletz, 1991).  Sustainable chemical 

production enables the long-term protection of human health and preservation of the 

environment.  Therefore, SHE aspects have become the important elements to be 

considered in process design, apart from the aspects of technical and economic 

feasibility (Koller et al, 1999).  Besides, in order to ensure the sustainable features in 

chemical production, it is recommended to perform SHE assessment based on the 

principle of inherent safety (IS) or inherently safer design (ISD) during early process 

design stage (Kletz, 1984).  This principle emphasises on hazard elimination or 

reduction using intrinsic means, rather than any external system (e.g. devices) or 

administrative control (Kletz, 1984).  Since the performances of occupational health 

and environmental compliance are equally important, the IS principle should be 

applied for inherent health (IH) and environmental (IE) assessment as well (Koller et 

al., 1999).  In principle, the inherently safe, healthy and environmentally friendly plant 

should not cause any harm to human and environment.  Those three aspects should be 

considered simultaneously rather than in a single form to promote comprehensive 

assessment, and hence it is known as inherent SHE.   

 

 

The inherent SHE assessment should be conducted during early design stages 

rather than the latter engineering stage, due to great benefits i.e. lower cost, effort and 

time for any required engineering modification.  On the other hand, late assessment of 

inherent SHE could result in a higher risk that intrinsically exists in the process.  

Therefore, early assessment on inherent SHE brings more benefits to the chemical 
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production pathway and it should be emphasised in process design.  Apart from the 

perspective of inherent SHE, EP should also be assessed in order to ensure the 

economic feasibility of the business before making any major investment to implement 

to the entire project.  Considering the aforementioned advantages of conducting the 

assessment on chemical production pathway during early process design stages, it is 

important to apply the systematic frameworks for the assessment.  Therefore, this 

forms the main motivation of this work to develop the systematic frameworks for 

sustainability assessment of chemical production pathway.  In the framework, it is 

desirable to include multi-objective, e.g. inherent SHE and EP, for the purpose of 

ensuring the sustainability in comprehensive perspectives.  Apart from that, since more 

than one objective is involved in the assessment, the multi-objective optimisation 

approach is used for the multi-objective analysis.   

 

 

Other than development of the frameworks, it is also aimed to perform 

assessment on the chemical production pathway in order to illustrate the function of 

the frameworks.  In this thesis, biodiesel production pathway is selected for the 

assessment.  Since the past decades, biodiesel has emerged as a source of renewable 

energy that has potential to reduce the total dependency on petroleum fuel, and reduce 

the mentioned environmental problem (Hideki et al., 2001).  Because of its mentioned 

potential, the production volume of biodiesel in global stage is expected to continually 

increase at least for the next decade (OECD and FAO, 2014).  In this case, it is 

apparently important to assess the sustainability of biodiesel production pathway in 

terms of inherent SHE and EP.  In this thesis, the engineering work of optimisation, 

screening and ranking of alternative biodiesel production pathways optimisation is 

performed using the developed frameworks.   

 

 

 

 

1.2 Problem Statement 

 

 

For the sustainability assessment on chemical production pathway, there are 

several key challenges emerged, and they should be taken note and addressed 

accordingly.  At first, the consideration of inherent safety principle should be 

implemented in the assessment on chemical production pathway due to its significance 
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in reducing or eliminating the intrinsic hazard in chemical process.  As highlighted in 

literature (Khan and Amyotte, 2002), the application of inherent safety principle 

should be continuously widened in chemical industries and several key concerns are 

noted, i.e. (1) lack of awareness, knowledge and experience by plant designer, (2) 

limited attention in regulation, (3) time and cost constraint during process development 

stage, and lastly (4) lack of systematic methodology or tool for application purpose.  

Based on the mentioned reasons, in order to enhance its application in industries, it is 

essential to develop the assessment framework, which shows the systematic and 

simplified steps to the users (Preston and Hawksley, 1997).    

 

 

Apart from that, the multi-objective which could contribute to sustainability 

should indeed be considered rather than assessing only a single aspect.  However, note 

that a single aspect, e.g. technological performance, economic criteria, etc., is normally 

emphasised in conventional process design methodology (Tanabe and Miyake, 2012).  

In general, the factor of EP should be assessed in process design in order to ensure the 

economic feasibility of the production pathway (Zheng et al., 2012).  Besides, as 

discussed in previous section, it is also necessary to consider inherent SHE in 

assessment.  Based on this fact, the multi-objective of inherent SHE and EP should be 

considered in the framework.  Nonetheless, the relevant assessment framework 

involving the mentioned aspects has yet to be reported in any literature.  Hence, it 

becomes a challenge in this thesis to develop the new assessment framework, which 

incorporates the multi-objective of inherent SHE and EP.  In conjunction with the 

multi-objective in assessment, the suitable optimisation tool should be adapted into the 

framework for multi-objective analysis.  In this case, the entire structure of the 

framework and its detailed approach should be developed. 

 

 

For the design of chemical production pathway during early stages, it is often 

experienced with a common problem, i.e. lacking of process data and the information 

on process modules (Koller et al., 2000).  In fact, the information developed in each 

design stage is different, and the information becomes more detailed when progressing 

from one stage to the subsequent stage.  The detailed information of the piping, process 

modules, operating procedures, etc., is normally developed and finalised during the 

detailed engineering design stage in order to support the procurement work.  In overall, 
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due to the difference of the early design stages, it is more recommended to use a 

specific assessment method for the individual stage (Abbaszadeh and Hassim, 2014).  

This provides the benefit of preventing the dilemma of searching for information, 

which is not yet developed, because only the information available in the particular 

process design stage is needed.   

 

 

Based on the aforementioned problem statements, some key summaries are 

concluded.  Firstly, it is important to develop the simplified assessment frameworks, 

which are comprised of systematic and holistic approaches, and tools that are easy to 

be understood and used.  This is because the simplified framework could facilitate the 

application in both industries and academic fields.  Next, in order to promote more 

comprehensive assessment, several frameworks should be developed according to the 

specific design stage or design purpose.  This means that an individual framework is 

developed according to the specific design need (e.g. subject to certain design stage), 

rather than one general framework, which is claimed to be applicable for all design 

stages.  The detailed classification and the key features of those frameworks are further 

discussed in the following section.  

 

 

 

 

1.3 Research Objectives 

 

 

Based on the abovementioned problem statements, the objectives of this 

research work are summarised as following: 

 

(a) To develop systematic frameworks for assessment chemical production pathway 

based on multi-objective of inherent SHE and EP according to: 

(i) Research and development stage 

(ii) Preliminary engineering stage 

(iii) Basic engineering stage 

(iv) Uncertainty analysis 

 

(b) To apply the assessment frameworks on biodiesel production pathway as a case 

study to illustrate the developed frameworks.  From the assessment, the ways of 
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identifying the most optimum pathway and performing further process design 

through the developed frameworks are demonstrated. 

 

 

 

 

1.4 Scope of the Research 

 

 

As elucidated in previous section, this thesis is aimed to present the novel and 

systematic framework of synthesising the production pathway which is inherently 

safer, healthier, environmental-friendlier, and more economically feasible.  Based on 

this key research objective, the scopes of research are summarised as below.  Note that 

the listed scopes are explained according to the case study of biodiesel production.  

 

(a) Literature review: Several important topics are reviewed, starting with the 

introduction of the principle of hazard analysis and ISD.  Subsequently, the 

features of the early process design stages and the developed assessment methods 

of inherent SHE are discussed.  As biodiesel production is applied as a case study 

for the assessment, its production technology and the relevant sustainability 

assessment are also reviewed.  Besides, the typical framework used for the 

chemical production pathway assessment is studied in order to understand its 

concept.  Lastly, the optimisation approach, i.e. multi-objective optimisation and 

multi-period optimisation, which are to be incorporated in the proposed 

framework (refer to item (b) as below), is included in this review.   

 

(b) Development of four systematic frameworks for inherent SHE and EP assessment 

with the integration of optimisation approach: The first three frameworks are 

designed for assessment according to individual early process design stage, i.e. 

R&D, preliminary engineering and basic engineering stage.  Besides those three 

frameworks, the framework for uncertainty analysis is also included in this thesis.  

In the uncertainty analysis, the sensitivity analysis is performed by considering 

multiple operational periods aiming to generate a robust design solution towards 

the external factors, e.g. uncertainties.  Note that, by applying those frameworks, 

it is targeted to demonstrate that only the information available in each stage 

(rather than the more detailed data) is used for the assessment.  This is an 
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important initiative to tackle the issue of lacking of data in early process design 

stages.  

 

For each developed framework, the holistic and step-by-step approach for 

conducting the assessment is described.  Besides, the detailed approach for 

formulating the mathematical optimisation model is also discussed.  Note that 

multiple and conflicting objectives are involved in which the fuzzy optimisation 

approach (El-Halwagi et al., 2006) is adopted as multi-objective optimisation tool 

for all four assessment frameworks.  For the fourth framework, the multi-period 

optimisation approach is applied together with the multi-objective optimisation 

approach for the assessment with uncertainty analysis.   

 

(c) Assessment on biodiesel production pathways (as case study) with the application 

of all developed frameworks:  Prior to the assessment, the superstructure diagram 

is developed, and the alternative production pathways are identified for 

assessment.  From the assessment, the production pathway screening, and 

optimisation of the pathway are performed.  

 

(d) Recommendation on inherent SHE improvement strategies based on inherent 

safety principle for the case study of biodiesel production: The recommended 

strategies are defined according to the individual design stage.  It should be taken 

note that the suggested strategies are served as references for general chemical 

production pathways. 

 

 

 

 

1.5 Contribution of the Research 

 

 

The main objective of this thesis focuses on the development of assessment 

frameworks for chemical production pathways, which are based on multi-objective of 

inherent SHE and EP.  Those mentioned assessment frameworks have been developed, 

and applied on biodiesel production pathway as a case study.  Besides, based on the 

work in this thesis, there are three key contributions presented, as described as item (a) 

to (c) below.  Besides, general findings in this thesis can also be served as references 
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particularly to the biodiesel manufacturers in Malaysia as more extensive development 

of biodiesel plant industries is expected very soon (Mukherjee and Sovacool, 2014).   

 

(a) Development of four systematic frameworks for inherent SHE and EP assessment 

for chemical process design through the application of multi-objective (fuzzy 

optimisation) and multi-period optimisation approach.  As discussed in the 

previous section, those frameworks are applicable to three process design stages, 

namely the R&D, preliminary engineering and basic engineering stage, as well as 

for the uncertainty analysis with the presence of multiple operational periods.  

 

(b) Application of the assessment frameworks on the case study of biodiesel 

production in order to illustrate the functionality of the frameworks, and 

identification of the most optimum and sustainable pathway. 

 

(c) Recommendation of inherent SHE improvement strategies on biodiesel 

production pathway with specific to each stage’s early process design through 

application of ISD principle  

 

Based on the above-mentioned research contributions, as first author, five 

manuscripts have been prepared.  The scopes of those five manuscripts are described 

as below.   

 

(a) Manuscript 1: Literature review on evolution, production technologies and 

sustainability assessment for biofuel.  This study is aimed to understand the 

development of biofuel and its relevant assessments. 

 

(b) Manuscript 2, 3 and 4: Development of sustainability assessment frameworks for 

chemical production pathway during early process design stage of R&D, 

preliminary engineering and basic engineering stage respectively.  Through the 

developed framework, biodiesel production is assessed as a case study.  

 

(c) Manuscript 5: Uncertainty analysis with the consideration of multiple operational 

periods.  Based on the developed framework, the simplified approach of 
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determining the optimal design variables is elaborated in detail. 

 

 

As outlined in Table 1.1, three of those manuscripts have been published in 

Journal with impact factor, while the other two manuscripts have been submitted for 

review.  The details of the journal papers can be referred to Appendix A to C.   

 

 

Table 1.1: List of manuscripts and the journal acceptance status 

No. Title Status Impact Factor* Journal 

1 Review of evolution, 

technology and 

sustainability assessments 

of biofuel production 

 

Published 3.844 Journal of 

Cleaner 

Production 

2 Sustainability assessment 

for biodiesel production 

via fuzzy optimisation 

during research and 

development (R&D) 

stage 

 

Published 1.934 Clean 

Technologies 

and 

Environmental 

Policy 

3 Systematic framework for 

sustainability assessment 

on biodiesel production: 

Preliminary engineering 

stage 

 

Published 2.587 Industrial and 

Engineering 

Chemistry 

Research 

4 Systematic framework for 

sustainability assessment 

on biodiesel production: 

Basic engineering stage 

 

Submitted  

for review 

2.551 Process Safety 

and 

Environmental 

Protection 

5 Sustainability assessment 

on biodiesel production: 

Uncertainties analysis 

Submitted  

for review 

1.054 Journal of 

Environmental 

Chemical 

Engineering 
*Based on year 2014 and available in Thomson Reuters Journal Citation Report 2015. 

 

 

Apart from the journal papers, the scope of Manuscript 1 has been integrated 

partially into a book chapter and contributed as a second author.  This book chapter 

outlines the principle of inherent safety, which is followed by the latest development 

of inherent safety and health in biofuel production.  The details of the book chapter is 

listed in Table 1.2.   
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Table 1.2: List of book chapter 

No. Book Title Chapter Title Publisher 

1 Process design 

strategies for biomass 

conversion systems 

 

Chapter 14 - Overview of 

safety and health assessment 

for biofuel production 

technologies 

John Wiley & Sons, 

Inc 

 

 

Apart from that, five conference papers (as first author) have been published, 

as outlined in Table 1.3.  The general scopes of those five conference papers are 

summarised as following, whereas the detailed papers can be referred to Appendix D 

to H. 

 

 

Table 1.3: List of conference papers (continued) 

No. Title Conference 

1 Fuzzy optimisation for screening of 

sustainable chemical reaction 

pathways  

15th Conference on Process 

Integration, Modelling and 

Optimisation for Energy Saving 

and Pollution Reduction (PRES) 

2012 

 

2 Review of evolution and sustainability 

assessment of biofuel production  

International Conference on 

Process Systems Engineering (PSE 

ASIA) 2013 

 

3 Screening of sustainable biodiesel 

production pathways during process 

research and development (R&D) 

stage using fuzzy optimisation  

16th Conference on Process 

Integration, Modelling and 

Optimisation for Energy Saving 

and Pollution Reduction (PRES) 

2013 

 

4 Sustainability assessment on biodiesel 

production during research and 

development (R&D) stage 

 

Asia Biohydrogen and Biorefinery 

(ABB) Symposium 2014 

5 Sustainability assessment on biodiesel 

production during preliminary 

engineering stage through a systematic 

framework 

International Conference on 

Environment (ICENV) 2015 

 

 

(a) Conference Paper 1: The methodological approach for screening chemical 

production pathways in R&D stage was discussed, and the case study based on 

synthesis of methyl methacrylate (MMA) was presented.   
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(b) Conference Paper 2: Summarised from Manuscript 1 (literature review). 

 

(c) Conference Paper 3 and 4: Summarised from Manuscript 2 (sustainability 

assessment during R&D stage).   

 

(d) Conference Paper 5: Summarised from Manuscript 3 (sustainability assessment 

during preliminary engineering stage). 
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