BACK ANALYSIS OF SLOPE FAILURE INDUCED BY RAINFALL INFILTRATION

GLORIA D/O PAUL

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil – Geotechnics)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JANUARY 2014

Special dedication to my

beloved parents, Mr.Mrs Paul

ACKNOWLEDGEMENT

All praise and glory for the Lord Almighty for His abundant blessings showered upon me throughout the completion of this project.

First and foremost, I would like to extend my sincere gratitude to supervisor, Assoc. Prof. Ir. Dr. Azman bin Kassim for encouraging my merits and ignoring my faults. His valuable guidance, advice and willingness to motivate have contributed tremendously to my study.

An honourable mention goes to Ir. Dr. Low Tian Huat for his professional inputs and constructive ideas. His kind assistance is greatly appreciated.

Last but not least, a big thank you to my parents, my little sister, Martina and finally my dearest friends, Dayang and Kirubhakiri for their words of encouragement and continuous support throughout the completion of this study. Without their prayers and love, this project would not have been made possible.

ABSTRACT

The slope stability issues concerning rainfall induced slope failures constitute a major threat to both lives and property worldwide particularly in the tropical climate of Malaysia which is characterized by very intense and long duration rainfall. The aim of this study is to investigate landslide occurrence due to rainfall infiltration through numerical simulation. The objectives are to determine the soil properties of the failed slope, to study the hydrological data of the slope and lastly to analyse the rainfall-induced slope failure by observing the factor of safety (FOS) at failure. The study focuses on the failure mechanisms of a landslide that occurred at Phase 8, Taman Sri Gombak, Batu Caves on 25th May 2011 by utilizing well established SEEP/W and SLOPE/W developed by Geoslope. The findings of the back analysis suggests that with the factor of safety 0.992, the slope begins to exhibit failure on 23rd May due to the increase level of ground water table that eliminates the apparent strength contributed by matric suction in the unsaturated soil system. All in all, it is proven that beside the contributing factors such as soil strength properties, soil mass and geometry, the factor of safety can be altered by the fluctuating pore water pressure induced by rainfall infiltration which in return greatly influences stability of slopes.

ABSTRAK

Kebelakangan ini, isu-isu berkaitan ketidakstabilan cerun yang berlaku akibat limpahan hujan yang kerap berlaku mendapat perhatian ramai. Fenomena ini disumbang oleh iklim hujan tropika di Negara Malaysia yang panas dan lembap sepanjang tahun. Kesan dari kegagalan cerun menyebabkan berlaku kehilangan nyawa, kerosakan harta benda dan menganggu proses pembangunan negara. Tujuan kajian ialah untuk menyiasat kesan penyusupan air hujan terhadap kegagalan cerun menerusi kaedah simulasi numerik. Objektif kajian ini meliputi menentukan sifat kekuatan tanah, mengkaji data hydrologi dan akhirnya menganalisa faktor keselamatan ketika berlakunya kegagalan. Kajian ini tertumpu pada kegagalan cerun yang berlaku pada 25hb Mei 2011 di Fasa 8, Taman Sri Gombak, Batu Caves. Analisis dijalankan menggunakan kaedah keseimbangan had yang menggunakan simulasi komputer model SLOPE/W berdasarkan taburan tekanan air liang yang dianalisis oleh perisian SEEP/W. Jangkaan keputusan yang akan deperolehi adalah nilai faktor keselamatan cerun (FOS) pada tempoh 14 hari analisis dijalankan. Nilai FOS yang terendah iaitu 0.992 dicatat pada 23 Mei 2011 di mana penyusupan air hujan yang berterusan didapati mengurangkan sedutan matrik tanah dan seterusnya melemahkan kekuatan ricih tanah yang mengakibatkan berlakunya tanah runtuh.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGES

TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF SYMBOLS	xiii
LIST OF APPENDICES	x

1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	2
	1.3 Objectives of Study	3
	1.4 Scope of Study	3
	1.5 Significance of Study	4

LITERATURE REVIEW

2.1	Introduction	5
2.2	Theory and Behaviour of Unsaturated Soil	6
	2.2.1 Shear Strength of Soil	7
	2.2.2 Soil-Water Characteristic Curve (SWCC)	7
	2.2.3 Permeability	8
	2.2.4 Pore Pressure	10
	2.2.5 Water Flow in Unsaturated Soil	12
	2.2.4 Boundary Conditions	12
2.3	Slope Stability Analysis	14
2.4	Rainfall Infiltration Analysis	15
	2.4.1 Seepage Analysis	16
2.5	Slope Failures	17
	2.5.1 Falls	18
	2.5.2 Topples	19
	2.5.3 Slides	19
	2.5.4 Lateral Spreads	20
	2.5.5 Flows	20

METHODOLOGY

3.1	Introduction	22
3.2	Study Area	25
3.3	Rainfall Data	30
3.4	Strength Parameters of Soil	30
3.5	Seepage Analysis	31
3.6	Slope Stability Analysis	32
	3.6.1 Sensitivity Analysis	32

4

DATA ANALYSIS & DISCUSSION

33

33
33
34
38
47
48
48
56
57
58

CONCLUSIONS & RECOMMENDATIONS 59

5.1 Introduction	59
5.2 Limitations	59
5.3 Conclusions	60
5.4 Recommendations for Future Study	61

REFERENCES

5

62

APPENDICES

64

LIST OF TABLES

TITLE

PAGE

3.1	Soil shear strength parameter	27
4.1	Hydraulic conductivity, k_{sat} for saturated soil conditions	35

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

1.1	Aerial view of site location showing landslide area	4
2.1	Modified Triaxial Cell for testing unsaturated soils	8
2.2	A typical Soil-Water Characteristics Curve (SWCC)	9
2.3	Relationship between soil-water characteristic curve	
	and coefficient of permeability for sand and clayey silt	10
2.4	Physical processes related to seepage in a slope	18
3.1	Flowchart of the chronology of study	24
3.2	Location of study area	26
3.3	General subsurface profile of study area	26
3.4	Slope failure location adjacent to residential	
	underconstruction site	27
3.5	Sign of mudflow observed	27
3.6	Earth drains observed at downstream towards	
	failure scar	28
3.7	Broken culvert at the top of the failed slope	28
3.8	Failure scar at downslope of the landslide	29
3.9	Water seepage from granite outcrop at toe of	
	the failed slope	29
3.10	Slope profile for stability analysis	32
4.1	Daily rainfall record for the month of May, 2011	34
4.2	SWCC for sandy clay	36
4.3	SWCC for sandy silt	36

4.4	Relationship between hydraulic conductivity and	
	matric suction for sandy clay	37
4.5	Relationship between hydraulic conductivity and	
	matric suction for sandy silt	37
4.6	Pore pressure distribution on initial condition	39
4.7	Pore pressure distribution on 12 th May 2011	39
4.8	Pore pressure distribution on 13 th May 2011	40
4.9	Pore pressure distribution on 14 th May 2011	40
4.10	Pore pressure distribution on 15 th May 2011	41
4.11	Pore pressure distribution on 16 th May 2011	41
4.12	Pore pressure distribution on 17 th May 2011	42
4.13	Pore pressure distribution on 18 th May 2011	42
4.14	Pore pressure distribution on 19 th May 2011	43
4.15	Pore pressure distribution on 20 th May 2011	43
4.16	Pore pressure distribution on 21 st May 2011	44
4.17	Pore pressure distribution on 22 th May 2011	44
4.18	Pore pressure distribution on 23 th May 2011	45
4.19	Pore pressure distribution on 24 th May 2011	45
4.20	Pore pressure distribution on 25 th May 2011	46
4.21	Slope stability model with soil parameters	47
4.22	Sensitivity plot	48
4.23	Factor of safety (FOS) at initial condition	49
4.24	Factor of safety (FOS) on 12 th May 2011	49
4.25	Factor of safety (FOS) on 13 th May 2011	50
4.26	Factor of safety (FOS) on 14 th May 2011	50
4.27	Factor of safety (FOS) on 15 th May 2011	51
4.28	Factor of safety (FOS) on 16 th May 2011	51
4.29	Factor of safety (FOS) on 17th May 2011	52
4.30	Factor of safety (FOS) on 18th May 2011	52
4.31	Factor of safety (FOS) on 19 th May 2011	53
4.32	Factor of safety (FOS) on 20 th May 2011	53
4.33	Factor of safety (FOS) on 21 st May 2011	54
4.34	Factor of safety (FOS) on 22 th May 2011	54
4.35	Factor of safety (FOS) on 23 rd May 2011	55

4.36	Factor of safety (FOS) on 24 th May 2011	55
4.37	Factor of safety (FOS) on 25 th May 2011	56
4.38	Relationship between rainfall intensity and the	
	matric suction at slope's toe	57
4.39	Relationship between rainfall intensity and the	
	factor of safety	58

LIST OF SYMBOLS

Т	-	shear strength
c'	-	effective cohesion for saturated soils
Ø′	-	effective friction angle for saturated soils
Ø _b	-	friction angle in unsaturated soils
u _a	-	pore air pressure
uw	-	pore water pressure
\mathcal{V}_{W}	-	flow rate of water;
k_w	-	coefficient of permeability
h_w	-	hydraulic head
ρ_w	-	density of water
g	-	acceleration due to gravity
h	-	hydraulic head
у	-	elevation head
ρ_{w}	-	density of water
g	-	gravitational acceleration
τ	-	average shear stress
S	-	average shear strength of soil
FOS	-	factor of safety

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

64

A Rainfall Data for May 2011

CHAPTER 1

INTRODUCTION

1.1 Introduction

There are many slope failures caused by long period of heavy and intense rainfall, especially in tropical regions where the hot and humid weather coupled with high annual rainfalls have resulted slope instability that leads to landslides. Rapid infiltration of rainfall and the increasing of pore pressure can be considered the main trigger of landslide (Wieczorek, 1987). Rainfall induced landslides are among the most dangerous natural hazards acting on hillslopes, leading to structural damage and casualties. These shallow landslides are triggered by heavy rainfall, very often falling on already wet soils.

Research in the area of slope stability has brought about the realization that most slope failures are caused by the infiltration of rainwater into the slope (Gasmo et.al, 2000). Hence, back analyses of landslides are vital and useful for understanding the failure mechanisms of rainfall induced slope instability. According to Sharihan and Stark (1998), the location of the case study, soil composition, soil's shear strength properties, slope geometry, location of the slip surface and pore pressure conditions are among the particulars that should be defined prior to any justification.

Furthermore, the increasing rate of urbanisation has increased hillside developments for engineered and fill slopes in many regions in the tropics. The analyses of the stability of these slopes involve unsaturated soils because the water table is usually deep. Climatic changes directly affect the unsaturated soil zone. It is important to note that rainfall-induced slope failure involves infiltration through the unsaturated zone above the ground water table. Therefore, a slope area is be considered as an integral system of unsaturated-saturated soils in the stability analyses.

1.2 Problem Statement

High rainfall conditions in tropical areas give rise to many slope instability problems. The factor of safety of residual slopes with a high ground water level depends on, among other factors, the magnitude of the negative pore water above the ground water table which contributes to additional shear strength of the soil. With precipitation, the pore pressure becomes less negative or even positive. As a result, the shear strength of the soils decrease and this may trigger landslides. Thus, there is a pressing need to study and investigate the stability of slopes due to rainfall infiltration.

1.3 Objectives of Study

The aim of this study is to investigate landslide occurrence due to rainfall infiltration through numerical simulation. In order to achieve the stated aim, the following objectives are outlined;

- i to determine the soil properties of the failed slope
- ii to study the hydrological data of the slope
- iii to analyse the rainfall-induced slope failure by observing the factor of safety (FOS) at failure

1.4 Scope of Study

Back analysis was conducted on a soil slope that failed on 25th May 2011 at Phase 8, Taman Sri Gombak, Batu Caves to study its failure mechanisms. The scope of the study focuses on the landslide which occurred adjacent to the TNB Substation of Sri Townvilla extending to downslope toe which near to residential area of Kg. Sg. Cincin. Laboratory analyses were carried out to classify and to determine the strength parameters of the soil. Furthermore, these laboratory tests were supplemented by appropriate field tests to take into consideration the mass behavior of the actual ground condition. Rainfall Infiltration is analysed using the concept of numerical modeling of SEEP/W programme. Whereas, limit-equilibrium based SLOPE/W is utilized for slope stability analysis purpose.

Figure 1.1: Aerial view of site location showing landslide area

1.5 Significance of Study

Rainfall-induced slope failure involves a very complicated mechanism that governed by a number of parameters and uncertainties. It is evidenced that beside the contributing factors such as soil strength properties, soil mass and geometry, the factor of safety can be altered by the fluctuating pore water pressure or suction which in return greatly influenced by triggering factor of rainfall infiltration. Therefore, the study is crucial to evaluate the effect and governing factors of rainfall infiltration in causing slope failure.

REFERENCES

- Collins, B. D. Znidarcic, D. (2004). Stability Analyses of Rainfall Induced Landslides.
- Fredlund, D.G., Rahardjo, H. (1993a). An Overview of Unsaturated Soil Behaviour. Proceedings of the 1993 ASCE Convention on Unsaturated Soils, Dallas, Texas.
- Fredlund, D.G., Sheng, D. Z. (2009). *Shear Strength Criteria for Unsaturated Soils*. Springer Science & Business Media.
- Fredlund, D. G., Rahardjo, H. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons Inc.
- Gasmo, J.M., Rahardjo, H., Leong, E.C. (2000). *Infiltration effects on stability of a residual soil slope*. Computers and Geotechnics.
- Geo-Slope. (2004). *SLOPE-W for Slope Stability Analysis, Version 5, User's Guide,* GEO-SLOPE International Limited., Calgary, Alberta, Canada.
- Geo-Slope. (2007). SEEP-W for Finite Element Seepage Analysis, Version 5, User's Guide, GEO-SLOPE International Limited., Calgary, Alberta, Canada.
- Gofar, N., Lee, M.L., Asof, M. (2006). Transient Seepage and Slope Stability Analysis for Rainfall-Induced Landslide: A Case Study. Malaysian Journal of Civil Engineering
- Hsin, F. Y., Chen, C. L., Cheng, H. L. (2008). A Rainfall-Infiltration Model for Unsaturated Soil Slope Stability. J. Environmental Engineering Management.
- Huvaj-Sarihan, N., Stark, T D. (2008). Back Analyses of Landfill Slope Failures. University of Illinois at Urbana-Champaign.
- Kassim, A., Gofar, N., Lee, L. M. (2008). Response of Suction Distribution to Rainfall Infiltration in Soil Slope. EJGE.
- Lee, T. T., Rahardjo, H. (2003). *Response of a Residual Soil Slope to Rainfall*. Canadian Geotechnical Journal.

- L'Heureux, J. S. (2005). Unsaturated Soils and Rainfall Induced Landslides. University of Oslo.
- Low, T. H., Ali, F., Ibrahim, A. S. (2012). An Investigation on One of the Rainfall-Induced Landslides in Malaysia. EJGE.
- Mariappan, S., Ali, F., Low, T. H. *Rainfall Infiltration, Soil Matric Suction and Slope Engineering.* Universiti Malaya, Kuala Lumpur.
- Meyenfield, H., Glade, T. (2008). Sensitivity Analysis for the Influence of Soil Properties on Slope Stability. Geophysical Research Abstracts, EGU General Assembly.
- Orense, R. P. (2004). *Slope Failures Triggered by Heavy Rainfall*. Philippine Engineering Journal.
- Rahardjo, H., Fredlund, D.G. (1995). Procedures for slope stability analyses involving unsaturated soils. Developments in deep foundation and ground improvement schemes, Balkerma, Rotterdam.
- Rahardjo, H., Leong, E.C., Rezaur, R.B. (2001). Rainfall-Induced Slope Failures: Mechanism and Assessment. International Conference on "Management of the Land and Water Resource", Hanoi, Vietnam.
- Rahardjo, H., Leong, E.C., Rezaur, R.B. (2002). Unsaturated Soil Mechanics for the Study of Rainfall-induced Slope Failures. Proceedings of the 4th National German Workshop on Unsaturated Soils, Weimar, Germany.
- Rahardjo, H., Leong, E.C., Rezaur, R.B. (2002). Studies of rainfall-induced Slope Failures. School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
- Regmi, R. K. (2012). *Numerical Modelling of Rainfall-Induced Slope Failure*. Sonsik Journal
- Tofani, V., Dapporto, S, Vannocci, P, Casagli, N. (2006). Infiltration, seepage and slope instability mechanisms during the 20-21 November 2000 Rainstorm in Tuscany, Central Italy. European Geosciences Union.