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ABSTRACT 

 

 

 

 

Precast lightweight slab panel system offers several advantages in 

construction industry, such as lightness, high strength-to-weight ratio, ease of 

transportation, saving of materials, and offers rapid construction. The design for the 

conventional reinforced concrete slab has been well established in current code of 

practice. There is, conversely, little scientific and technical information available for 

structural-grade lightweight foamed concrete (LFC) and lightweight slab panel 

design involving LFC incorporates with cold-formed steel (CFS) sections. This study 

aims to develop the design procedures for lightweight slab design, to find the optimal 

mix design for structural-grade LFC, to develop lightweight slab system that utilizing 

lightweight foamed concrete and cold-formed steel sections, to investigate the 

strength behaviour and to validate strength of the developed slab system via 

analytical and experimental investigation. Theoretical prediction on ultimate 

resistance and design procedure based on stress block method was deliberated. Trial 

mixes for structural-grade of LFC material are performed in accordance with 

Eurocode and ASTM to obtain the optimum mix design, with its mechanical 

properties are investigated. In addition, 16 full-scale slab specimens, incorporating 

different concrete mixes, reinforcement and CFS sections are prepared and tested to 

investigate the structural behaviour, such as ultimate load resistance, load-deflection 

profile, load-strain distributions and the failure modes. Theoretical validation for the 

experimental results was carried out. A design procedure for the lightweight slab 

panels is proposed for its possibility to be used. From the material study on LFC, an 

optimal mix design with cement-sand ratio of 3:1 and water-cement ratio of 0.49 was 

identified. Throughout the experimental investigation on full-scale slab, it was 

observed that all slab panels achieved the design resistance in accordance to 

Eurocode. Comparison is made between normal weight and lightweight slab panels 

revealed that the flexural resistance of lightweight slab panel is lower than that of 

normal weight slab panel. Nevertheless lightweight slab panel can save weight up to 

47.1% relatively. The lightweight slab panels with single horizontal (SH) 

configuration showed the best performance. In addition, the results also exhibited 

that the flexural resistance of the slab panels increased as the effective steel area of 

cold-formed steel section increased. The convincing results concluded that the 

lightweight slab panel system incorporating lightweight foamed concrete (LFC) and 

cold-formed steel (CFS) skeletal frame is feasible to be used in construction industry. 

.  
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ABSTRAK 

 

 

 

 

 Sistem pratuang panel papak ringan menawarkan beberapa kelebihan dalam 

industri pembinaan, contohnya ringan, nisbah kekuatan-kepada-berat yang tinggi, 

kemudahan pengangkutan, penjimatan bahan, dan menawarkan pembinaan yang 

cepat. Reka bentuk untuk papak konkrit bertetulang konvensional telah mantap 

dalam kod amalan semasa. Sebaliknya, maklumat saintifik dan teknikal bagi konkrit 

ringan berbuih (LFC) untuk kegunaan struktur dan papak panel ringan yang 

melibatkan LFC menggabungkan dengan keluli tergelek sejuk (CFS) adalah masih 

kurang. Kajian ini bertujuan untuk merangka satu prosedur untuk reka bentuk papak 

ringan, mencari campuran optima bagi konkrit ringan berbuih untuk kegunaan 

struktur, membentuk sistem papak ringan yang menggunakan konkrit ringan berbuih 

dan keluli tergelek sejuk, mengkaji perlakuan kekuatan dan untuk mengesahkan 

kekuatan sistem papak yang dicadangkan melalui penyiasatan dan analisis 

eksperimen. Ramalan teori terhadap rintangan muktamad dan prosedur reka bentuk  

yang berdasarkan kaedah blok tegasan telah dibincangkan. Percubaan campuran 

untuk LFC gred struktur dilaksanakan mengikut panduan kepada Eurocode dan 

ASTM untuk mendapatkan campuran yang optima, dan sifat-sifat mekanikal dikaji. 

Di samping itu, 16 spesimen papak berskala penuh yang mengandungi campuran 

konkrit yang berbeza bersama dengan konfigurasi berbeza reka bentuk tetulang dan 

rangka CFS diuji untuk menyiasat kelakuan struktur, seperti beban rintangan 

muktamad, profil beban-pesongan, taburan beban terikan dan mod kegagalan. 

Pengesahan teori bagi keputusan ujikaji telah dibincang. Prosedur reka bentuk untuk 

panel papak ringan telah dicadangkan untuk kemungkinan digunakan. Daripada 

kajian bahan LFC, satu campuran optima telah dikenalpasti dengan nisbah simen-

pasir 3:1 dan nisbah air-simen 0.49. Sepanjang siasatan uji kaji pada papak berskala 

penuh, telah diperhatikan bahawa semua panel papak mencapai ketahanan reka 

bentuk berpandukan kepada Eurocode. Perbandingan antara panel papak berkonkrit 

berat normal dan panel papak ringan mendedahkan bahawa rintangan lenturan panel 

papak ringan adalah lebih rendah daripada panel papak konkrit berat normal. Akan 

tetapi panel papak ringan boleh menjimat berat sebanyak 47.1%. Panel papak ringan 

dengan konfigurasi rangka keluli tergelek sejuk secara mendatar (SH) menunjukkan 

prestasi yang terbaik. Di samping itu, keputusan juga menunjukkan bahawa 

rintangan lenturan panel papak meningkat bersamaan dengan peningkatan luas 

permukaan efektif keluli tergelek sejuk. Kesimpulannya, sistem panel papak ringan 

dengan penggabungkan konkrit ringan berbuih (LFC) dan rangka tulang keluli 

tergelek sejuk (CFS) adalah sesuai digunakan dalam industri pembinaan. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Background of study 
 
 

Concrete is a widely used construction material. Its popularity can be 

attributed to durability under hostile environments, ease with various different 

structures, such as dams, building, pavement, runways, tunnel, and bridge, and its 

relative economy and easy availability (Pillai and Menon, 2009). According to Li 

(2011), the worldwide production of concrete exceed that of steel by a factor of 10 in 

tonnage and by more than a factor of 30 in volume. Several types of concrete are 

available today, such as normal concrete, high strength concrete, lightweight 

concrete, self-compacting concrete, pervious concrete etc. The use of lightweight 

foamed concrete (LFC) gains its significant interest from the construction industry 

recently. LFC contains no coarse aggregate, but only fine sand, cement, water and 

foamed materials. With appropriate design, LFC with the wide range of densities 

from 300 kg/m3 to 1900 kg/m3 can be produced for the application as filler material, 

panels or block in civil engineering works. Besides that, LFC is good in thermal and 

acoustic insulation compared to normal concrete, which gives higher potential as 

walls and slabs in building construction. 

 
 
Apart from concrete, steel also has been the prominent construction material 

in construction industry for long time. Due to the advancement of the technology and 

research in this field, new development in construction materials such as cold-formed 

steel sections has been effectively used for primary structural components in building 

construction. Cold-formed steel sections (CFS) has gains its popularity as purlins and 
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rails, intermediate members between main structural frame and the corrugated roof 

or wall sheeting in buildings for farming and industrial use (Martin and Purkiss, 

2008). In United states, over 100,000 houses per year used light steel framed, which 

proved of great user confident and excellent track record of cold-formed steel (Popo-

ola et al.,2000). Cold-formed steel sections are fabricated by folding, press-braking 

of plates or cold-rolling of coils made from carbon steel. The steel section is 

relatively thin, typically with the thickness of 0.9 mm to 3.2 mm, and galvanized for 

corrosion protection (Dubina et al., 2012; Lee et al., 2014b). These sections may 

have the yield stress ranging from 250 MPa to 550 MPa. The main benefit of using 

cold-formed steel section is not only of its high strength-to-weight ratio but also its 

lightness, free individual shaping and beneficial geometrical features in relation to 

the cross-sectional area. According to Biegus (2006), cold-formed steel sections gain 

the advantages of reducing the metal content of 25 – 50% in comparison to hot rolled 

steel sections, 30% time saving for in-situ frame and total cost saving of 10 – 25%. 

Nevertheless, both concrete and steel has their own characteristic weakness. 

Therefore, the combination of the two materials can utilized the best part of its 

relatively characteristic and gives an optimum structural performance.  

 
 
Reinforced concrete is considered as a composite material. Lower tensile 

strength and ductility of concrete will be counteracted by the addition of steel 

reinforcement that has higher tensile strength and ductility. Traditionally, reinforced 

concrete construction involved on-site casting or prefabricated concrete with the 

concrete strengthen by embedded and welded wire, steel reinforcement bar or steel 

mesh, fibre etc, making it to withstand the substantial stress. Relatively low strength-

to-self weight ratio of reinforced concrete limits its design for large and long span 

members. However, the design has been well established and anchored in codes of 

practice (BSI, 2004a). Due to the Industrial Building System has now remerged 

worldwide into the 21st century as a sensible solution to improve construction image 

and performance, the use of pre-fabricated structures are recommended. Besides, 

50% of multi-storey steel frame building used precast concrete slab (Way et al., 

2007).  
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Innovative concepts such as pre-stressed concrete and composite structure 

system are available in the local construction industry to overcome the limitation of 

reinforced concrete design. Generally, composite slab system refers to that the 

concrete slab acted along with cold-formed profile decking. This design had been 

well established and anchored in codes of practice (BSI, 2004b). Besides that, 

composite slab with steel decking had been proved as economic and lightweight 

structural building materials (Andrade et al., 2004). Furthermore, the steel deck can 

act as the permanent formwork, provides a working area and the upper flange of the 

floor beams act as reinforcement in the tension zone of the slab (Seres and Dunai, 

2011).  Composite slab system is structurally efficient because it gives an optimum 

solution to the tensile resistance of steel and the compressive resistance of concrete. 

Thus, it gained recognition in North America especially for small commercial and 

residential building construction. 

 
 
Nevertheless, these two types of construction- reinforced concrete slab and 

composite slab system are time consuming, as the concrete slab needs to be cast on-

site and may introduce significant moisture into building (Wright et al., 1989).  Some 

quick installation slabs system needed to be introduce to overcome the problems 

faced by traditional concrete construction. This development will give tidier and 

cleaner site environment, minimized site wastage, save construction time and cost, 

accelerate sustainable building system and provide durable high quality control 

construction. In this research, some quick installation slab systems utilising CFS and 

LFC had been proposed. This research is to confirm that the proposed slab systems 

are feasible to use the in construction industry. 

 
 
 
 
1.2 Problems statements 
 
 

A slab structure consists 40% - 60% of total dead load and volume for an 

ordinary residential building (Yardim et al., 2013). Reduction of 10% self-weight of 

slab may lead to 5% self-weight reduction of an entire building. The traditional cast 

in-situ slab system has heavy self-weight and is found to be challenging for long-

span and large-scale construction project. This also leads to the needs of heavier 
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equipment, transportation difficulties, expensive connection and joints solution. In 

order to have better structural performance and lower cost, the development of 

lightweight slab has become a critical need. Lightweight concrete such as lightweight 

foamed concrete (LFC) has been almost exclusively limited to non-structural 

application such as void filling, thermal insulation, acoustic damping, trench filling 

for reinstatement of roads and building blocks (Kearsley, 1999). Nevertheless, the 

compressive strength of LFC is exponentially correlated to density. A minimum 

strength of 17 MPa must achieve for LFC to perform for structural usage (Shetty, 

2006). Besides that, the LFC has to maintain same characteristic with normal weight 

concrete but in low density. Furthermore, the air voids in LFC would lead the 

unprotected reinforcement susceptible to corrosion even when the external attack is 

not severe. 

 
 
There are some lightweight slab systems from previous studies such as the 

one-way lightweight concrete slab by Kum et al. (2007), glass fiber reinforced 

polymer reinforced precast lightweight concrete panel by Liu and Pantelides (2013) 

and CFS partially embedded in concrete composite slab system by Lakkavalli 

(2005). These three studies have a similarity, i.e. the slab system casted used 

lightweight aggregate concrete. Besides that, the lightweight slab system studied by 

Lakkavalli (2005) was more probably made using cast in-situ composite slab system.  

Thus, as to the author knowledge, there is so far no study on the application of the 

hybrid system which combined the concept of reinforced concrete slab and 

composite slab. The prefabricated slab system incorporating CFS sections fully 

embedded as the skeletal in LFC has not been studied.  

 
 
 To date, the codes of practice (BSI, 2004a & BSI, 2004b) focus on analytical 

design of the conventional reinforced concrete slab and composite slab design.  

Currently, there is no standardized code of practise for LFC. BS EN 1992-1-1 (BSI, 

2004a) mainly focuses on structural design using normal weight concrete and 

lightweight aggregate concrete. Nevertheless, the design mix procedure and 

materials properties of normal weight concrete could not be used for LFC (Kearsley, 

2006). The detailed design method and requirements, especially for this new type of 

slab system has not been concluded. Hence, there is a need to carry out in-depth 
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study for the performance of lightweight slab system that involved CFS section as 

the fully embedded reinforcement in LFC and developed the design procedures for 

such design.  

 
 
 
 
1.3 Objectives 
 
 
In order to answer the above problem statement, the objectives of research are as 

follow: 

 
 
i. To develop the design procedures for lightweight slab design. 

ii. To obtain the optimal mix designs of lightweight foamed concrete that fulfills 

the requirement for structural usage. 

iii. To develop a lightweight slab system that utilizes lightweight foamed 

concrete and cold-formed steel sections. 

iv. To investigate the strength behaviour and to validate the developed slab 

system via analytical and experimental investigation. 

 
 
 
 
1.4 Scope of works 
 
 

Lightweight materials such as lightweight foamed concrete (LFC) and cold-

formed steel section (CFS) are used as the construction materials to produce a 

lightweight concrete slab system in this study. The CFS C-channel sections, with 

Grade 450 and dimension of 100 mm depth and 1.55 mm thickness, were fully 

embedded as the skeletal in the prefabricated slab system. There were two types of 

concrete used in this research, which were normal weight concrete (NWC) and LFC 

with Grade 25. As for lightweight foamed concrete, the density was targeted at 1700 

kg/m3. Besides that, there were four types of CFS skeletal in cooperating with both 

types of concrete were studied in this research. In depth, experimental investigations 

on its flexural behaviour is conducted. The aspects of bending resistance are 
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compared between the theoretical and experimental approaches to validate the 

standardized design procedures. 

	
	

Analytical investigations were carried out for better understanding on section 

properties and member capacities of single cold-formed steel sections.  Detailed 

studies on the flexural design were made in a step-by-step calculation, to obtain the 

resistance of each slab configuration. Besides that, analytical comparisons between 

the slab configurations and changes of concrete types were made. Furthermore, 

comparison between the experimental and analytical investigations was made to lead 

to a conclusive design of the proposed slab system. The details of works involved are 

divided into several sections and organized into relevant chapters as described in 

Section 1.6. 

	
	

The experimental programme includes: (1) Four series of lightweight foamed 

concrete trial mix to get the optimal mix design for lightweight slab system. (2) 

Sixteen full-scale slab panel consists of four different configurations of cold-formed 

steel skeletal to investigate the flexural behaviour of simply supported reinforced 

slabs under four-point load. The first set of ten slabs used normal weight concrete, 

while the second set of six slabs involved lightweight foamed concrete. (3) Control 

tests were carried out for both NWC and LFC and tensile coupon tests for CFS 

sections to measure the actual material properties. 

 
 
 
 
1.5 Significant of study 
 
 

As discussed previously, most of the LFC used as filler material, panels or 

blocks due to its low compressive strength. This research is believed to provide an 

optimal mix design for LFC that suitable for structural usage. The mechanical 

properties of LFC can be recognize and understand. Besides that, in this study, new 

types hybrid slab systems by using CFS sections and fully embedded into the 

concrete to replace the conventional reinforcement steel bar. The CFS skeletal, 
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which were easy and fast erected by using bolts and nuts, with four different types of 

configurations were studied.  

 
 
The lightweight slab system that involving using lightweight foamed concrete 

is predicted to have better flexural behaviour than the conventional slab system and 

in the meantime it reduces the selfweight of the slab system. Furthermore, this study 

may provide further additional information to the design guides in the current codes 

of practices.  

 
 
 
 
1.6 Outline of thesis 
 
 

The general information of the research subject including e.g. background 

information of the study, problem statements, objectives, scope of work and 

significant of the study are mentioned in Chapter 1.  Chapter 2 consists of detailed 

background of the research and works done by previous researchers. The limitation 

from the previous research discusses in this chapter. Chapter 3 discusses on the 

analytical works involved in generating design formula and calculations for slab 

system. Experimental testing on trial mix design for lightweight foamed concrete 

discussed in Chapter 4. The obtained optimum mix design on its mechanical 

properties will also discussed in detail. Chapter 5 discusses about the full-scale 

experimental programme on slab flexural test that consists both normal weight slab 

system and lightweight slab system. The chapter contains the detail descriptions of 

the experimental investigations that carried out, material testing and also the critical 

review on the result discussion. Furthermore, the comparison made between both 

types of slab system and analytical study comprise in Chapter 5. The research works 

are summarized and concluded in Chapter 6, together with the recommendation for 

future works.  
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