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ABSTRACT

In recent years, delay differential equations (DDEs) have started to play crucial

roles in natural phenomena modeling. Their solutions are essential to the determination

of the behavior of such models. However, DDEs are generally difficult to be solved,

especially those of higher-orders. This thesis overcomes the hurdle by the way

of the method of classification, which allows us to study the solution properties

of higher-order DDEs easily and accurately. Earlier researchers were unsuccessful

in their attempts to classify DDEs to Lie algebra by changing the space variables.

This failure was due to the absence of an equivalent transformation related to the

change of variables in DDEs. Consequently, these equations were studied via Lie

algebraic classification to the specific case of second-order retarded DDEs (RDDEs).

The present work develops a new approach to classify the second-order RDDEs as

well as neutral DDEs (NDDEs) to solvable Lie algebra without changing the space

variables, and obtains one-parameter Lie groups of the corresponding DDEs to arrive

at the transformation solutions. These transformation solutions then lead to solutions

of the DDEs. The effectiveness of the proposed classification technique is verified

by applying it on modeling the ankle joint of Human Postural Balance (HPB). The

proposed model is expected to play a significant role in computational neuroscience

related to accurate control of human walking. For completeness, the method is

extended to classifying nth-order DDEs of retarded and neutral types. The excellent

features of the results and the successful implementation of the method suggest that

our new classifier may constitute a basis for classifying DDEs as solvable Lie algebras

to obtain the solutions of these equations after getting the transformation solutions of

DDEs.
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ABSTRAK

Kebelakangan ini, persamaan pembezaan lengah (DDEs) mula memainkan

peranan penting dalam pemodelan fenomena semula jadi. Penyelesaian yang

terhasil penting bagi menentukan perilaku sesuatu model. Bagaimanapun, secara

umumnya DDEs sukar diselesaikan, terutamanya yang melibatkan peringkat tinggi.

Tesis ini dapat mengatasi masalah tersebut dengan menggunakan kaedah pengelasan

yang membolehkan sifat-sifat penyelesaian DDEs peringkat tinggi dapat dipelajari

secara mudah dan tepat. Penyelidik dahulu tidak berjaya dalam percubaan

mereka untuk mengelaskan DDEs kepada algebra Lie dengan menukar pemboleh

ubah ruang. Kegagalan ini disebabkan oleh ketiadaan transformasi setara yang

berkaitan dengan penukaran pemboleh ubah dalam DDEs. Oleh itu, persamaan

ini dikaji melalui pengelasan algebra Lie terhadap kes khusus, iaitu DDEs

terencat (RDDEs) peringkat kedua. Kajian terkini ini membangunkan pendekatan

baharu untuk mengelaskan RDDEs peringkat kedua serta DDEs neutral (NDDEs)

kepada algebra Lie terselesaikan tanpa menukar pemboleh ubah ruang, dan satu

parameter Kumpulan Lie diperolehi daripada DDEs sepadan bagi mendapatkan

penyelesaian transformasinya. Penyelesaian transformasi ini kemudian membawa

kepada penyelesaian DDEs. Keberkesanan teknik pengelasan yang dicadangkan itu

disahkan dengan menggunakan model sendi buku lali daripada Keseimbangan Postur

Manusia (HPB). Model yang dicadangkan itu dijangka memainkan peranan penting

dalam pengiraan neurosains yang berkaitan dengan kawalan tepat pergerakan manusia

berjalan. Sebagai pelengkap, kaedah ini diperluas kepada pengelasan DDEs peringkat

ke-n jenis terencat dan neutral. Ciri-ciri yang sangat baik daripada keputusan ini dan

keberkesanan pelaksanaan kaedah tersebut memberikan gambaran bahawa pengelas

baharu ini merupakan asas untuk mengelaskan DDEs sebagai algebra Lie yang

boleh diselesaikan bagi mendapatkan penyelesaian persamaan setelah memperoleh

penyelesaian transformasi DDEs.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Many significantly important studies in the field of physics, engineering,

biomathematics, and others [1–11] are modeled mathematically into delay differential

equations (DDEs). DDEs are differential equations where the derivatives of some

unknown functions at two different time instants (past and present) are correlated.

Researchers in engineering and bioscience domains are often confronted with

mathematical models involving DDEs.

To the best of the author’s knowledge, DDEs have mostly been handled by

numerical techniques via discretization [12]. These techniques can efficiently solve

first-order linear and simple non-linear DDEs using long and tedious procedures. The

inherently complex nature of DDEs makes them very difficult, and even impossible

to obtain the analytical solutions [13]. Consequently, most researchers study the

stability of these DDEs [10,11,14–22] without providing an accurate description of the

properties of the solutions. Nevertheless, Lie symmetry analysis is established in this

thesis to be one of the powerful methods to provide the analytical solution or to reduce

the order of the equations. Consequently, it increases the possibility in resolving and

analysing the properties of the solution of DDE.
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Historically, the Norwegian mathematician Sophus Lie [8] first introduced the

notion of Lie group in the context of ordinary differential equations (ODEs). It is

considered to be an effective method for studying the properties of differential equation

(DE). Since then, Lie group analysis has been widely exploited [8, 9, 23–28].

Thanthanuch and Meleshko [29] developed the definition of an admitted Lie

group for functional DEs (FDEs). This definition helped Pue-on and Meleshko [30]

to introduce group classification for specific cases of second-order retarded delay

differential equations (RDDEs). To find invariants of second order DDEs, one needs

to consider a Lie algebra [30]. This is because DDEs do not possess an equivalent

transformation related to the changes of both the dependent and independent variables.

In this thesis a classification method is developed to classify DDEs to solvable

Lie algebra. This method allows us to study the properties of the solutions of

higher-order DDEs towards getting the transformation solutions. However, DDEs

are devoid of equivalent transformations related to changes in variables. Thus, Pue-

on and Meleshko [30] were unsuccessful in classifying DDEs to Lie algebra. This

restriction has motivated us to classify second-order RDDEs without changing the

space variables. The generalization of this method to second-order neutral delay

differential equations (NDDEs) classification is demonstrated. The effectiveness of the

classification technique have been verified by applying the results on Human Postural

Balance (HPB) model. It is asserted that precise classification of HBP in controlling the

process of human walking is extremely important for computational neuroscientists.

Furthermore, the classification method is extended to nth-order RDDEs with constant

coefficients to solvable Lie algebra together with the generalization to nth-order

NDDEs.

1.2 Research Background

In the nineteenth century Sophus Lie (Figure 1.1) began to investigate the

continuous groups (which are now called Lie groups) of transformations leaving
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Figure 1.1 Sophus Lie (Nordfjordeid, 17 December 1842 - Christiania, 18 February
1899) [8]

DEs invariant. He created the central concepts of symmetry analysis of differential

equations. Symmetry analysis of DEs was introduced and applied by Lie during 1872

- 1899 [31, 32].

A salient feature of symmetry analysis is that the order of an ODE can be

reduced by one if it is invariant under one-parameter Lie group of point transformations

[9]. This observation unified and extended the available integration techniques.

Hill [23] introduced the method of solving DEs by means of one-parameter groups.

Oliveri [8] reviewed the Lie symmetries of DEs. Based on Lie′s approach he

developed the method for solving DEs via symmetry Lie groups. Since then many

researchers of DEs turned their focus to reexamining symmetry Lie groups [30].

More recently, various researchers used Lie groups as a tool to analyze DEs [9,23,24].

Ovsiannikov acknowledged the importance of Lie group analysis in solving DEs [25],

and Ibragimov carried out group classification of DEs [26]. The classifications of

ODEs are rendered in terms of their symmetry groups. Boyko et al. [27] studied

Lie symmetries of a system of second order linear ODEs with constant coefficients

over both the complex and the real fields to compute the dimension of maximal Lie

invariance algebra. Moyo et al. [28] scrutinized the properties of symmetry Lie group

of a system of two linear second order DEs to achieve their group classification with

constant coefficients by changing the variables. Finally, the general solution of this

system is recovered.
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In 2002, Thanthanuch and Meleshko [33] reported how Lie symmetry analysis

can be systematically applied to DDEs using Lie group analysis. The method for

constructing and solving the determining equation was developed by them [29]. They

introduced the definition of an admitted Lie group for functional DEs. Later, this

definition helped Pue-on and Meleshko [30] to develop group classification for specific

cases of second order RDDEs. This is achieved by changing the variables and finding

the invariance of the Lie algebra in the space of the resulting variables. Finally,

he used the invariance to form a second order DDE. In order to find invariants of

second-order DDEs, one needs to consider a Lie algebra, since DDEs do not possess

an equivalent transformation related to the change of the dependent and independent

variables [30]. Therefore, a new approach needs to be used to classify second-order

RDDEs to solvable Lie algebra without changing space variables consideration.

NDDEs emerge when RDDEs do not succeed in explaining some natural

phenomena including the motion of radiating electrons, population growth, the

spread of epidemics, and in networks containing lossless transmission lines [34–37].

However, the classification of NDDEs has not been achieved yet. This thesis

generalizes the method of classification to NDDEs and successfully applies them on

HPB model. It is believed the method may contribute significantly to HPB studies

by recovering the properties of the solution of HPB model. Also the classification of

higher-order delay differential equations to get a solvable Lie algebra had not been

studied yet. In view of this, the present work extends the method of classification to

nth-order DDEs of retarded and neutral delay.

Table 1.1 summarizes the relevant published literatures with their focused

perspectives.
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Table 1.1: Summary of related works

Year Authors Recurring research theme

1872 Sophus Lie To develop DE invariant of continuous groups

[8] transformation

1872-1899 Sophus Lie Introduced and applied the symmetry analysis of

[31, 32] DEs

1928 Hermann [8] Coined the term ”Lie group”

1940-1949 Birkhoff and Performed dimensional analysis of the theory to

and Sedov [8] obtain relevant results for concrete applied

problems

1978 Ovsiannikov Systematically exploited the methods of DEs

[25] symmetry analysis in the explicit solutions

construction for multifaceted problems

1982 Hill [23] Solved DE by means of one-parameter groups

1989 Bluman and

Kumei [24]

Dealt with symmetries and DEs

1990 Bluman [8] Proposed a reduction algorithm for ODEs by

admitting a solvable Lie group

1993 Olver [9] Introduced application of Lie groups to DEs

1999 Ibragimov [26] Treated elementary Lie group analysis and ODEs

2004 Thanthanuch Developed the definition of an admitted Lie group

and

Meleshko [33]

for FDEs

2010 Pue-on and Introduced group classification for specific

Meleshko [30] cases of second-order RDDEs

2013 Boyko et al. Introduced Lie symmetries of systems of second-

[27] order LODEs with constant coefficients

2013 Moyo et al. Developed group classification of systems of two

[28] linear second-order ODEs



6

1.3 Problem Statement

Delay differential equations play significant roles in every facet of real life

applications. Recently, more researchers turn to these equations since they can be

used to describe various natural phenomena accurately. Unfortunately, DDEs are not

easy to analyse or solve. Although there are some methods can solved first-order

DDEs but they cannot solve higher-order DDEs. So, the researchers just study the

stability of these equations. This is particularly true for the higher-order DDEs. So

any applications modeled by these equations become insurmountable. Consequently,

a direct method for solving DDEs is still lacking. The following research questions

must be answered to fill this gap:

(i) How to classify second-order RDDEs to solvable Lie algebra?

(ii) Is it possible to achieve the family of transformation solutions for DDEs?

(iii) Can one generalize the classification to second-order NDDEs using solvable Lie

algebra?

(iv) How to prove the validity of the classification method of RDDE and NDDE in

real application?

(v) How to extend the classification technique for nth-order RDDEs and NDDEs to

solvable Lie algebra?

1.4 Research Objectives

The goal of this thesis is to develop the Lie symmetry analysis, especially Lie

group analysis method to classify higher-order DDEs to solvable Lie algebra. The

objectives of this thesis are the following:

(i) To develop a new classification method for second-order RDDEs.
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(ii) To obtain the family of transformation solutions for higher-order DDEs.

(iii) To extend the classification method in (i) and (ii) for NDDEs.

(iv) To demonstrate the validity and feasibility of the classification method in precise

examination of NDDEs and RDDEs on HPB model.

(v) To generalize the classification method from second-order DDEs to nth-order

RDDEs and NDDEs.

1.5 Scope of the Study

The present thesis aims to develop a new approach to study DDEs with

retarded and neutral delay of various order. So the scope of this work includes

classification of second and nth-order delay differential equations of retarded and

neutral types with constant coefficients as solvable Lie algebras to achieve the family

of the transformation solutions. Constant and positive time delay (τ ) will be used.

The effectiveness of the classification technique has been verified by classifying

Human Postural Balance model in second-order DDEs, leading to the properties of

the solutions of this model by obtaining the transformation solutions.

1.6 Research Significance

This study developed a new approach to classify second order retarded DDEs

to solvable Lie algebra. The classification method can generalize to second order

NDDEs. The present method was verified by implementing it on HPB model to solve

this model. Therefore, this work can help computational neuroscientists to study HPB

model accurately. Also, it facilitates studies into any other phenomena described by

such DDEs. In order to complete the classification scheme of DDEs, the proposed

method is further extended to classify the nth-order DDEs of retarded and neutral
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delay to solvable Lie algebra. The present method is able to achieve the family of

transformation solutions for such equations.

By this classification technique it becomes simple to determine the properties of

the solutions (retarded and neutral) DDEs of any order. It is believed that the results and

successful implementation of the classifier provides a new basis for easily classifying

DDEs as solvable Lie algebras to arrive at transformation solutions for these equations.

1.7 Research Methodology

The research begins by studying a brief reviews of DDEs (especially on higher-

order DDEs) from previous researchers ( [1, 2, 4, 5, 35, 38]) and highlighted the

importance and the limitations for studying the solutions of these equations. However,

there is as yet no direct way to solve them; therefore Lie symmetry analysis is

especially important. It is well-known that Lie group analysis is a powerful, systematic

and direct method for deriving solution analytically [39]. The concept of Lie symmetry

and its application for solving ordinary differential equations was firstly introduced by

Lie [8]. Lie method is an effective method and a large number of ODEs and Partial

Differential Equations (PDEs) [9,24–26,39–43] are solved with the aid of this method.

Modern references on the subject can be found in many researches [8, 27, 28, 39, 44].

However, in spite of the importance of delay differential equations, there have been

only few attempts to apply symmetry techniques to such equations. Thanthanuch

and Meleshko [29] investigated the prolongation and the determining equation of

second-order RDDEs depends on the concepts of Lie symmetries which introduced

by Lie. In addition, they developed the definition of an admitted Lie group for FDEs.

These researches helped Pue-on and Meleshko [30] to introduce group classification

of second-order RDDEs. This is done by changing the space variables on some chosen

classes of Lie algebra to find the invariance of such space and classify them to specific

case of second-order RDDEs.
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Based on the studies which introduced by Thanthanuch, Meleshko and Pue-

on with the previous researches, the present thesis developed a new approach to

classify second-order RDDEs as solvable Lie algebras. This is achieved by finding

the invariance of such equations without change the space variables. The classification

determines the associated symmetry group by the general infinitesimal generator which

was prolonged to 6-dimensional spaces of variables. Then, the resulting equations are

solved, and the solvable Lie algebras spanned by these parameters are arrived at by

satisfying the inclusion property. This research further generalizes the classification to

second-order NDDEs. In addition, the present work extends the classification method

to nth-order DDEs with retarded and neutral delay by extending some procedures of

such classification. On the result space, modifying Oliver’s method yield the family of

the transformation solutions for various order of DDEs. The classification technique

has been verified by applying them to modeling of HPB of ankle joint. The research

methodology is summarized in Figure 1.2.

1.8 Thesis Outline

This thesis consists of seven chapters together with reference list and

appendices. Each chapter commences with a brief introduction and ends with a short

summary. The present chapter provides a brief background, develops the rationale of

the thesis, and tries to argue why intensive research in the cited topic is necessary. In

addition, the problem statement in the form of research questions, proposed objectives,

the research scope, and its significance with research methodology are underscored.

Chapter 2 renders a comprehensive literature review regarding DDEs and Lie

symmetry analysis. It discusses the historical developments, basic concepts of RDDEs

and NDDEs, Lipschitz condition, existence and uniqueness theorems of solution of

RDDEs and NDDEs, linear DDEs with constant delay and coefficients, mathematical

modeling involve DDEs, and existing methods of solving first-order DDEs. The

limitations of previous methods are also highlighted. It explains most of the earlier
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investigations related to the stability or the oscillation of DDEs and some details of

their solutions.

In addition, Chapter 2 provides an overview on Lie symmetries and Lie group

analysis. It explains most researchers’ work that dealt with Lie group analysis on

DE by changing the space variables. However DDEs do not possess equivalent

transformations related to the change of the dependent and independent variables. Also

it shows that earlier researchers did not succeed in classifying DDE to Lie algebra.

Moreover, some basic definitions and theorems regarding Lie group, Lie algebra, Lie-

Bäcklund representation are provided. Finally, the formulation of a new approach

to study the solution properties of DDEs to overcome the existing shortcomings is

emphasized.

The major contributions of the study are documented in the next four chapters.

Chapter 3 introduces the results of the proposed new approach for the classification

of second-order linear and non-linear retarded DDEs with constant coefficients as

solvable Lie algebra. This leads to the transformation solutions by the one-parameter

Lie groups which is achieved by the result’s space.

Chapter 4 extends the classification method in Chapter 3 to neutral delay

differential equations. This chapter focuses on linear and non-linear NDDEs.

Chapter 5 provides the application of second-order DDEs with retarded and

neutral types to solvable Lie algebra classification in modeling human Postural balance

of ankle joint. It explained the way that allows us to solve such a model after the

classification.

Chapter 6 generalizes the proposed novel classification method to nth-

order (linear and non-linear) DDEs with retarded and neutral delay with constant

coefficients. This classification allows us to obtain the solutions of nth-order DDEs.

Chapter 7 concludes the thesis with a summary of its major contributions and

findings. The further outlook of the research is illustrated as recommendations. The

schematic block diagram 1.3 depicts an organizational snap shot of the entire thesis.
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respectively. Due to the difficulty in studying system of nth-order delay

differential equations, one suggestion is to extend the classification scheme to

systems of nth-order delay differential equations with retarded and neutral delay

to solvable Lie algebra. To begin with, one can focus on linear and non-linear

DDEs.

(v) The classification technique can be applied to classify partial delay differential

equations to solvable Lie algebra. Apply the classification on heat equation,

wave equation, or any other partial delay differential equations.
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